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Chapter 1: Linearized Gravitational Waves

- Expansion around flat space

- The TT gauge

- Interaction with test masses

- Energy and Momentum of GW radiation

- Propagation on curved backgrounds



Expansion around flat space

e Expand around the Minkowski metric

guv(X) = Nuv + huv(x) |huw| <1
o General coordinate transformations x* — x'#(x) = g, (x') = %%gpo(x)

= Global Lorentz covariance x'* = A¥, xV

g (X)) = NuNT (Moo + hpo(x)) = v + N A7 hpo (x)

hence hy, is a Lorentz tensor (only small boosts) h:w =N N L hpe K 1

= Local infinitesimal gauge symmetry x'* = xt + £H(x)
h:w(xl) = hu(x) = (Ouév + v éy)

Consistency = |0,&u| ~ h < 1 (small diffeomorphisms)

= hyuw is a symmetric rank two Lorentzian tensor that transforms as an abelian conexion

J




Linearization of Einstein equations

e The Christoffel symbols are already first order

rp‘up g,u)\ (g)\p,y. + BuX,p — gup,)\)

= nu/\ (hAp,u +huxp — huﬂ,)\) te. = F(l)"yp + O(h2)

e Expand the Riemann tensor
Rfupe = Thugp—TFupe+O(M2)

1 1
= Enuk[hAo‘,up + hu/\,o'p - huo‘,kp] - Enuk[h)\p,uo + hu)\,pa - hup,k(f] + O(hz)

= R(l)‘uupo' +O(h2)

R(l)“ypo— is gauge invariant hLU = huy — (Ouéy + 0u€L) = R’(l)#wm - R(I)“upa.



Linearization of Einstein equations

e Expand the Einstein tensor

1 1 1
G;(w) = 5 <hku,u/\ + hAu,u/\ - h,uu’)\)\ - h:,uu) - 57]”1/ <hAp Ap T hv)\ /\)

s

e rewrite Einstein equations Gy, = 87Ty, as follows

G =8n (TW + T}f},)

with T = 61 — G,
e no we have a stantard Minkowskian conservation law

6 =0 = 0 (Tuw+T{)=0.

e linearized approximation T;(Lhu) —0

A R % (W5 = b2 ) =167 T,



Linearization of Einstein equations

e define the trace reversed metric
— 1 -
hyw = hy — =nuh <= h=—h

2

gauge transf. — 71:“) = huw — (Oubv + Ou€u — N 0pEP)

e the linearized Einstein equations boil down to

Ohuw + M hpo?” — hup?v — hypPp = —167Tp,

e using a small gauge transformation x* — x’# the condition 71;“,’” = 0 is always reachable

we arrive at the linearized Einstein equations in the harmonic gauge

Ohpy = —167 Ty ; ]




GWs in vacuum

e Massless wave equation in harmonic coordinates Ox* =0

Df_ll“, =0 ; f_mu’” =0

try with plane waves
_ 1 i
huv(x) = eu,,E exp(lk>\x>‘) +c.c.
e solution involves a null propagation vector and a transverse polarization tensor &, .

kk*=0 &k’ =0

with general solution
ki =k(1,R),  (lAl=1)

= linearized plane GWs over Minkowski space propagate at the speed of light ¢ = 1.

= not all degrees of freedom are physical



TT gauge
e there exist residual gauge transformations x* — x* + ¢ | l_rm, — 711“, with

F’;w = huw — (Opév + O — N 0pE”)

now, if i_u“, is in the harmonic gauge, ’_7:‘» will also be <= [, =0.

e We can chose £ to impose 4 conditions on i_wiw

- choose ¢£° to fix b = h'*,, =
- choose ¢/ to fix 716[. =0.

From the harmonic gauge condition we get

avh), =%hy =0 =  hjy = const. =0

e In summary, (skip primes) the TT (transverse traceless ) gauge defined by

hl = h'T = T =0

is always reachable (notice that E;Z— = h;,z— .



TT gauge - the A tensor

_ 1 )
Consider a plane wave solution h,,(x) = Eéw,e‘kx + c.c. in the harmonic gauge
K=w(l,d) ,  &wk' =0

To bring it to the TT gauge huu(x) — hﬂ—(x) perform the following the steps

Q hu = (hou =0,hy)

@ construct the transverse projector Pj(f) = &6; — ninj = n'P; = Pyn/ = 0 with tr P = 2.

© define the A tensor
R 1
N (A) = PixcPji — 5 PP

is transverse in any index, and traceless Aj; iy = Ajj i = 0.

@ finally, project onto the TT gauge

hu(x) = h]T(x) = Ay a(A)hi(x)




TT gauge example

o Propagation along the x3 axis: let k* = w(1,n) with n = (0,0,1) = P13 = P2» =1 and

Pjj = 0 otherwise. Then the only nonvanishing A« = Py P — %P,-J-Pk/ # 0 have i,j =,1,2

1
A11,11 = Nop22 = 5 AMi22=An11=—= ; App=~A1p1=1

2

e now hI.JTT(x) = /\,-j’k,(ﬁ)/;k/(x) reveals the two physical polarizations: hy, hy

0 0 0 0
0 L(hw — hy) h 0
hTT t,0,0,z — 2 U Y Xy
y.u( ) 0 hxy %(_hxx + hyy) 0
0 0 0 0
0 0 0 0
_ 0 hy hx O
= 0 hx —hy O
0 0 0 0

o under the little group i’ = RThR = (h; =% ihx) transform with helicity 2

1 0 0
0 cosf sin 6
0 —sinfd cosf
0 0 0

R*,(6d) = = (K, +ihl) = eT?(hy +ihy)

= O OO



Test particles at rest

Consider a particle x* = (0, L«,0,0) at rest u’Af =(1,0,0,0)

e Coordinate distances do not change

duy T I 1
ar r,r;*a“A“A:—roo:—2 *(hag,o + Moo — hgga) = 0.

e Proper distances do change

Ly 1
L= /ds :/ dx(1 + hex(t,0))/2 ~ L, (1 + Ehxx(t’ 0)) +
0

Define 6L = L — L. we obtain

oL 1 1
L—* = Ehxx(t, 0) ~ Eexx cos(wt + 9).



