The EW schemes for precision physics at the Z resonance

E. Richter-Was

- EW schemes: from LEP to LHC
- Comparison of predictions (different EW schemes) for $\sin^2\theta_w$ measurement
- Comment on EW schemes for multi-boson production at LHC

Material partly in collaboration with

F. Piccinini (Powheg_ew), S. Bondarenko &L. Kalinovskaya (MCSANC), A. Armbruster (DYTURBO)

EW schemes

• LEP legacy: (α (0), G_{μ} , M_z)

D. Bardin et al. arXiv:9908433

- Inputs are very precisely measured physics quantities
- M₇, M_w are on-shell masses
- Genuine EW and lineshape corrections in form of (multiplicative) form-factors to LO couplings
- LHC paradigm: (G_{μ}, M_{z}, M_{w}) .

S. Dittmaier, M. Huber arXiv:0911.2329

- M₇, M_w are pole-masses or complex masses.
- Absorbs most of universal corrections into lowest-order couplings
- Higher-order corrections redefine couplings in nonmultiplicative manner

LEP legacy: QED (radiative) corrections

NOT discussed here.

QED FSR can be simulated by PHOTOS (exponentiated multi-photon emission) implemented as after-burner step on already generated event.

It is QED gauge-invariant set of diagrams (D. Bardin, hep-ph/9908433) which can be factorised out and/or convoluted with QCD corrections.

Calculated with fixed value of α_{QED} α_{OED} = 1./137.0359895

LEP legacy: Genuine EW and lineshape corrections

Also gauge-invariant set of diagrams. Calculated as form-factor corrections to couplings, propagators and masses. Eg. running $\alpha_{\text{QED}}(s)$, $\alpha_{\text{QED}}(M_z) = 1./128.86674175$

From Zfitter/Dizet documentation

Zfitter is a semi-analytical program for calculating total cross-sections and pseudo-observables (eg. A_{fb} , $\sin^2\theta_W^{eff}$), used by LEP1, and to a lesser degree by LEP2.

D. Bardin et al. arXiv:9908433

DIZET is a library for calculating form-factors and some other corrections. Provides complete EW $O(\alpha)$ weak-loop corrections supplemented with selected higher order terms (eg. vacum polarisation, $\alpha_{OED}(Q^2)$).

For analyses at LEP1, LEP2 used aways in parallel with MC generators (KoralZ, KoralW) eg. to evaluate systematics of simplified cuts used in analysis integration.

$$A_Z^{OLA}(s,t) = i\sqrt{2}G_\mu I_e^{(3)} I_f^{(3)} M_Z^2 \chi_Z(s) \rho_{ef}(s,t) \left\{ \gamma_\mu (1+\gamma_5) \otimes \gamma_\mu (1+\gamma_5$$

LEP legacy: from Zfitter/Dizet documentation

After some trivial algebra one derives the final expressions:

