

Summary of EW precision subgroup

LHC EW WG meeting

December 14, 2018

Aram Apyan, Fulvio Piccinini, Daniel Froidevaux For the LHC EW precision subgroup

Introduction

- Main areas of ongoing work:
 - Work toward a combination of sin²θ_{eff}
 - Work toward a combination of M_W
 - PDF benchmarking exercise using LHC precision EW data and pseudodata
 - pT W, Z, and W/Z benchmarking
 - QED/EW for Z DY and s2w observables
 - Studies for W mass come next
- Summary from last meetings:
 - https://indico.cern.ch/event/766590/
 - https://indico.cern.ch/event/775325/

Status of discussions for $sin^2\theta_{eff}$

- Focus on LHC experiments
- Medium-term: Global fit to A4/ AFB values measured by ATLAS, CMS, and LHCb with Run2 data
- Longer-term: Combine many differential cross sections in a global QCD fit.

Use the same kinematic and geometric cuts:

- $p_T > 25$ GeV (some discussion of asymmetric cuts)
- $|\eta| < 2.4 \text{ ATLAS & CMS} \quad 2 < \eta < 4.5 \text{ LHCb} \quad [overlap]$
- Forward electrons in ATLAS & CMS
 - Clearly boosts statistical precision and reduces PDF uncertainties.

First step for $sin^2\theta_{eff}$

- Demonstrate the compatibility of unfolded measurements of the A4/Afb values in bins of rapidity and mass
 - https://indico.cern.ch/event/758628/contributions/3146291/ attachments/1721966/2780410/First_Steps_sin2thetaW_Schmitt.pdf
 - Each group:
 - Generates pseudo-data that resembles real data (though without backgrounds at present).
 - Unfold the data and obtain A_4 for each $(M_{||}, y_{||})$ bin.
 - Parametrize A_4 in each bin as a function of $\sin^2\theta_W$.
 - Perform a fit to obtain $\sin^2\theta_W$.
 - All groups together:
 - Check compatibility of the A_4 values among the groups.
 - Perform a global fit to all the A_4 values.
 - Understand uncertainties: statistical, experimental, PDFs...

First step for $sin^2\theta_{eff}$

- Prepare unfolded pseudo-measurements of AFB/A4 in a standardized binning for initial tests
 - Test combination machinery
 - Comparison of theory predictions

- 18 bins in M_n in the range 60 to 150 GeV (5 GeV width)
- 9 bins in $|y_{ij}|$ out to 3.6 (0.4 width)
- Binning in $\cos \theta^*$ and in dilepton p_{τ} do not need to be standardized.
- Cross-validation of AFB/A4-> $\sin^2\theta_{eff}$ interpretation between experiments

Next step for $sin^2\theta_{eff}$

- Interpret the unfolded measurement results in a global fit to $sin^2\theta_{eff}$
- Predictions used in the past at Tevatron and LHC: Z production at NLO QCD+PS+QED FSR
 - Incorporate EW effects implemented using LEP-style form factors (DIZET). Need also subleading ISR/IFI corrections present at $O(\alpha)$
- N(N)LO QCD+ NLO EW parton shower generators (Powheg EW, Sherpa,...)
- Benchmark different aspects of the interpretation framework
 - Comparison of available NLO QCD+EW predictions and form-factor approach
 - QED ISR and IFI benchmarking
 - QED PDFs, yy/yq processes: need consistent treatment
 - PDF uncertainties: correlation between different PDFs (Daniel's talk)

EW LO, NLO, NLO+HO

- Comparisons with DIZET, POWHEG-EW, MCSANC
 - Additional codes will be included: HORACE, ZGRAD2...
 - LO QCD for now. Will include NLO next

Good agreement between Powheg_ew and DIZET around Z-pole

At higher masses, DIZET predicts stable shift of 0.005 while both PowhegEW and MCSANC predicts (NLO+HO – LO) being close to zero.

QED ISR and IFI benchmarking

- Active work in benchmarking of QED effects
 - MCSANC, POWHEG, and KKMC-hh
 - Cross sections (mll) and AFB

 δ_{x-LO}

- QED PDFs, photon-induced effects
- Comparisons done using bare muons

+0.368(4)%

Cross section **NLO QED** NLO QED FSR NLO QED ISR NLO QED IFI LO **QED PDF** 937.38(4) 933.88(4) -0.010(1)953.32(2) 956.83(2) -0.001(12)% -1.672(6)% -2.039(6)% +0.368(5)% δ_{x-LO} **NO-QED PDF** 959.51(2) 943.48(4) 939.95(4) 963.04(2) 0.0

-2.039(6)%

Integrated cross-section σ (pb) and $\delta = \sigma(\text{QED})/\sigma(\text{LO})$ (%)