Test particles at rest

e Set particles at positions x* = (7, Lynx, Lyxny,0) on a unit circle 2

( )= 7h,Jn W = hIT(n — ny) + hlT nen,

s
J N\

hi = Cos(wt-kz) hyy = cos(wt-kz-n/2)

- Plane polarizations

- Circular polarizations

g+ = ey cos(wt — kz) = ex cos(wt — kz F g)



Energy of GWs

o Decompose guv = Nuv + hpw with lim) oo huw(x) = 0. Split the vacuum Einstein’s
equations as follows

Guw=0 — G =8rTh,

with

Th, = (G — Gw) (1)

1
8w

which is locally conserved and contains h
T, (h)=0

so can be considered the Energy-Momentum tensor of gravitation.

e in a series expansion in h, since Gﬁ) = 0, we get that the energy-momentum tensor of the

linearized solution is

by L (2 3,i((2) 1 @) ) 3
Thu(h) = 5= G + O(F) = — ( REA) = JnuwRO(h) ) + O(K)



Energy of GWs

e an explicit tedious calculation gives

1
R‘(fy)(h) = Ehaﬁ (hap,ur = Bug,or = bup o + Buvap)
1
_1(2’7/3&,6 = hP8.0)(h* o + B0 — by, ®)

1
+Z(hav,ﬁ + hapg,y — hBu,a)(hamB + haﬂ,u - hﬂu,a)-

e take a space or time average T > 1/w

1 +T/2 1 5 1
taw = (Thy) = = /_m Th,(t,x)dt = - <R£W) - E"“”R(2)>

Notice that under the average, derivatives of solutions h = h(t — z) can be partially integrated

1 1
<§haﬁhaﬁw - > = <5ha5,yha5w - >



Energy and Momentum of GWs

® Exercise: for solutions [Jhy,,, = 0 in the traceless, h = 0, harmonic, h,,"¥ = 0, gauge, and
integrating by parts show that this expression collapses to

1

tuy = — (O hy50u h™P
© 32ﬂ_<# B >

o It is residual-gauge invariant x* — x* + &# | [JE# = 0, hence we can switch hy,, — hI.JTT.

1 1
t, = 32—7r<8uh,-JTT6,,h,-JTT) = 16—#<8uhIT6,,hIT + 8u,hITa, T

= Energy

1 R 1 . .
3, .00 3 pTTHTT 3 /02 2
E_/Vd xt _327|'/Vd x{hg " hy; >—m[/dx(h++hx)

= Momentum

1 .
Pk =/ dx %% = f/ d*x(hiTo*R]T)
v ™ Jv



Energy and Momentum Flux
e Energy flux

For a wave hTT(t z)= hTT(t —z) = 0;h[T =—0:h]T => to, = —tyo, and the energy
flux toz traversmg az- perpendlcular surface element dA, drams E at a rythm

dE

— = —dAty, = dA¢

p 0z 00

Then through a sphere [ dA = r? [ dQ that contains the volume V the energy loss

dE_ r?

/ dQ <hTThTT
dt  32¢

o Linear momentum flux. Inside a volumeV at large distance from the source Pk = fv d3x tox.

de r?

) hTTakhTT
dt  32r / < )

e Angular momentum flux. Inside a volumeV at large distance from the source

dJi r? ik 3 o .
=3 | 99 *pITx 9% 1T + 26 h T ATT)




Propagation on curved background

o Decompose guy = Euv + huv with lim| o0 huw(x) = 0. Expand gh” = gH — hyuy +
Imposing the generalized harmonic gauge condition

D¥hy, =0
the linearized curved equations of motion

Rf},,) = Ohpw +2Rupvoh?? — Ruphy? — Ruphy?
N——
O(h/X) O(h/Lg)
AL Lg
IiEMV =0 : ﬁ”l_'lm, =0
e Eikonal Approximation

R () = (A (%) + €By (x) + ... 0/
to lowest order in € and h

B) = KAL) =
4) = ky k¥

0 = (k"Dy)k, =0

given that k, = 9,0(x) = geometric optics approximation: rays (curves orthogonal to constant
phase surfaces) follow null geodesic equation.



Summary of Lesson 1

e Linearized theory is that of a rank 2 symmetric Lorentzian field with a local gauge symmetry
huw(x) = huv(x) + 0uéu + 0vép

e in the harmonic gauge hv., = 0 eqgs. of motion reduce to linear wave equation
Ohuy =87 Tpuw.

e a residual gauge transformation allows to write the plane waves in the TT gauge in terms of
two helicity 2 transverse polarizations.

EMV — ( = 0 hTT /\(I‘I)U kI hk/)

e Waves carry energy and momentum given by t,, = w%(éhhga&,hﬁa}
e Radiation power by gravity waves is given by

dEi r?

= a0 <hTThTT>
dt 327

e In the geometrical optics approximation, gravity waves propagate on curved backgrounds
following null geodesics, as electromagnetic waves do.