$$\begin{split} \rho_{ef} &= 1 + \frac{g^2}{16\pi^2} \left\{ -\Delta \rho_z^F + \mathcal{D}_z^F \left(s \right) + \frac{5}{3} B_0^F \left(-s; M_W, M_W \right) - \frac{9}{4} \frac{c_w^2}{s_w^2} \ln c_w^2 - 6 \right. \\ &\quad + \frac{5}{8} c_w^2 \left(1 + c_w^2 \right) + \frac{1}{4 c_w^2} \left(3 v_e^2 + a_e^2 + 3 v_f^2 + a_f^2 \right) \mathcal{F}_z \left(s \right) + \hat{\mathcal{F}}_w^0 \left(s \right) + \hat{\mathcal{F}}_w \left(s \right) \\ &\quad - \frac{r_t}{4} \left[B_0^F \left(-s; M_W, M_W \right) + 1 \right] - c_w^2 \left(R_Z - 1 \right) s \hat{\mathcal{B}}_{WW}^d \left(s, t \right) \right\}, \end{split} \tag{A.4.80} \\ \kappa_e &= 1 + \frac{g^2}{16\pi^2} \left\{ -\frac{c_w^2}{s_w^2} \Delta \rho^F - \Pi_{Z\gamma}^F \left(s \right) - \frac{1}{6} B_0^F \left(-s; M_W, M_W \right) - \frac{1}{9} - \frac{v_e \sigma_e}{2c_w^2} \mathcal{F}_z \left(s \right) \right. \\ &\quad - \hat{\mathcal{F}}_w^0 \left(s \right) + \left(R_Z - 1 \right) \left[\frac{|Q_f|}{2} \left(1 - 4 |Q_f| s_w^2 \right) \mathcal{F}_z \left(s \right) + c_w^2 \left[\hat{\mathcal{F}}_{W_n} \left(s \right) \right. \\ &\quad - |Q_f| \mathcal{F}_{W_n} \left(s \right) + s \hat{\mathcal{B}}_{WW}^d \left(s, t \right) \right] \right] \right\}, \tag{A.4.81} \\ \kappa_f &= 1 + \frac{g^2}{16\pi^2} \left\{ -\frac{c_w^2}{2c_w^2} \Delta \rho^F - \Pi_{Z\gamma}^F \left(s \right) - \frac{1}{6} B_0^F \left(-s; M_W, M_W \right) - \frac{1}{9} - \frac{v_f \sigma_f}{2c_w^2} \mathcal{F}_z \left(s \right) \right. \\ &\left. - \mathcal{F}_w^0 \left(s \right) + \left(R_Z - 1 \right) \left[\frac{|Q_e|}{2} \left(1 - 4 |Q_e| s_w^2 \right) \mathcal{F}_z \left(s \right) + c_w^2 \left[\hat{\mathcal{F}}_{W_n}^0 \left(s \right) \right. \right. \\ \kappa_{ef} &= 1 + \frac{g^2}{16\pi^2} \left\{ -2 \frac{c_w^2}{2c_w^2} \Delta \rho^F - 2 \Pi_{Z\gamma}^F \left(s \right) - \frac{1}{3} B_0^F \left(-s; M_W, M_W \right) + 1 \right] \right\}, \tag{A.4.82} \\ \kappa_{ef} &= 1 + \frac{g^2}{16\pi^2} \left\{ -2 \frac{c_w^2}{2c_w^2} \Delta \rho^F - 2 \Pi_{Z\gamma}^F \left(s \right) - \frac{1}{3} B_0^F \left(-s; M_W, M_W \right) - \frac{2}{9} \right. \\ &\left. - \frac{1}{4c_w^2} \left[\frac{\delta_e^2 + \delta_f^2}{s_w^2} \left(R_W - 1 \right) + 3 v_e^2 + a_e^2 + 3 v_f^2 + a_f^2 \right] \mathcal{F}_z \left(s \right) \right. \\ &\left. - \hat{\mathcal{F}}_w^0 \left(s \right) - \hat{\mathcal{F}}_w \left(s \right) - \frac{r_t}{4} \left[B_0^F \left(-s; M_W, M_W \right) + 1 \right] \right. \\ &\left. + c_w^2 \left(R_Z - 1 \right) \left[\frac{2}{3} - \hat{\Pi}_{D0S}^{bosp} \left(s \right) + s \hat{\mathcal{B}}_{WW}^d \left(s, t \right) \right] \right\}. \end{aligned} \tag{A.4.83}$$

Figure A.11. Bosonic self-energies and bosonic counter-terms for $e\bar{e} \rightarrow (Z, \gamma) \rightarrow f\bar{f}$

Figure A.10. Electron (a) and final fermion (b) vertices in $e\bar{e} \rightarrow (Z) \rightarrow f\bar{f}$

Figure A.6. Off-shell $Zf\bar{f}$ and $\gamma f\bar{f}$ vertices

Figure A.7. The WW boxes

etc. etc.