-1.671(6)%

$\sigma(LO)$	$\delta({ m ISR})$	$\delta({ m IFI})$	$\delta({ m ISR}+{ m IFI})$	NNPDF
958.94(1)	0.367(1)	0.019(1)	0.386(2)	no QED
952.63(1)	0.367(1)	0.019(1)	0.386(2)	luxQED

MCSANC

0%

QED ISR and IFI benchmarking

Active work in benchmarking of QED effects (AFB)

POWHEG-EW

A_{FB}	LO	NLO QED	NLO QED FSR	NLO QED ISR	
$66~{ m GeV} < m_{ll} < 116~{ m GeV}$					
QED PDF	0.03986(2)	0.04056(4)	0.04060(5)	0.03985(3)	
$\Delta_{x-\mathrm{LO}}$		0.00070(6)	0.00074(7)	-0.00001(3)	
NO-QED PDF	0.03964(3)	0.04033(4)	0.04038(5)	0.03963(3)	
$\Delta_{x-\mathrm{LO}}$		0.00069(7)	0.00074(8)	-0.00001(3)	

Integrated $A_{FB}(LO)$ and $[A_{FB}(LO+QED)-A_{FB}(LO)]$

MCSANC

[LO]	[ISR]	[IFI]	[ISR+IFI]	NNPDF
0.044695(2)	-0.00003(2)	-0.00018(2)	-0.00021(3)	no QED
0.044967(2)	-0.00004(2)	-0.00018(2)	-0.00022(3)	luxQED

The IFI contribution is <0.1% while ISR is $\sim1.5\%$.

KKMC-hh

Status of W mass

- Work on combining Tevatron and ATLAS results
- Studies of correlation of PDF uncertainties between existing measurements
- Detailed talk by N. Andari on Thursday morning
 - https://indico.cern.ch/event/779259/contributions/3245228/ attachments/1770679/2877099/Andari_ws_12122018.pdf

MSTW	1.	2.	3.	4.
1. W+ 2 TeV	1	1	0.04	0.66
2. W ⁻ 2 TeV	1	1	0.08	0.62
3. W+ 7 TeV	0.04	0.08	1	-0.48
4. W ⁻ 7 TeV	0.66	0.62	-0.48	1
CT10	1.	2.	3.	4.
CT10 1. W+ 2 TeV	1. 1	2. 0.99	3. 0.26	4. 0.51
1. W+ 2 TeV	1	0.99	0.26	0.51

Status of W mass

- Machinery in place for the combination and evaluation of PDF uncertainties
- Smearing procedure in place to estimate PDF uncertainties (important effect for mT, factor of 10 difference between Born-level and emulated reco-level)
- Different W+/- correlations between different PDF sets observed
- Stronger correlation between W+ 2 TeV and W- 7 TeV observed
- MSTW2008 scaling factor 2.15 different from CT10 1.645 reproduced

Next steps

- Reupdate results with the parameterisations from Tevatron
- Improve the parameterisations for ATLAS 7 TeV
- Evaluate the correlations and the mW combined value and uncertainty for other PDF sets. Agreed on CT14, MMHT, and NNPDF3.1. Define an envelope uncertainty.

QCD aspects

- One-day discussion/reports from resummed groups during the November workshop
 - RADISH/NNLOJET, DYTURBO/DYRES, RESBOS2, GENEVA
 - Predictions of pT W and W/Z

Talk by Frank Tackmann on resummed calculations and nuisance

parameters

 Inclusion of threshold effects needed for accurate predictions

 First level of benchmarking for resummed calculations proposed

Benchmarking: Resummed calculations

- Radish, DYTurbo/DYRES, Geneva, Resbos2
- Comparison at NNLL+NNLO accuracy
 - Plus RADISH with N3LL+ N3LO
- Observables: p_T^Z , p_T^W in full phase space
- Benchmarking for few m_{ll} and Y_{ll} points
 - m_{II}: 66, 91, 116, and 500 GeV
 - Y_{ll}: 0.0, 3.0
- Consider only certain couplings:
 - uu_bar
 - dd_bar
 - all
- Specify how heavy flavor c, b are treated
- If possible include at least proper threshold behavior

12/05/18

Benchmarking: pT Z,W

- First level of benchmarking with resummed calculations defined
- Second level of benchmarking between MC generators and calculations
 - Alessandro's talk for detailed discussion
 - Also fiducial phase space of decay leptons defined by ATLAS/ CMS/LHCb
 - Requires very detailed documentation of their configurations

12/05/18

Timelines

- Active work and progress on most fronts
- Benchmarking for predictions defined or being finalized
- For most of the efforts we expect to converge by the end of 2019. Written reports will follow shortly after that.
- Reasonable to expect to converge on QED DY part by April or so and perhaps finalize the write up by the end of summer
- A separate report can be considered for the PDF benchmarking studies

ADDITIONAL MATERIAL