

Permanent Magnet undulators

Jordi Marcos (ALBA) on behalf of WP5-PM Task

WP5 – PM Task. List of participants:

PSI - Paul Scherrer Institut

Thomas Schmidt and Marco Calvi

ANSTO - Australian Nuclear Science and Technology Organization – Australian Synchrotron

Rohan Dowd

AU-IAT- Ankara University – Institute of Accelerator Technology

Avni Aksoy and Zafer Nergiz

ALBA

Francis Perez and Jordi Marcos

ENEA

Alberto Petralia and Federico Nguyen

STFC

Hector Mauricio Castaneda Cortes

KYMA Srl

Mirko Kokole, Tadej Milharcic, Jure Pockar and Raffaella Geometrante

WP5 tasks and deliverables

Task 5.1 - Review the technology trends for undulators R&D was de, and compare the potential for innovation and performance. In particular: superconducting undulators enabling field amplitude adjustment along the undulator (equivalent to the tapering of permanent magnet undulators), enhanced-bandwidth FEL radiation or super-radiant light sources at short wavelengths.

- Task 5.2 Select a few outstanding options to be considered for CompactLight.
- Task 5.3 For the options selected in T5.2, perform a systematic optimization of the electron beam parameters at the linac-to-undulator interface to maximise the photon production, in close contact with WP2 and WP6.
- Task 5.4 Report the conceptual design of the selected options as resulting from T5.3.

Description of deliverables

D5.1: A report comparing the different technologies for the valuator, as an input for WP2, (R, PU, M18).

D5.2: Design Report of the undulator to be included in the liverable of CompactLight, (R, PU, M36).

D5.1 : Technologies for the CompactLight undulator [18]

Review report comparing the different technologies for the

D5.2 : Conceptual Design Report of the undulator [36]

Design Report of the undulator to be included in the main deliverable of CompactLight

ALARM tLight undulator.

Design of undulators

Undulator scenarios

Hard X-ray case

Undulator parameters			
undulator period	$1\text{-}1.6~\mathrm{cm}$		
undulator gap	3-8 mm		
deflection parameter (RMS)	0.9-1.8		
Bunch parameters			
beam energy	5-8 GeV		
pulse duration (FWHM)	3-100 fs		
bunch charge	10-100 pC		
norm. emittance	$0.5\text{-}1.5 \text{ mm}\times\text{mrad}$		
energy spread	0.01-0.08 %		
Potential reach			
FEL wavelength	0.05-0.4 nm		
$N_{\gamma}/\mathrm{pulse}$	$5 \times 10^{10} 10^{12}$		
saturation length	30-70 m		

Soft X-ray case

Undulator parameters			
undulator period	1.5-2.2 cm		
undulator gap	3-8 mm		
deflection parameter (RMS)	1.2-2		
Bunch parameters			
beam energy	$1-4 \mathrm{GeV}$		
pulse duration (FWHM)	10-100 fs		
bunch charge	10-80 pC		
norm. emittance	$0.6\text{-}1.6 \text{ mm}\times\text{mrad}$		
energy spread	0.01-0.08 %		
Potential reach			
FEL wavelength	1-7 nm		
$N_{\gamma}/\mathrm{pulse}$	$5 \times 10^{11} \text{-} 4 \times 10^{12}$		
saturation length	15-45 m		

F.Nguyen, WP2 meeting 2018-07-09

Any of these parameters needs to be revised/modified?

PM undulator architectures

PM undulator architectures

Hard X-ray

- In-vacuum technology is the standard for small gap planar PM devices.
- Cryogenic PM undulators (CPMU) is becoming a mature technology, and it seems worthwhile using it given its benefits in terms of enhanced peak field value and increase of radiation resistance.
 - The price to pay is an increase in the complexity of the system, a more difficult magnetic characterization and higher running costs. However all these issues have already been addressed by other facilities.

PM undulator architectures

- Soft X-ray
 - No APPLE or DELTA-type in-vacuum undulators have been manufactured yet and doing so would be an engineering challenge
 - Therefore it would be desirable to confirm that it is feasible using out-ofvacuum solutions, even if it involves using ultra narrow vacuum chambers

 It has to be determined if a simple APPLE II configuration would fulfill polarization flexibility requirements or if a more complex APPLE X configuration is needed

PM undulator SWOT analysis

STRENGTHES

- Low cost
- Low energy consumption
- Simple infrastructure
- Well-known technology
- Automated assembly procedure
- For soft x-ray with full polarization and (with the APPLE X) gradient control

WEAKNESSES

- Magnets demagnetization: at small gaps, possible heating form the beam with risks of local demagnetization (risk reduced in the case of CPMUs)
- Limited field strength (but still with expansion options by new materials i.e. Tb diffusion especially for short period IVUs)
- Issues with multipolar terms at very small gaps (minimized for single-pass machines)

OPPORTUNITIES

- Verify the lowest period achievable with NC technology
- Study of PPM magnet-holder new assembly techniques (soldering, gluing etc)
- Development of automated procedure for serial production

THREADS

 Achievement of the parameters required by CompactLight

R.Geometrante, WP5 meeting 2018-04-18

PM undulator design: scaling laws

Figure 2: Colourmaps showing the variations of the four following parameters over the K- λ_u plane, in the region corresponding to the wavelength range of $\lambda=1$ –5 nm: (a) saturation power $P_{\rm sat}$, (b) saturation length $L_{\rm sat}$, (c) coherence time τ_c at saturation and (d) peak brilliance B at saturation.

- Study for MAX IV Soft X-Ray laser
- FEL parameters determined from Ming Xie parametrization

Table 2: Electron parameters in the case under study

Parameter	Symbol	Value
Electron energy	$\gamma m_e c^2$	3 GeV
Relative energy spread	σ_{γ}/γ	10^{-4}
Peak current	I_0	1.4 kA
Normalized emittance	ϵ_n	0.4 mm mrad
Average of beta function	$ar{eta}$	5 m

A.Mak, P.Salen, V.Goryashko, *Undulator Considerations in the Baseline Design of the MAX IV Soft X-Ray Laser.*Download from http://uu.diva-portal.org

PM undulator design: scaling laws

K_{max} vs undulator period lines assuming a certain value for **minimum gap**

A.Mak, P.Salen, V.Goryashko, *Undulator Considerations in the Baseline Design of the MAX IV Soft X-Ray Laser.*Download from http://uu.diva-portal.org

PM undulator design: next steps

- Define a balance between the different driving conditions:
 - Compactness
 - Feasibility
 - Cost
 - State of the art
 - Aggressive solutions
- Previous balance will have an impact on parameters such as minimum gap value, usage of in-vacuum/out-of-vacuum solutions, configuration for variable polarization devices, etc.
- Look for two or three design alternatives for each energy range

Thank you!

CompactLight@elettra.eu

www.CompactLight.eu

CompactLight is funded by the European Union's Horizon2020 research and innovation programme under Grant Agreement No. 777431.

