

The Passive Dechirper

Y. Han, A. Faus-Golfe, B. Bai CNRS-LAL

11-Dec-2018

First XLS – Compact Light Annual Meeting

- Why a passive dechirper
- Principle of dechirper
- Types of dechirper
- The Wakefield of dechirper
- Several examples
- The XLS situation
- Conclusion

Why do we need Dechirper?

- □ For FEL, bunch compression typically leaves an undesired timeenergy correlation
 - o Broaden the FEL bandwidth and decrease FEL gain

- □RF (off crest) can remove it, but this can be costly & difficult for very high frequency (e.g. 36, 48 GHz)
- □ Passive dechirper using self-induced wakefields to remove the chirp can be a better choice.

- Why a passive dechirper
- Principle of dechirper
- Types of dechirper
- The Wakefield of dechirper
- Several examples
- The XLS situation
- Conclusion

Principle of dechirper

 When beam pass through a beam pipe, the induced short range wakefield can act on the beam itself

The bunch tail loss more energy than the head

- Why a passive dechirper
- Principle of dechirper
- Types of dechirper
- The Wakefield of dechirper
- Several examples
- The XLS situation
- Conclusion

Types of Dechirper

Three types of methods:

- · Metal waveguide with dielectric
- Metallic structure with corrugated walls
- RF cavity without input power

Different shapes:

- Cylinder pipe
- Rectangular pipe
- Paralle plates

	Flat	Round
Flexibilty	Eaily tunable	Difficult to tune
Longtudinal wake	$(\pi^2/16)$	1
Dipole wake	0.38	1
Quad wake	1	0

2a

- Why a passive dechirper
- Principle of dechirper
- Types of dechirper
- The Wakefield of dechirper
- Several examples
- The XLS situation
- Conclusion

The Wakfield model - Cylinder corrugated

Cylinder corrugated pipe: $p \ll a \ \delta \leq p$

Wave number
$$\,k=\sqrt{\frac{2p}{a\delta g}}\,$$

Loss factor
$$\xi = \frac{Z_0 c}{2\pi a^2}$$

Wake function $W(s) = 2\xi H(s)\cos(ks)$

Wake potential
$$W_\lambda(s)=-\int_0^\infty W(s')\lambda(s-s')ds'$$
 graph loss factor $\xi_\lambda=-\int_0^\infty W_\lambda(s)\lambda(s)ds$

The Wakfield model - Rectangular Corrugated

Rectangular corrugated pipe:

$$\mathbf{w} \gg 2a$$
$$p, \delta \ll a$$

Wave number
$$k=\sqrt{\frac{p}{a\delta g}}$$

Loss factor
$$\ \xi = rac{\pi^2}{16} rac{Z_0 c}{2\pi a^2}$$

Wake function
$$W_{\parallel}(z)=\frac{\pi^2}{16}\frac{Z_0c}{\pi a^2}H(z)\cos(kz)~0< kz\lesssim 3\pi$$

If
$$p, \delta \leq a, \delta/p \geq 0.8$$

$$W_{\parallel}(z) = \frac{\pi^2}{16} \frac{Z_0 c}{\pi a^2} FH(z) e^{-\frac{kz}{2Q}} \cos(kz)$$

$$k = \frac{1}{a} \left(\frac{1.7096}{\sqrt{\delta/a}} - 0.5026 \right)$$

The Wakfield model -dielectric

Cylinder dielectric pipe: $\sigma k_0 \leq 1$

Wave number
$$k_0=rac{2\epsilon}{a\delta(\epsilon-1)}$$

Loss factor
$$\xi = \frac{Z_0 c}{2\pi a^2}$$

Bunch loss factor
$$\xi_{\lambda}=rac{Z_{0}c}{2\pi a^{2}}\exp(-(k_{0}\sigma)^{2})$$

$$a = 50mm, \sigma = 25\mu m$$

- Why a passive dechirper
- Principle of dechirper
- Types of dechirper
- The Wakefield of dechirper
- Several examples
- The XLS situation
- Conclusion

Examples-Brookhaven National Laboratory - ATF

- 60 MeV, 54 pC, 550 μm long
- Energy chirp: 330 keV/mm
- Planar tunable dechirper
 - Two 10 cm long dielectric slabs
 - The gap was changed from 5.8 mm to 1 mm

Examples-BNL ATF

- 57 MeV, 54 pC, 550 μm long
- Energy spread: 200 -> 70 keV
- Dielectric tube
 - Inner radius: 330 mm
 - Length: 5 cm

spectrometer image of unperturbed beam

spectrometer image of a beam that passed through the structure

Examples- Pohang Accelerator Laboratory - ITF

- 70 MeV, 200 pC, 700 μ m(σ_z)
- Corrugated rectangular pipe
 - a = 28,6 mm, h = 0.6 mm, p = 0.5 mm, g = 0.3 mm
 - Length: 1 m