Chapter 2: Generation of Linearized Gravitational Waves

- Low velocity expansion
- Tensor spherical harmonics
- Mass Quadrupole Approximation

- Examples: oscillating and rotating 2-body systems



Weak-field sources

o Weakly sourced equations of motion in the harmonic gauge

Ohuw (x) = =167 Tpw (x) : duh*, =0

e Use the Green's function method

huw(x) = 167r/d4x'G(x,x')Tm,(x')

where
1
06 x) =84 x =) = G (x—x) =~ 5(tree — )

_47r|x —x/|

with tree = t — |x — X/|



Weak-field sources

General solution
_ Tuv(t — |x — x|, x")
— 3, KV ’
O =

with x = r i we have ,

W —xi = (122 s o2

r

For r > L go to the wave zone approximation
h 4 3./ Il
huv(t,x) = — [ d°%' T (t — r + x4, x")
r

where h,,, becomes a spherical wave. At each point x = rii on the wavefront, we may express in
the TT gauge



Low velocity expansion

hiT(t,x) Aij i (A) g (£, %) (x =rh)
4
= ;/\ij,k/(ﬁ)/d3x' Tu(t—r+a-x',x')

4 d
= ;/\ij,k/(ﬁ)/fpx' (Tk/(t —rx)+ (ﬁ'X/)E Tu(t—r,x') +

1 a L \2 d2 !/
+ E(n-x ) ETk/(t —rx) 4.
4 d
= —Aju(h) (/ &X' Tt — r,x') + ny, /dBX/ X/ ITkI(t -rx)+
;
1 d?
+ oM /d3X/ Xt x s Tu(t—r,x')+ )

o This is a low velocity expansion in powers of v < 1. Indeed, for Ty(t,x") ~ Ti(w,x') cos(wt)

() S Ta(ex) ~ (02(@) Ti(e,X) < (L) Tia(e,X)

~ VI Tu(t,x)

o Defining the stress-tensor moments

Ski,i. i, (1) = /d3X/ T (t, X' ) X/, ...x]

ip




Low velocity expansion

e we arrive at the multipole expansion in the radiation zone x = rfi > x’

L 1., ..
WTCER) = Ajua(®) S | S = 1)+ 0, 90— )y 580 = ) .

= Aju(R) {Z APSKL-n(t — r) n; (0, $)...n;, (6, ¢)]

e Setting fi = (sin 6 cos ¢, sin Osin ¢, cos ) it is clear that we should be able to represent
h,.JTT(t,x) as an expansion in tensor spherical harmonics

e Scalar field

B(x) = Z Z Cim(t = 1) Yim(0, ) L2V = I(1 + 1) Vim

I=0 m=—1/

where
dm

— & P(cost
d(cos0)™ /(cos6)

Yim(6,¢) = C'™ (e"¢ sin e)m



Tensor Spherical Harmonics

e Vector field

(V(x)); i XI: Rim(t, r)(YR ),+Z > [E/m(t (YE)i + Bin(t, r)(YE, ,-]
with o o
(YR = ma i Yin (6, 9)
(Yg) = ﬁ LiYim(6, )
(YR)i = niYin(0,9)

e Symmetric tensor field

%) !
0 = > (Lo,m (t, )(TE); + TO(t, r)(T,m)U)

1=0 m=—1/

0o /
30 (Bt N(TE; + BLu (e, A(TED,)
1 !

I=1 m=—
oo !
Z Z <E2/m t, r T/Ern2)U +321m(t r)(Tlez)’J)

1=2 m=



Tensor Spherical Harmonics

Ty = ninYim(6, )

(Tr)i = (ninj = 6;)Yim(0, ¢)

(TEDy = P (r/2)(mid) + 09)) Yim (0, 6)

(TEYy = /2Ly + nyLi) Yim(6, 6)

(T = PNy (33 0j Yim(6, )

(TE); = P r(i/DNi0y (A) Oy Ly + O5Ly1) Vim0, )

e With this, the general solution in the TT gauge only contains TE2 and TB2

T (t,r,0,¢) = Z Z [uim(E = Y(TE2)(6,0) + vin(t = N)(TE2);(60, 6)]

1=2 m=—1

1/2
(with ¢ = (/(/il)) ) which are transverse (TE2);n; = (TB2);n; =0,



Multipole Expansion

o remember the multipole expansion

hiT(t,r,0,8) = Ajja(h [Z apSkiin(t — ryn; (6,6)...n;, (6, <z>)]

e in order to relate u, and v, to Skl,h,---ip use the orthogonality relation

/ dQ(Ti, ,J(T,,m,) i =0 88

and simply project to get

> 4

un(t) = 3 (opsthieinge) /dQ(T 2N
a=0
> 4

() = 30 o (B (1) /dQ(T,m)U -

a=0



Quadrupolar approximation

e The lowest order approximation is

4
BT (%) =~ Aju(@)SH(e 1)

e Define the moments of the energy , momentum and stress density

Mi-n(t) = /dx'3TOO(t,x’)x/j1...x/j”

Pi7j1-~-jn(t)

/ dx3TO (¢, x)x" ... x"n

SU’JIJ"(t)

/ d3x" TU(t,x") x"...x1n

Lemma

Skl(t) — %Mkl(t)

®3)

Exercise: Prove this lemma using only 0# T, = 0.