LEP legacy: effective weak mixing angle

Here convoluted with line-shape and $\cos\theta^*$ distribution of MC events.

m_{ee} (GeV)

$$\sin^2 \theta_{eff}^f = Re(K_Z^f) s_W^2 + I_f^2$$

$$K(s,t)$$

$$I_f^2 = \alpha^2(s) \frac{35}{18} [1 - \frac{8}{3} Re(K_Z^f) s_W^2] = ^{-4}$$

Without box corrections

0.2345 Dizet 6.21 (EW loop with boxes) $s_w^2 = 0.22351946$ (on-shell) 0.234 $\begin{array}{l} \sin^2\!\!\theta_{\rm eff} \ (\text{up-quark}) \\ \sin^2\!\!\theta_{\rm eff} \ (\text{down-quark}) \\ \sin^2\!\!\theta_{\rm eff} \ (\text{lepton}) \end{array}$ 0.2335 0.233 0.2325 0 232 0.2315 0.231 0.2305 110 130 140

With box corrections

E. Richter-Was, IF JU

LHC paradigm

 New schemes for input parameters: (α(0), M_z, M_w); (α(M_z), M_z, M_w);

 $(\alpha(0), M_z, M_w); (\alpha(M_z), M_z, M_w); (G_{\mu}, M_z, M_w)$

- New treatment of Z-boson prop.
 "complex mass scheme (CMS)",
 "pole mass scheme (PS)",
 "factorisation scheme (FS)"
- Two scales for α_{QED} : $\alpha_{G\mu}$, $\alpha(0)$
- More emphasis on split into:
 - NLO corrections
 - Universal two-loop contributions
- EW correction terms organised differently, eg. $\sin^2\theta_{eff}$ not anymore transparent in the calculations

$$s_{\rm W}^2 \to \bar{s}_{\rm W}^2 \equiv s_{\rm W}^2 + \Delta \rho \; c_{\rm W}^2 \; , \qquad c_{\rm W}^2 \to \bar{c}_{\rm W}^2 \equiv 1 - \bar{s}_{\rm W}^2 = (1 - \Delta \rho) \; c_{\rm W}^2 \; . \label{eq:sw}$$

S. Dittmaier, M. Huber arXiv:0911.2329

New paradigm for EW corrections, cont.

Figure 7: Weak corrections $\delta_{u\bar{u},weak}^{virt}$ and $\delta_{dd,weak}^{virt}$ to the partonic cross sections for the different input-parameter schemes, with (dashed lines) and without leading higher-order corrections due to $\Delta \alpha$ and $\Delta \rho$.

- G_{μ} scheme the most stable w.r.t. higher-order electroweak effects among discussed input-parameter schemes.
- Desire to absorb the effects of HO corrections into the LO predictions.
- Two scales for α_{QED}

EW schemes: pros and cons

- EW scheme $\alpha(0)$ v0: input $\alpha(0)$, M_7 , $G\mu$
 - Pros:
 - Precisely measured physics input, LEP legacy EW scheme
 - Cons:
 - Moderate NLO and HO corrections (few %) calculated theoretically or taken from low-energy measurements ($\alpha_{had}^{(5)}$)
- EW scheme $\alpha(0)$ v1: input $\alpha(0)$, M_z, M_w
 - Pros:
 - Moderate NLO corrections (few %), small HO corrections (<1%)
 - Cons:
 - Input M_w with ±15 MeV uncertainties (=> 20-30 10-5 on s2w)
 - requires shifting G_u far from its measured value.
- EW scheme G_{μ} : input G_{μ} , M_{Z} , M_{W}
 - Pros:
 - Small NLO (1%) and very small HO (0.2%) corrections
 - Cons:
 - Input M_w with ±15 MeV uncertainties (=> 20- 30 10-5 on s2w)
 - Requires two definitions for em coupling: $\alpha \text{(0)}$ for ISR/FSR/IFI and $\alpha_{\text{G}\mu}$ for matrix elements.

We are now establishing level of agreement between predictions calculated in three EW schemes, after including EW NLO+HO corrections.

EW schemes: input parameters

SM fundamental relation used to calculate EW parameters at LO in different EW schemes, on-mass-shell definition.

$$G_{\mu} = \frac{\pi \alpha}{\sqrt{2} M_W^2 s_W^2}$$

$$s_W^2 = 1 - m_W^2 / m_Z^2$$

Be aware: $\alpha(0)$ v1 comes with unphysical value of Gu

EW schemes: details

EW schemes: come with "on-shell" or "pole" definitions!

