

Europena Union

WP6 Activity Report

WP6 Team

WP6: start to end modelling

integrated performance studies of the facility

- Performing start to end simulations, which cover the beam transport from the cathode to the FEL exit for Soft X-Ray & Hard X-Ray including mechanical tolerance studies
- Providing key parameters and performance estimates of the overall facility.
- Definition the basis for technology choices for critical components and for developing detailed designs of subsystems and components
- Development of tools for modeling the machine, as the basis for the final integrated performance studies.

Facility Options considered by WP 6

1

S-Band gun 3 GHz, 1.6? Cell 100 MV?

200 MV?

S-Band Acc 3 GHz, N? Cell 15 MV/m X-Band Lnz 12 GHz, N? Cell G MV/m BC1 Chicane X-Band Acc 12 GHz, N? Cell G MV/m

BC2 Chicane X-Band Acc 12 GHz, N? Cell G MV/m

Undulator
λυ,Κ,
N? section

C-Band gun

C-Band Acc 6 GHz, N? Cell G MV/m

X-Band Lnz 12 GHz, N? Cell G MV/m

BC1 Chicane X-Band Acc 12 GHz, N? Cell G MV/m BC2
Chicane

X-Band Acc 12 GHz, N? Cell G MV/m Undulator
λu,κ,
N? section

X-Band gun
12 GHz, 5.6? Cell
300 MV?

X-Band Acc 12 GHz, N? Cell G MV/m

BC1
Dogleg

X-Band Acc 12 GHz, N? Cell G MV/m

BC2 Chicane X-Band Acc 12 GHz, N? Cell G MV/m Undulator
λu,Κ,
N? section

X-Band gun
12 GHz, 5.6? Cell
300 MV?

X-Band Acc 12 GHz, N? Cell G MV/m K-Band Inz 36 GHz, N? Cell G MV/m

BC1 Chicane X-Band Acc 12 GHz, N? Cell G MV/m BC2 Chicane X-Band Acc 12 GHz, N? Cell G MV/m

Undulator

λu,Κ,

N? section

Tasks and Task members

Ī	Task 6.1 - Injector			Task 6.2 - Linac				Task 6.3 - FEL		Task 6.4 S2E	
	6.1A	6.1B	6.1C	6.1D	6.2A	6.2B	6.2C	6.2D	6.3A	6.3B	6.4A
Task Leader	Anna Giribono	Michel Croia	Cristina Vaccarezza Cristina.Vaccarezza@Inf.infn.it	Zafer Nergiz	Simone Di Mitri	Avni Aksoy		Rohan Dowd	Vitaliy Goryashko vitaliy,qoryashko@physics.uu.se	Federico Nguyen federico.nguyen@enea.it	Avni Aksoy
	A. Latina	C. Vaccarezza		A. Aksoy aaksoy@cern.ch	X. Liu xingguang.liu@cern.ch	R. Dowd Rohan.Dowd@synchrotron.org.au		X. Liu xingguang.liu@cern.ch	G. Dattoli giuseppe.dattoli@enea.it	G. Dattoli giuseppe.dattoli@enea.it	Z. Nergiz znergiz@cern.ch
	aaksoy@cern.ch	andrea.latina@cern.ch	A. Latina andrea.latina@cern.ch	F. Yaman fatihyaman@iyte.edu.tr	rmunoz@cells.es	X. Liu xingguang.liu@cern.ch	X. Liu xingguang.liu@cern.ch	M. Olvegård	Zafer Nergiz znergiz@cern.ch	Z. Nergiz znergiz@cern.ch	X. Liu xingguang.liu@cern.ch
Task Members		,	angeles.faus.golfe@cern.ch	W. Wuensch walter.wuensch@cern.ch	A. Faus-Golfe angeles.faus.golfe@cern.ch	R.M. Horta			H. Castaneda hector.castaneda@stfc.ac.uk	H. Castaneda hector.castaneda@stfc.ac.uk	H. Castaneda hector.castaneda@stfc.ac.uk
	A. Faus-Golfe angeles.faus.golfe@cern.ch			A. Latina andrea.latina@cern.ch		S. Di Mitri simone.dimitri@elettra.eu			A. Mak alan.mak@physics.uu.se		
				E. Trachanas					F. Nguyen federico.nguyen@enea.it		
		C(S)band Acc		Xband Acc	SBand Acc + XBand Inrz + BC1 + Xband Acc + BC2 + XBand Acc + BD	Lnrz	XBand Acc + KBand Inrz + BC1 + XBand BC2 + XBand Acc +BD		Soft X-Ray	Hard X-Ray	Start to End modeling
Codes	ASTRA				PLACET GPT			GENESIS PROMETEO PARSIFEL PERSEO			