Theorem

agsij,kl...kn(t) — .F(a:+2Mijkl"'k"(t),8£’+1Pi’jk1"'k"(t), )

For example

Sk = R4 T (B Bk ophd)

(4)



Mass quadrupole radiation

o far field in the quadrupolar approximation

2 .
hijTT(tvx)quad = ;/\ij,kl(n)MkI(t —r)

For example if k# = (w,0,0,w), then, along the z axis
1 . .
h+(t,0,0,z) = ;(Mll — M22)(tfz)

hX(t70701 Z)

2 ..
7M12(t — Z)
z

o If x* = w(1,f) with n = (sin 6 cos ¢, sin @ sin ¢, cos §) use rotated M — M’ = RTMR

1r.- . .
hi(t;rit) = [Mn(t:os2 & — sin? ¢ cos® 0) + Mao(sin? ¢ — cos? ¢ cos® 0) — Maz sin? 6

.
— M sin 2¢(1 + cos? 8) + My3 sin ¢sin 260 + Mas cos ésin 29]

1

hy(t;rf) = = [(Mu — A;Izz) sin2¢ cos 6 + 2M5 cos 2¢ cos O
r

—2/\7/13 cos ¢ sin 0 + 2/\7/23 sin ¢ sin 9]




Radiated Energy

e Introduce the quadrupole moment Q;; = M;; — —SUM

2 o
hi;'rT(tv X) quad = ;AI'J',H(")QkI(t —r)

e Radiated energy

ﬁ [ e T

= = o dQ<hTThTT>_ Q,JQM dQ Ajj i (R)

Integrate [ dQA; (R) = 21—?(115,-;(51-, — 46;i64y + 610ji) to find the total radiated power

© dw .
® Spectrum: FT the quadruple moment Q;(t) :/ —wQ(w),-je_“"t and integrating fi—:: dt

— 00

- [ douf @) 0()

whence the radiation spectrum follows

dE 1 gx s
ob )




Non relativistic N-body system

e To lowest order in v < 1

N
d v
TH(x) = Z/dTPX—;A64(X—XA)
A=l T
N
dxh dx¥
= Y maZAZAS (- xa(1)) + O(P)
2T g e

In particular T%(t,x) = SN | mad3(x — xa(t)) so the quadrupole mass reduces to

N
M; = /d3x TO(t, x)x'x/ = Z maxiyxh .
A=1
e For a 2 body problem, N = 2. In the center of mass and relative coordinates

miX1 + maXx2 mamy
M=(m+m) — xy=—""7"—" : M:(

) — Xr = X1 — X2
my + mo

my + my

the quadrupole mass M;; = mlx{x{ + mgxé'xé = Mxé.ijCM + ,uxfx{



Non relativistic 2-body system: oscillating linear system

o let
xem =0 ;  x =(0,0,L+ Acoswst)

with Aws < 1. Since x} = x> = 0 we only find one non-vanishing quadrupolar moment
Ms3(t) = u(L + Acoswst)? = pl? + pA (2Lcoswst + gcos2wst)
and hence
hzr—T(l'7 0,¢) = —%M33(t —r) sin® 6
2uw?A

= 5 (Lecosws(t — r) + Acos2ws(t — r)) sin? 0
r

hlT(t,0,6) = o0

al2
v
al2

V& \

%



Oscillating linear system

® putting some numbers for a lab sized setup =1 kg, L = A= r = 1m and ws = 10?Hz we

find )
2 LA
hTT ~ ZE222 16 x 1073
e as for the power, we compute first
1 12
ij = di TS5y T 5 5 M
Qi 18 ( 373 3) =

hence, with the Einstein quadrupole radiation formula

1 2 .2
P = g(erQij>:E<M33>
1 T
= /1,2A2w2?/ (2Lcoswst+32Ac052wst)2dt
0

4
= E,J?A%JS (L2 + 4A%)

®)

(6)



Circular orbit

e Consider a circular orbit in the x — y plane

xem =0 ; xr = (Rsinwst, Rcoswst , 0)

Since x3 = 0 we only obtain moments

hence

e Finally

pR?

Mi(t) = p(xt)? = T(l — cos 2wst)
R2
Mx(t) = p(x?)?= “T(l + cos 2wst)
R2
Mpp(t) = pxtx?= —“T sin 2wst

Mll = —Mgg = 2/J,R2w§ cos2wst My = 2,uR2w§ sin 2wst

2 p2 2

ho(t:0,8) — 4W:R <1+‘;°5 9>cos(2w5(tfr)+2¢)
2 p2

hy (£:0,6) = M(cos@)sin(Zws(t—r)+2¢)

Notice that ¢ can be reabsorbed in a shift of the origin of t — t — ¢/ws.



Circular orbit

o The dependence hy ~ (1 + cos? @) and hyx ~ cosf is generic for sources in a plane
Mz = Ma3 = Ms3 = 0.

e The polarization is linear for § = 7/2, circular for § = 0 and elliptic in between. Using

(cos? 2wot) = (sin? 2wpt) = 1/2

dP 2. .
— = — (R4 R
dQ 167r< )

1 20\ 2
( +c205 6’) +c0529}

212 R4w?

™

Integrating over the angles for the total power

Exercise: Recover this result from dE/dt = (Q;Qj)/5



Circular orbit

Comment: In the MKS the correct expression is

G32 54 6
P= g?u R wg
Exercise: Consider 2 bodies of m = 1 kg each, in circular motion at R = 0.5 m distance.
Calculate the frecuency w that they have to spin with, in order to produce one single graviton.



SUMMARY OF LESSON 2

e In the wave zone approximation we have a multipole expansion

4
BIT(Ex) = Njpo(R)

e this is an expansion in powers of v < 1

o far field mass quadrupole approximation Spq = %I\?Ipq

2 .
hi T (£, %) quad = ~ N ()M (t = r)

o Radiated quadrupolar power Pg,,q = % = (Q;Qj)

e Radiation spectrum % = %w6|(~?,j(w)|2

e Planar equatorial motion hy(t; 0, ¢) ~ (#) i hx(t;:0,¢) ~ cosf

. 1
Spq(t = r) + ni, Spq,i, (t = r) + niyni, Equyiu'z(t —r+..



Chapter 3: Examples

- Quasi-circular orbits

- Far field wave form

- Fourier transformed wave form
- Elliptic orbits

- Rotating Rigid Bodies



Circular Orbits

e consider a binary of system with total mass M and reduced mass u

mymy

M=m+m ; p=——
my + mp

and positions ry 5. In the center of mass frame rcyy =0 withr=r; —

e in the effective 1-body problem

the radius R and orbital frequency ws = v/R and are related by w?R = v2/R = M/R?,
ie.