Examples-PSI - passive streaker

Temporal profile measurements

- 140 MeV, 200 pC, 1 ps (rms)
- Dielectric cylinder pipe
 - · Alumina with Copper
 - Inner radius: 1.65 mm
 - Length: 9.5 cm

Examples-Berkeley National Laboratory - NGLS

- 350 MeV, 300 pC, 150 μm long
- Energy chirp: 40 MeV/mm
- Corrugated cylinder pipe
 - a = 3 mm, $\delta = 450 \mu\text{m}$, $p = 1000 \mu\text{m}$, $g = 750 \mu\text{m}$
 - Length: 6.65 m

Due to the deviation between numerical and analytical results, the generated energy chirp is small than 40 MeV/mm. The 8.2 m structures is need.

Examples-LCLS at SLAC

- 6.6 GeV, 150 pC, 15 μm long
- Energy chirp: 1333 MeV/mm
- · Corrugated rectangular pipe
 - a = 0.7 mm, h = 0.5 mm, p = 0.5 mm, g = 0.25 mm
 - Length: 4 m

After the dechirper

- Why a passive dechirper
- Principle of dechirper
- Types of dechirper
- The Wakefield of dechirper
- Several examples
- The XLS situation
- Conclusion

The XLS situation

Q	50 pC
E	8 GeV
$\sigma_{ extbf{L}}t$	5 fs

Report by S. Di. Mitri at WP6 meeting

Required energy chirp: ~ 1800 MeV/mm

The dechirper at LCLS of SLAC can be a good start point. \overline{n}

- Corrugated rectangular pipe
- a = 0.7 mm, h = 0.5 mm, p = 0.5 mm, g = 0.25 mm
- Length: 4 m
- Energy chirp: 1333 MeV/mm for 6.6 GeV beam

- Why a passive dechirper
- Principle of dechirper
- Types of dechirper
- The Wakefield of dechirper
- Several examples
- The XLS situation
- Conclusion

Conclusion

- The different types of wakefield for the dechiper are reviewed
- There are already serveral successful applications of the pasisve dechirper
- It is very promising using the passive dechirper in the XLS project.

Reference

- A. Novokhatski, IEEE-0-7803-4376-X/98
- M. Harrison, IPAC 2013, MOPH025
- K. Bane and G. Stupakov, NIM A 690, 106 (2012)
- S. Antipov, et. al., Phys. Rev. Lett. 112, 114801 (2014)
- P. Emma, et. al., Phys. Rev. Lett. 112, 034801 (2014).
- S. Antipov, et. al., IPAC 2012, MOPPP013
- Z. Zhang, et. al., Phys. Rev. Acc. & Beam, 18, 010702 (2015)
- S. Bettoni, et. al., Phys. Rev. Acc. & Beam, 19, 021304 (2016)
- F. Fu, et. al., Phys. Rev. Lett. 114, 114801 (2015)

Backup

The Wakfield model - Cylinder cavity

Cylinder cavity pipe:

Single cells
$$w(s) = \frac{Z_0c}{a\pi^2} \left\{ \frac{s+g}{\sqrt{s(s+2g)}} F(\frac{\sqrt{s(s+2g)}}{a}) - F(\frac{s}{a}) \right\} \stackrel{\circ}{\lessgtr} 1$$

$$F(x) = \begin{cases} (2/x)\arcsin(x/2) & \text{if } x \leq 2\\ (\pi/x) & \text{if } x > 2 \end{cases}$$

Periodic cells

$$w(s) = \frac{Z_0 c}{\pi a^2} ((1+\beta) \exp(-\sqrt{\frac{s}{s_0}}) - \beta)$$

$$\beta = 0.16, s_0 = a^2/2L$$

Examples - Radiabeam Technologies

Remove residual energy chirp: Manufacture & Experiment

- · BNF ATF beam
 - 57 MeV, 340 pC, 3.5 ps
 - Intial chirp: 400 keV/mm
- Rectangular dechirper
 - · Length: 18.1 mm, Width: 38.1 mm
 - Gap: 1 -30 mm

Examples-Shanghai Jiao Tong U.

Nonlinear-Energy chirp Compensation

- 3.3 MeV, 6 pC, 8 ps (FWHM)
- Two Paralle Corrugated Plates
 - · Aluminum
 - · Length: 16 cm; Width: 3.2 cm
 - Gap: 3 mm