Compact Light FEL Specification

	Soft x-ray	Hard x-ray		
Photon energy [keV] (min-max)	0.25-2	2-25		
Wavelength [nm] (max-min)	5-0.6	0.6-0.05		
Repetition rate [Hz]	1000	100		
Maximum pulse energy [mJ]	Not specified yet (will be < 1mJ)	1 (at 25 keV only, can be less at other energies) – this is 2.5E11 photons/pulse		
Pulse duration [fs]	0.1 – 50			
Polarisation	Variable, selectable	Not specified yet		
Two-colour pulses: time separation [fs]	-20 -> +40			
Two-colour pulses: photon energy variation (max. of E2/E1)	2 (270-530eV), 1.2 for the rest of the range	1.1		

J. Clarke Trieste mid term review, June 2018

Compact Light FEL Specification

Current Studies

- Various injector options with different bunch charge, bunch length are in the optimization process.
- The benchmarking of different codes are ongoing...
 - Some of the code already has chosen..
- Lattice type and module integration studies are on going..
 - Due to strong wake one structure between two quads are foreseen for low energy part of the injector..
 - Determination of diagnostic scheme for module is also taken into account based on alignment method..
- 1D and 3D tracking for various layout have also been preliminarily studied..
- Most of the actions are waiting for the specifying the parameters

• ...

- Defining the excange format
 - For particle distribution (x [m], Px [eV/c], y [m], Py [eV/c], z [t,m], Pz [eV/c])
 - For accelerating structure field map (axis field normalized ??)
 - For field maps of other elements (solenoids... field map on axis?)
 - For lattice text file?
- To many codes are available
 - We will not give up using any of them but we need to define an Exchange format for results
 - Emittance rms mm.mrad?
 - ➤ Bunch length fwhm/rms?
 - > Twiss functions?
 - **>** ...
- We need to use GitLab for exhange of results/input files..
- We dont need to wait for polarization, as compression (my idea)

Agenda

- 12:00 → 12:10 WP6 Introduction, Avni Aksoy
- 12:10 → 12:25 WP6 Beam dynamics studies for the XLS S-band photoinjector with and without velocity bunching, Anna Giribono
- 12:25 → 12:40 WP6 S-band based linac option status and linac modelling for FELs, Simone Di Mitri
- 12:40 → 12:50 WP6 X-band based linac option and 1 D optimization tool,
 Xingguang Liu
- 12:50 \rightarrow 13:05 WP6 3-D simulation for the S-band + X-band option of CompactLight, Eduardo Marin

Injector Studies S-Band Injector (Q=75pC)

Pulse length

250

200

z [m]

E(MeV)

Injector Studies C-Band Injector (Q=100pC)

 $\sigma_{z.final} \approx 300 \, \mu m$

M. Croia

 $\epsilon_{n,rms,final} \approx 174 \ nm$

x (m)

Injector Studies X-Band Injector (Q=250 pC)

ave structures IV/m, I 50 degree

Figure 1: Cutaway view of photoinjector assembly including mode launcher with quadrupole symmetry, 4.5 cell RF gun, and solenoid magnet.