Kepler's law




Circular Orbits

® Let us express everything in terms of the GW frequency

— the total energy

R 32

1/3
1 M M MEw?
E=-p?-Ht2 MY o [ X ew

2 R 2R

where M and p enter through the chirp mass

M5 = *M? = (m1m2)*

(m1 + my)
For example, for mi =my=m = p= g, M=2m and M. = m/21/5 = 0.87m = 0.43M.

— the total radiated power from previous lesson

10/3
P:¥u2R4wS _— ng M /
5 5 2

Exercise: For the PSR1913+16 system m = 1.4Mg and Ts ~ 8h , obtain P = 6 X 1014 GW.



Frequency Shift
e Equating P = —dE/dkt yields a differential equation

. 48 [ M\%/3
w2 ()

with solution we,, (t) — £, (t) = 2w wg, (t)

fow(Hz)
1000

(o=t (1)3/8;; ®)
v - m \256 MC5—/8 (tcoal - t)3/8

with —oco < t < tepal-

e Rewrite in terms of a particular reference example.
Set my» = 1.4AMg = Mc = 1.2Mg = 1.2 x 1.4710°m
and t = teoa — 1sx(3 x 108m/s)

foy (teoat — 18; Mc = 1.2 M) = 4.48 x 107 'm ™ ~ 134 Hz

1.2 Mg\ */8 1 EE
£ (t) =134 Hz [ =72 L
Mc teoal — t

Hence,




Frequency Shift

® Solving for (tcoa — t)(£,,) and fixing £, = 100 Hz (the sensitivity of earth based

interferometers)
1.2 Mg \ %3 /100Hz\ /3
(tcoa,—t):2.18s( MCG’) ( p )

GwW

So when M. = 1.2 M we get for

e f,, =100 Hz
the radiation in the last 2 seconds before
coalescence

e f, =10Hz
the radiation 17 minutes before coalescence.

* fw =1/day
t — teoa ~ 10Myear. This limits initial orbit f 10 W
that coalesce by GW within the age of universe.




Quasi-circular orbit approximation

o taking the derivative of Kepler's Law ws = (m/R3)'/2

fow L )
fc-;w 4(t - tcoa/)

Integrating from an initial Ry at time ty < t < teoa

1/4 f

t _

0 o (=0
teoal — to

e Quasi-circular approximation

_2w5_4a;GW ; 5
T30 Ba, <F T

R
Rws

VR
Vo




Quasi-circular orbit approximation

5/3 27/33/5)3/5
e Using (7) this implies w,, = % (%) 11/3 L w W = w,, < %
c

For Mc = 1.2Mg = £, < 13.7kHz so in general, we can assume circular orbit as long as

fow <<13.7< :

1.2M
Q)kHz
Mc

o Non-linearity of GR entails the existence of an Innermost Stable Circular Orbit (ISCO) where
strong inspiralling sets in

1/2
Kepler M 1 1 0.03
Rsco 20M == ws Swigeo = <R3 ) = 616 M ~ M
I1SCo ¢

-Fora BNS Mc =12My = f, sco = 0.8kHz then

12M
o <8 o( MQ) Hz

c

- For a BBH of M = 10Mg = M. = 4.3Mg quasi-circular approx. valid for £,, < 200Hz



Far Field Wave-form

e The far field wave form of a circular binary system was (use Kepler's law and chirp mass)

4/3 5/3,2/3 2
hi(t) = Amt3MIC RS, (l-i-c;os 9) cos (2nf (£ — 1) +26)
r
4/375/3¢2/3
ho(t) = Mo (o g)sinant,, (¢ — r) + 20)
r

e In the quasi-circular approximation we can neglect R as long as ws < w2. Now we have a
time dependent frequency

1/ 5\% 1 1
f ()= — | — _——
ow cw( ) P (256) Mér,/s (tcoal _ t)3/8

Also we need to replace
2t — ®(t) = /dt27rfGW(t) + &

doing the integral

¢(t) = 7W(tcoal - t)5/8 + Do
c




Far Field Wave-form
finally
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Fourier Transformed Signal

To compare the waveform with experimental signatures we need the Fourier transform

T _ teo 2mwift _ teo id(tret) —i®(tret) 2mift
h(f) = dt h(t)e = dt A(tret, 0) (e +e e

) —o0o

Exercise: using the method of stationary phase obtain the result

- e™v(f) 5/6 1+ cos26 1
hy(f; Mc,teoat) = faMc/ (f) 776
. ei(W(F)+m/2) 6 1
hx(f; Me, tcoal) = %a,\/’?/ COSGW
with a = ﬁ‘/% and the phase given by
3 1 T

Py +

w(f):2ﬂ(tcoa/+r)f7Wmi 4



Fourier Transformed Signal
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Elliptic orbits

e The excentricity e relates the major semi-axis to the radial scale
R=a(l—e?)
a and e are constans of motion related to E and L

2FL2

=——= 1-e?)=-—"——.
a ( e) N3M2

e Now ws is not constant (emision spectrum). Still the power is

dE circular 32 24 6 Kepler 32 /12 M3
= —_p e %2R pler 22
dt 51T 5 RS

egc o 2 /L2M3
5 a°

f(e) = _ (1+Ee2+3—764)

f(e)
with

(1—e2)7/2 24 9%



Elliptic orbits

e Also there is angular momentum emission

dLi 2 32 p2M5/2 et
. ikl 1 A elliptic 1%
P —gfl (QuaQpa) = —?Wé’(e) .
with now °
1 7 )
e)=—— (14 =¢€?
¢(©) (1—e2)2<+8 ) :
I BV R TR TR T
e this causes that both a and e decrease with time
da 64 pM3 1 73 , 37 4)
= = _= = (14 =Ze =
dt 5 a3 (1-—e2)7/2 ( t22¢ T o
de 304 wm? e ( n 121 2)
dt 15 a* (1— e2)5/2 304



Elliptic orbits

which, remarkably, can be integrated analytically

alag
@ el2/19 ) 121 , 870,/2299 i
ale) = ¢ —e 4
01— 304 :
st
o
s
e Circularization: e decreases very fast with a. 2F
For small e < 1 i
02 D.‘d 0.6 08

2\ 19/12
e=¢ | —
ao

For example, the Hulse-Taylor
binary pulsar PSR1913+16 has ag = 2 x 10%°
m and quite large excentricity eg = 0.617.