Table 44: The EW parameters used at tree-level EW, with on-mass-shell definition (LEP convention).

Parameter	$\alpha(0)$ v0	α(0) v1	G_{μ}	
M_Z	91.1876 GeV	91.1876 GeV	91.1876 GeV	
Γ_Z	2.4952 GeV	2.4952 GeV	2.4952 GeV	
Γ_W	2.085 GeV	2.085 GeV	2.085 GeV	
α	1/137.03599	1/137.03599	1/132.23323	
G_{μ}	$1.1663787 \cdot 10^{-5} \text{ GeV}^{-2}$	$1.1254734 \cdot 10^{-5} \text{ GeV}^{-2}$	$1.1663787 \cdot 10^{-5} \text{ GeV}^{-2}$	
M_W	80.93886 GeV	80.385 GeV	80.385 GeV	
s_W^2	0.2121517	0.2228972	0.2228972	
$\frac{G_{\mu} \cdot M_z^2 \cdot \Delta^2}{\sqrt{2} \cdot 8\pi \cdot \alpha}$	1.0	1.0	1.0	

Table 45: The EW parameters used at tree-level EW, with pole definition of the Z, W masses.

Parameter	$\alpha(0)$ v0	$\alpha(0)$ v1	G_{μ}
M_Z	91.15348 GeV	91.15348 GeV	91.15348 GeV
Γ_Z	2.494266 GeV	2.494266	2.494266 GeV
Γ_W	2.085 GeV	2.085 GeV	2.085 GeV
α	1/137.03599	1/137.03599	1/132.3572336357709
G_{μ}	$1.1663787 \cdot 10^{-5} \text{ GeV}^{-2}$	$1.126555497 \cdot 10^{-5} \text{ GeV}^{-2}$	$1.1663787 \cdot 10^{-5} \text{ GeV}^{-2}$
M_W	80.91191 GeV	80.35797 GeV	80.35797 GeV
s_W^2	0.21208680	0.22283820939	0.22283820939
$\frac{G_{\mu} \cdot M_z^2 \cdot \Delta^2}{\sqrt{2} \cdot 8\pi \cdot \alpha}$	1.0	1.0	1.0

Runing Γ_z in Z-propagator

Shift:

- -30 MeV for M_z
- change on Γ_z
- -0.00006 for s²wScaling
- 0.99906 for α

Fixed Γ_z in Z-propagator

Strategy for comparison

Scope:

- Genuine EW and lineshape corrections to Drell-Yan production at NLO QCD.
- Three EW LO schemes chosen to allow for straightforward interpretation of results. We tuned EW LO parameters, otherwise out-of-the-box.
- The highest available corrections in a given approach used.
- QED FRS/ISR not included here.

Observables:

- Lineshape (cross-section) and forward-backward asymmetry A_{FB} in the full phase-space.
- Compared ratios or absolute differences between different EW LO schemes and/or between NLO, NLO+HO predictions within each EW scheme and same MC generator. Allows to minimize sensitivity to QCD details.

Goals:

- Check if reweighting with wt^{EW} (TauSpinner) works for NLO QCD MC's.
 Compared distributions at EW LO (DYTURBO, Powheg_ew).
- Establish how consistent are predictions between different EW schemes with EW NLO corrections (Powheg_ew, MCSANC).
- Establish how consistent are EW NLO+HO corrections of Dizet 6.21 form-factors implemented in wt^{EW} and those of Powheg_ew.

What we have so far

PowhegZj: QCD NLO, Z+j

wt^{EW}: <u>TauSpinner + Dizet 6.21</u>

Powheg ew: QCD LO, Z

α(0) v0: LO

 α (0) v1: LO, NLO, NLO+HO

G_μ: LO, NLO, NLO+HO

DYTURBO: QCD LO, NLO, Z

α(0) 0: LO

 α (0) v1: LO

 G_{ii} : LO

MCSANC: QCD LO, Z

 α (0) v1: LO, NLO, HO

G_u: LO, NLO, HO

Constructing wt^{EW}: EW Improved Born (IBA)

