

XLS-WP5: Task Superconducting Undulators

J. Clarke, M. Calvi, A. Bernhard

STFC, PSI, KIT

www.kit.edu

Task Overview

Technologies

A variety of SCU technologies at different levels of maturity will be considered:

- Low temperature planar and helical SCUs (Nb-Ti, Nb₃Sn)
- SCUs wound from HTS (REBCO) tape
- HTS (REBCO) bulk inductively excited structures

The design work will have to be accompanied by a technology development programme

Contributing partners

STFC

LTS planar and helical

PSI

HTS bulk permanent magnet, HTS staggered array

KIT

LTS, HTS planar, task coordination

STFC

UK Research and Innovation

- NbTi
- planar
- helical

STFC: In-vacuum SCU

Technology branch

- "classical" planar Nb-Ti undulator magnet technology
- optimization towards compact FELs: In-vacuum SCUs
 - reduced magnet aperture
 - \blacksquare significantly increased field amplitude at given λ_u
- helical Nb-Ti undulators

Current work

- In-vacuum SCU prototype (λ_u = 15.5 mm, B₀ = 1.4 T) tested (basic magnetic measurements)
- currently being off-line commissioned (cold test, quench protection system, fiducialisation) at Daresbury
- awaiting installation into CLARA

STFC: In-vacuum SCU

- Example 15 mm period undulator
- NbTi at 1.8 K
- Note at 4 K we typically observe a 10 % reduction in field
- In-Vacuum SCU with magnet gap 0.2 mm larger than electron beam aperture No internal vacuum chamber, only high conductivity copper liner

STFC: In-vacuum SCU

- SCU prototype in front of CLARA front end
- Start of experiment: february 2019

PAUL SCHERRER INSTITUT

- HTS bulk permanent magnet, HTS staggered array
- planar
- helical

Shell-based HTS bulk undulator prototype (10 periods)

Test in a 12T solenoid – Uni Cambridge

27

28

25 26

30 31

29

[R. Kinjo et al. Applied Physics Express 6 (2013) 04270]

gap = 4.0mm

22

23

24

20 21

19

18

16

 $\lambda_{\rm u} = 10 {\rm mm}$

Test (Spring 2018) of a planar staggered array undulator made of GdBCO bulks, in a 12T solenoid, where the field could be continuously changed between +12T down to -12T and the temperature of the sample controlled between 2K and 300K in a clear bore of 100mm diameter.

KIT

Karlsruher Institut für Technologie

- Parameter studies
- Collecting and compiling data

Simulations of superconducting undulators

NbTi (vertical racetrack)

L. Bottura, "A practical fit for the critical surface of NbTi," IEEE Transactions on Applied Superconductivity, vol. 10, no. 1, pp. 1054 –1057, 2000.

Nb₃Sn (vertical racetrack)

L. Summers, M. Guinan, J. Miller, and P. Hahn, "A model for the prediction of Nb3 Sn critical current as a function of field, temperature, strain, and radiation damage," IEEE Transactions on Magnetics, vol. 27, no. 2, pp. 2041–2044, 1991.

Saturation power and length

Ming Xie, Exact and variational solutions of 3D eigenmodes in high gain FELs, NIM Sec. A, 2000; 10.1016/S0168-9002(00)00114-5

	planar	helical
NbTi	data compilation	feasibility experiments
Nb ₃ Sn	simulations	parameter studies
HTS	feasibility experiments	parameter studies

Thank you for your attention.