By the time it reaches a ~ 103km
we will have

106 19/12
e =0.617 (2 > 109> =3.6x10"°



Rotating Rigid Bodies

e Important problem for application to isolated pulsars.

e Assume an ellipsoidal body with semiaxes

a, b, ¢, uniform density p and total mass M, rotating about
principal axis ¢ with angular velocidy w,. The inertia tensor

lj = /d3xp(x)(r25,-j — x'x))

In the body frame, with
the comoving axes x/, aligned with the principal axes or inertia

I,-J/- = diag(h, h, )

with principal moments ! K

b= [Pt ) = L+ )
3 / 12 12 m 2 2
Bo= [ @) ) = L@+ )
3 ! 2 2 M 2 2
b = d>xp(x')(x1 +X3):€(a +b%)

ljj in fixed coordinates x; and ’ij‘ in are related by a rotation matrix I = RTI'R i.e.

cosw,t  —sinw,t 0 L 0 O cosw,t sinw,t 0
I,-J- = sinw,t cosw,t 0 0 L O —sinw,t cosw,t O
0 0 1 0 0 &k 0 0 1



Rotating Rigid Bodies

h+hb h—Dh

1 = > + T cos 2wt
h—»Fh .
I = ——=sin2wt
12 5
I+ h— I
lhy = hth _h-h cos 2wt
2 2
I33 = I3 (9)
Notice that /;; and Mj; are related by /; = §;;c — M;;. Hence since we only need M;j
h—bh
My = —T cos 2w, t + constant
h—»h .
My, = - sin 2w, t + constant
h—h .
Msz = —i—T sin 2w, t + constant
with this we arrive at the strain
42(h —h) (1 20
h, = wi(h — k) ( +c205 ) cos(2wrt)
r

402l — |
he = Mcose cos(2wrt)
r



Rotating Rigid Bodies

In terms of the ellipticity ¢ and GW frequency feuw = 27(2wr)

h—h
€= ——

the amplitude is

since typical neutron stars have M = 1.4Mg and a ~ 10km this gives

2
I = g/\//a2 ~ 10%®kg m?

Then fixing r = 10 kpc, € = 10~° and fgyy = 1 kHz we obtain

_ s (10kpc I3 € £ )2
ho ~ 10 25 GW.
0 ( r ) (1038kgm2) (10—6) <1kHz




SUMMARY

£ 1 ( 5 )3/ 8 1 1
[ = — —_— -
o ™ \ 256 ME/S (tcoa/ - t)3/8

1.2M
o Quasi-circular approximation W, < wgw = £, <137 (TG) kHz

c

12M,
¢ ISCO cutoff = foy < 0.8 (T@) kHz

c

e Fourier Transform = l~1(f) ~ F7/6

e Ellipticity, e, enhances energy and angular momentum emision, and causes fast circularization

3

e Bodies rotating around principal axis, x>, emit iff transverse ellipticity e ~ | — I # 0.

The amplitude is proportional to w?.



Chapter 3: Black Hole Quasi-Normal Modes

- Scalar field on a Schwarzschild Metric

- Metric perturbation in polar coordinates
- Boundary conditions

- The radiation field in the far zone

- Quasi Normal modes



Scalar field on a Scharzschild Metric

e On the Schwarzschild metric

d 2
ds2, = —A(r)de + Trr) + r2d6? + r2 sin® 0d?
with A = ( — R—f) and Rs = 2M, consider a free massless scalar field
O¢p=0

The most general splitting (t, r), (6, ¢) involves all scalar spherical harmonics / = 0,1, 2...

1 00 !
¢(t7 r»97¢) = 72 Z U/m(t, r)Y/m(07 ¢)

1=0 m=—1
o Effective radial equation:
using L2Y), = I(1 + 1) Y, get v
A, (AD,) — 8% — v,(r)] Um(t,r) =0 o o

where

Vi(r) = A(r) [’“* L &} Mo

r2 3



Scalar field on a Schwarzschild Metric
o define the "tortoise coordinate” r«(r) by

ds2, = A(r)(—dt® + dr2) + r*d6” + r’ sin® 0d¢’
hence dr/A(r) = dr. which integrates to

r—R

r« = r+ Rslog with r € (Rs,0) <= ry € (—00,00)

Also from A(r)0r = Oy, get
[83* -2 - V()| um=0

e Fourier transforming
* dw i
um(t, r) = / — G (w, r)e” "t
_oo 2T

arrive at a stationary Schrodinger equation

2
[_% + V’(r):| [j/m(r*) = w2ﬁ/m(r*) (]_O)




Metric perturbation in general gauge

o Perturb the Black Hole by some external matter T,,. The Schwarzschild metric will fluctuate

8uv(x) = Buv + huu(x) and Einstein's equation will become Gfﬁ,)(g) = 0 plus a first order
correction

1
G (h) =8r Ty
e the most general expansion involves 10 tensor spherical harmonics

(£ =D (D2 Hin(t ) (Tin)uw (0,8) + > Hip (£, r)(T7,)u0 (6, 6)

I,m \ a€Polar be Axial

- The matrices {T7 , T2 1 are the Zerilli tensor harmonics.