$$\mathcal{A}^{Born+EW} = \frac{\alpha}{s} \{ [\bar{u}\gamma^{\mu}vg_{\mu\nu}\bar{v}\gamma^{\nu}u] \cdot (q_{\ell} \cdot q_{f}) [\Gamma_{V_{\Pi}} \cdot \chi_{\gamma}(s)$$
 arXiv: 1808.08616
$$+ [\bar{u}\gamma^{\mu}vg_{\mu\nu}\bar{v}\gamma^{\nu}u \cdot (v_{\ell} \cdot v_{f} \cdot vv_{\ell f}) + \bar{u}\gamma^{\mu}vg_{\mu\nu}\bar{v}\gamma^{\nu}\gamma^{5}u \cdot (v_{\ell} \cdot a_{f})$$

$$+ \bar{u}\gamma^{\mu}\gamma^{5}vg_{\mu\nu}\bar{v}\gamma^{\nu}u \cdot (a_{\ell} \cdot v_{f}) + \bar{u}\gamma^{\mu}\gamma^{5}vg_{\mu\nu}\bar{v}\gamma^{\nu}\gamma^{5}u \cdot (a_{\ell} \cdot a_{f})] \cdot Z_{V_{\Pi}} \chi_{Z}(s) \}$$

$$\chi_{\gamma}(s) = 1$$

$$\chi_Z(s) = \frac{G_{\mu} \cdot M_z^2 \cdot \Delta^2}{\sqrt{2} \cdot 8\pi \cdot \alpha} \cdot \frac{s}{s - M_Z^2 + i \cdot \Gamma_Z \cdot M_Z}$$

$$Z_{V_{\Pi}} = \rho_{e,f}(s,t)$$

$$\Gamma_{V_{\Pi}} = \frac{1}{2 - (1 + \Pi_{\gamma\gamma}(s))}$$

Vacuum polarisation corrections, used lowenergy experiment input.

Warning: problem for analytic continuation on WG meeting, 15.11.2018

$$\begin{aligned} v_{\ell} &= (2 \cdot T_3^{\ell} - 4 \cdot q_{\ell} \cdot s_W^2 \cdot \overline{K_{\ell}(s, t)}) / \Delta \\ v_f &= (2 \cdot T_3^f - 4 \cdot q_f \cdot s_W^2 \cdot \overline{K_{f}(s, t)}) / \Delta \\ a_{\ell} &= (2 \cdot T_3^{\ell}) / \Delta \\ a_f &= (2 \cdot T_3^f) / \Delta \\ \Delta &= \sqrt{16 \cdot s_W^2 \cdot (1 - s_W^2)} \end{aligned}$$

ERW and **Z.Was**,

EW form-factors, functions of $(s,t)=(m_{\parallel}, \cos\theta)$ Calculated with Dizet 6.21 library.

$$\begin{split} vv_{\ell f} = & \quad \frac{1}{v_{\ell} \cdot v_{f}} [(2 \cdot T_{3}^{\ell})(2 \cdot T_{3}^{f}) - 4 \cdot q_{\ell} \cdot s_{W}^{2} \cdot \boxed{K_{f}(s,t)} 2 \cdot T_{3}^{\ell}) - 4 \cdot q_{f} \cdot s_{W}^{2} \cdot \boxed{K_{\ell}(s,t)} 2 \cdot T_{3}^{f}) \\ & \quad + (4 \cdot q_{\ell} \cdot s_{W}^{2})(4 \cdot q_{f} \cdot s_{W}^{2}) \boxed{K_{\ell f}(s,t)} \boxed{\frac{1}{\Delta^{2}}} \end{split}$$