DESIGN OF AN X-BAND PH

DESIGN OF AN X-BAND PHOTOINJECTOR OPERATING AT 1 kHz, IPAC2017, TUPAB139

1D Run for S-Band based injector and X-Band main linacs

Funded by the

Linac Studies K-Band linearizer for all X-Band Option

We started to optimize the 5th layout option

$$\mathsf{Gun} \Rightarrow \underbrace{\mathsf{X0}}_{\mathsf{X} \; \mathsf{band}} \Rightarrow \underbrace{\mathsf{K}}_{\mathsf{K} \; \mathsf{band}} \Rightarrow \mathsf{BC1} \Rightarrow \underbrace{\mathsf{X1}}_{\mathsf{X} \; \mathsf{band}} \Rightarrow \mathsf{BC2} \Rightarrow \underbrace{\mathsf{X2}}_{\mathsf{X} \; \mathsf{band}}$$

	•	, ,
After Gun	131.3	8
After K-band	-	0.160
After BC1	64	-
After Linac1	-	1.6
After BC2	8	-
After Linac2	-	4.6

All X-Band Layout -2 phase space along beam line

Lattice Optimization

- The transverse deflection of beam is proportional Δx , $\Delta x' \propto \int_0^L \frac{\beta(s)}{E(s)} ds$
- The most critical section is the injector and linac 1 since the energy is low and bunch length is long

Nstruc/FODO/2=1-3
Total number of structures=46
Initial energy = 250 MeV
Final energy =~5 GeV
Structure parameters from A. Gallo
WP4 meeting, 20.09.2018

BD in Undulators

Impact of Beam off-set due to wake field to FEL performance

- The beam can be injected to with an ofset to the undulator section
- The tail of beam can be kicked due to wakefield in accelerator section
- The impact of such problem to the FEL performance has been checked with following inputs

In or to have «acceptable» pulse energy degration, saturation legnth increase etc.. (i.e. <10%) maximum injection errors must be

- Injection offset $\Delta x < 20\%$ of $\sigma_{transverse}$
- Tail kick dx < 40% of $\sigma_{transverse}$

Impact of transverse wakefield along linac Compact

0ax/cax

1.5

European Union Normalized phase space of center of slicec along bunch at the end of linac 1

$$Ax = \frac{1}{X_n(0)} \sqrt{X_n(L)^2 + Xp_n(L)^2}$$

In order to have stable beam we need to loace 1 strcutre between quad quads of FODO

160

BD in Undulators Impact of Resistive Wakefield in undulator

- Saturation power decreases with gap of the undulator (beam pipe inside undulator) due to strong wakefiled
- The gap of the undulator must be larger than 3 mm for CompactLight parameters

Soft X-Ray Design

Funded by the **European Union**

 $B/L_{\rm Sat}~[{\rm photons~s^{-1}~mm^{-2}~mrad^{-2}}~(0.1\%~{\rm BW})^{-1}~{\rm m^{-1}}]$

Hard X-Ray Design

F.Nguyen

Euro	European Union					
	Undulator Paramters					
	Undulator Period	1.3 cm				
	Undulator Gap	3 mm				
	Undulator Strenght (rms)	1.17				
	Beam Parameters					
	Beam Energy	9 GeV				
	Bunch lenght (FWHM)	7.5				
	Bunch charge	75 pC				
	Peak current	9 kA				
	Norm Emittance	0.12µmrad				
	Energy Spread	0.01%				
	FEL parameters					
	Wavelength (energy)	0.05nm (25 keV)				
	Nphoton/pulse	2×10 ¹¹				
	Efel/pulse	1.06 mJ				
11 12	Saturation length	25 m				

 To reach 1 mJ energy/pulse hig bunch charge or low emittance, Hard to achieve much lower emittance with such a charge

Shall we work on about them at this

Thank you!

CompactLight@elettra.eu

www.CompactLight.eu

CompactLight is funded by the European Union's Horizon2020 research and innovation programme under Grant Agreement No. 777431.