- They form two groups:

Polar a= {tt,Rt, Et,L0, TO, E1, E2}
Axial b= {Bt Bl,B2}

e The split comes from the behaviour under parity w(x') = —x'

W(Tlam (_1)I Iam
m(Th) = (=177, (11)



e The non-vanishing components are

(Ti)i = ninj¥im
(T = Yim(0,9) T 1
X (Tm)i = ﬁ(‘sij = ninj)Yim
(TFmt)OI = ﬁniY/m(Gﬁ)
(Tr)i = a(r/2)(nid; + nd;) Yim
1
(TEDoi = ————=rd:V) .
! V2I(1+1) T = ali/2)(niky + niLi)Yim
1
By, = ————il; Y TE2Y. = birPA; ()01 Ot Yim
( Im)O 2/(/+1) I ( Im)J i U,/j( ) i’Ojr T
(T82); = byr(i/2)N; iy () (O Ly + Lj18ir) Yim

e Remark that these components are cartesian



® in the far wave zone g, — nuv + huw most convenient is the TT- gauge

Lemma

performing gauge transformations h/
where = {a, b} € {E2, B2}

v = huw — (Ou€w + 9ué€u) we can reach the TT- gauge ,

T (t,%,y,2) Z Z (um(E = NTE(0,9) + vim(t = N)(TF2);(0,0))

I>2 m=—/

and ujy(t — r), vim(t — r) carry the physical polarizations of the wave in the radiation zone.

® in the near horizon zone, g, — gSChW + hop and, hence, polar x* = (t,r, 0, ¢) coordinates
are preferred

haﬁ(t7 r797¢) = Z Z hlm t r (tlm)aﬁ(e ¢ Z hlm(t r)(tlm)aﬂ(o ¢)
I,m \ a€Polar be Axial
most convenient gauge is RW-gauge where {a, b} € {tt, Rt, Ef, L0, T0, ET, EZ, Bt, B1,B7}.

Lemma:

performing gauge transformations h;,ﬂ = hap — (Dakp + Dp€a) we may reach the
Regge-Wheeler (RW) gauge , where = {a, b} € {tt, Rt, L0, TO, Bt, B1}




® write the metric perturbation  gog = gﬁ;”w + hap(t,r,0,¢) inthe RW gauge

1
h,t,fn(t,r) hfnf(t,r) —mhﬁf(t,r)&b sin@h;gnf(t,r)ﬁg
| - hEO(t, r) mhfml(t, rds sinOhBl(t,r)dp
R = > > Yim(9, ¢)

1>0,1,2 m=—1 T0
— — h (t,r) 0

- - — sin2 0h]0(t,r)

e expand as well the perturbing Energy-Momentum tensor

Taﬂ(t7 r,0, ¢) = Z Z Slin(tv r)(tlam)aﬁ(97 ¢)) + Z Sﬁn(tv r)(tfm)aﬁ(a ¢))

I,m \ ac€Polar beAxial

with {a, b} € {tt, Rt, Et, L0, TO, E1, E2, Bt, B1, B2}.



o Plug ho%v and T,g into the linearized Einstein equation,
1
G)(h) =87 Tag
after some tedious algebra

1.- equations for axial and polar perturbations decouple

2.- in each sector, a clever combination of perturbations (master field)
satisfies a fully decoupled equation

3.- all the other perturbations can be derived from these master fields.

4.- this is only true if we first Fourier transform the fields

habwr /dthabtr fwt



Axial perturbations

o the RW-master field for axial perturbations

élm(w:r) = _@ E/Bml(w» I‘)

satifies the following decoupled master equation

Regge-Wheeler equation

d? - .
{dr2 Vi ] Qm =Sz

where

VR (r) = (1_ %) {/(/:1) 325]

and

gt = 122D (an)sgi ) + (00 - 3 ) [0



Polar perturbations

e the Zerilli master field for polar perturbations

= 1 - rA(r) -
(. r) = FT0(w, R (1w,
(e, 1) = Sy fim (01 + iw(Ar + 3M) (w,r)

it satifies the decoupled Zerilli master equation

Zerilli equation

— +w? — VA(r)| Zim = 51’::/”

where A = (I — 1)(/ + 2)/2 and Rs = 2M

2X2(\ + 1)r3 4+ 1202Mr2 4 18AM2r + 18M3
V,Z(r):A(r) A +1)r + r° 418 r+18

r3(Ar 4+ 3M)?




Boundary conditions

o In summary, both & = {le, Z/m} satisfy a similar equation

d? -
|:dr2 +w?—V(r)|®=S§

with V(r. — o00) = 0 and (assumption) S(r. — too) = 0 this asymptotes to
d? - - .
|:—2 + wZ] ®=0 ; d(w,r) koo gtiwn
dI’* ry—+oo
e They seed the ingoing and outgoing solutions ®(t,r) = ffooo dw 5)(0.;, rye~iwt

r« —+00

o(t,r = o00) 25 / do [O20t (w)e™E=r) 4 ol (w)e it
—oo

®(t,r - Rs) 5% / ds [0 (w)e (71 4 9l (w)e (4]

—o0

Select behaviour: outgoing at r — oo and infalling at the horizon r — Rs



Boundary conditions
e In summary, both & = {Q,,,,, I%,m} satisfy a similar equation
2

ds - P
ar2 ®+ [w? - V(] d =5,

with V(r. — o00) = 0 and (assumption) Sj,(r« — +00) = 0 this asymptotes to

d? o| = ~ re—too 4j
|:d—r3+w:|d>:0 ; D(w,r) "= e,

e They seed the ingoing and outgoing solutions ®(t,r) = [ dw B(w, r)eiwt
rs« —+00 e i i i
d(t,r —-o00) —> / dw [¢g§t(w)e_'“’(t_'*) +Q%(ﬁfe_’“’(t+'*)]
— 00
S . . .
®(t,r = Rs) 25 / dw [gg%me*'w(f*’*) + a>15“(w)e*'w(f+'*>]
— 00

Select behaviour: outgoing at r — oo and ingoing at the horizon r — Rs Hence, in both limits.
Boundary conditions

B(w,r) " THT el




Boundary conditions

e So all we have to do is solve Zerilli and RW-master equations with asymptotic behaviour at
infinity r — oo

rx — +00

Z/m(t,w)—> Az;vlt(w)eiwr* : @/m(tyw)—> B;Jmut(w)eiwr*

as well as near horizon r — Rg

Iy — —00

Z,m(t,w)—>A§,‘:,(w)e_i“"* i Qum(t,r)— },ﬁ‘,(w)e—i“"*

e Two questions to answer:

1.- Can we reconstruct the radiation field in the far zone out of A?*(w) and B{“t(w) ?

2.- How does the spectrum of solutions to the Schrédinger equations above look like 7



The radiation field in the far zone

e In the radiation zone r — oo, in the TT gauge

AL (e 2% = 3 > [tm (e = )(TE2 )+ vim(E = P)(TE2) ]

I>2 m=—/

how can we connect (Ujm, vim) <= (AfY, BRUt) ?

Answer

a gauge transformation plus the change (r,8,¢)fW — (x!,x?,x3)TT triggers the miracle

um(t—r) = c,/de?,,‘,lt(w)e_i“’(t_r)

Vim(t—r) = c,/dwsout(w)e*'w(f )

with ¢ = L [(I+2)!']1/2




Quasi-Normal Modes (QNM)

e Let us solve the master field equations for ® = {@/m, Z/m} without source

[+ = vin] 6 =0 (12)

with V = V,RW, VZ.

Theorem

The equation (12) admits a solution ®(w, r«) with the boundary behaviour
S(w, re — +00) o« eIl

only for a discrete and complex set of frequencies

UJnZUJR’n-‘rI.W[Y" (n: 172737")

e Solutions ®(wn, x) are termed quasi-normal modes.

e Remarkably V,RW and V,Z are isospectral



Quasi-normal modes

® wy (in units of ¢/Rs)

1=2

=3

wR + iw;

wRr + iwy

0.747343 - i 0.177925
0.693422 - i 0.547830
0.602107 - i 0.956554

W N =S

1.198887 - i 0.185406
1.165288 - i 0.562596
1.103370 - i 0.958186

o the full solution is a combination that decays exponentially with time, since w; < 0.

Sl . ~ .
d(t,x) = / O(w,x)e " “dw Zd?‘(")(x)e”'““'"t
o "
= Z&)(")(X)e*"wR,nt+wl.nt (13)
n
e The least damped mode emits GW at a frequency f; and decay time 7 such that
0.747343 3 x 108 M,
i U b ~ 12kHz (22 ) He
27 Rs 2w 2M M
Rs

T~ 1/|w 1]

0.177925¢

M
) 5.5><10*5< )s

Mo



Quasi-normal modes

e The spectrum reveals a rather weird structure

FIgU re. QNM modes wy, for | = 2 (dots) and / = 3 (diamonds) (taken from Berti E. arXiv:0411025)

- wy,, decrease monotonically
- WR,n has two branches, separated by a mode with wg 5, = 0.

- for large n > 1 and fixed | wg , saturates

log3 i +1
wp~ —— — = (n+ =
T 4 2 2

- for large / > 1 and fixed (large) > 1 = w,; ~ (2/ +1) —i(2n+1)



Radial infall into a black hole

e consider a particle in free radial infall in the Schwarzschild metric

x(t) = (t, ro(t), 6o, o)
h
o y i o olr — ro()]
THY (t,r,0,0) = my?WT(S[cosw) — cos(60)]6[é — ¢o]

® project to get the source tensors harmonics

sl (t,r) = c(r)? / dQEEY Y Ty (2,1, 0, )

e As a consequence of cylindrical symmetry (let 8 = 0)
= sP =0 for = B1, B2. Hence the RW equation is not excited = B2“* =0 (no B modes)
= m =0 hence only s} =s; _, # 0.

e Integrating the Zerilli equation {%22 +w? — V,Z(r)] Z(w,r) = §j(w, r) obtain the A?“(w)
modes.



Radial infall into a black hole

e Reconstruct the far field wave-form

u(t—r)= c,/de,D“t(w)ef’-‘”(F’)

06— P ’
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Figure: The gravitational wave form u(t) for | = 2,3,4 (from Maggiore M., numerical data
courtesy of Ermis Mitsou)



SUMMARY

e Perturbations of Schwarzschild by some infalling matter T, split in two sectors: (polar and
axial)

haﬁ(t7 r 97 ¢) = Zl,m (ZaePolar th(t’ r)(t?m)a5(07 ¢) + ZbEAxial hﬁn(t’ r)(tﬁn)aﬂ(07 ¢))

e Each sector has a master field ®(w) = (Zm(w), Qm(w)) for which Einstein equations
becomes a Schrodinger like equation

d? -
] +w? = V()| ®(w,x)=0

e The physical boundary conditions are outgoing at r — oo and infalling at the horizon. They
entail ® ~ eIl for r, — +oco

e They are only possible for a discrete spectrum of complex frequencies wy = wg,p + iwWj 5.

® w; , are negative and monotonically decreasing with n. They entail an exponential damping of
the initial perturbation.

e Perturbing a BH of mass Mg, it will ring at f ~ 10kHz and relax in 7 ~ 5 x 107°