Constructing wt^{EW}: per-event weight

Define per event electroweak weight

ERW and Z.Was, arXiv: 1808.08616

$$\mathbf{wt}^{EW} = \sigma_{Born}^{new} / \sigma_{Born}^{old}$$

$$wt^{EW} = \frac{d\sigma_{Born}(x_1, x_2, \hat{s}, \cos\theta, s_W^2)}{d\sigma_{Born}(x_1, x_2, \hat{s}, \cos\theta, s_W^2)}$$

$$d\sigma_{Born}(x_1, x_2, \hat{s}, \cos\theta^*, s_W^2) = \sum_{q_f, \bar{q}_f} [f^{q_f}(x_1, ...) f^{\bar{q}_f}(x_2, ...) d\sigma_{Born}^{q_f \bar{q}_f}(\hat{s}, \cos\theta, s_W^2) + f^{q_f}(x_2, ...) f^{\bar{q}_f}(x_1, ...) d\sigma_{Born}^{\bar{q}_f q_f}(\hat{s}, -\cos\theta, s_W^2)$$

Approach developed in TauSpinner, arXiv:1802.05459

 x_1 , x_2 , $cos\theta$ (symmetrised) calculated using 4-momenta of outgoing leptons; asymmetry in sign of $cos\theta$ from weighted average over PDFs

Allows to reweight MC event generated between different EW LO scheme and to Improved Born Approximation in EW scheme used for form-factors calculation.

Theory predictions: EW LO, NLO, NLO+HO

Investigating now this discrepancy:

0.001 shift on ΔA_{FB} at Z-pole corresponds to shift ~ 30 10-5 on $\sin^2\theta_{eff}$

Theory predictions: EW LO, NLO+HO

NEW!!

Good agreement between Powheg_ew and DIZET around Z-pole

At higher masses, DIZET predicts stable shift of 0.005 while both PowhegEW and MCSANC predicts (NLO+HO – LO) being close to zero.

Powheg_ew: EW LO, NLO, NLO+HO

	EW order	$m_{ee} = 89 - 93 \text{ GeV}$	$m_{ee} = 80 - 100 \text{GeV}$	$m_{ee} = 70 - 120 \text{ GeV}$	
$A_{FB} \alpha(0) v0$	LO	0.06691361	0.06392369	0.06253754	·]
$A_{FB} \alpha(0) \text{ v1}$ $A_{FB} G_{\mu}$	LO LO	0.04653886 0.04653886	0.04343789 0.04343789	0.04212883 0.04212883	
$A_{FB} \alpha(0) v1$ $A_{FB} G_{\mu}$	NLO NLO	0.03004289 0.02905841	0.02690785 0.02592168	0.02569858 0.02471918	- A _{FB}
$ \begin{array}{c c} \hline A_{FB} & \alpha(0) & \text{v1} \\ A_{FB} & G_{\mu} \end{array} $	NLO+HO NLO+HO	0.03083234 0.03090286	0.02770533 0.02777783	0.02649700 0.02656851	
$\Delta A_{FB} \alpha(0) \text{ v1}$	NLO-LO	-0.0164959	-0.0165300	-0.0164302	ΔA_{FB} (NLO – LO)
$\Delta A_{FB} G_{\mu}$	NLO-LO	-0.0174805	-0.0175162	-0.0174096	
$\Delta A_{FB} \alpha(0) \text{ v1}$ $\Delta A_{FB} G_{\mu}$	NLO+HO-LO NLO+HO-LO	-0.0157065 -0.0156360	-0.0157326 -0.0156596	-0.0156318 -0.0155603	ΔA_{FB} (NLO+HO – LO)
ΔA_{FB}	EW order	$m_{ee} = 89 - 93 \text{ GeV}$	$m_{ee} = 80 - 100 \text{GeV}$	$m_{ee} = 70 - 120 \text{GeV}$	<u>ا</u>
$\alpha(0)$ v1 - $\alpha(0)$ v	0 LO	-0.020375	-0.020486	-0.020487	$\Delta A_{\scriptscriptstyleFB}$ between
G_{μ} - $\alpha(0)$ v0	LO	-0.020375	-0.020486	-0.0204871	EW schemes at
G_{μ} - $\alpha(0)$ v1	LO	0.0	0.0	0.0	LO, NLO, NLO+HO
$G_{\mu} - \alpha(0) \text{ v1}$ $G_{\mu} - \alpha(0) \text{ v1}$	NLO NLO + HO	-0.00098 -0.00007	-0.00098 -0.00007	-0.00098 -0.00007]]

Better than 0.0001 agreement on A_{FB} at NLO+HO between two EW schemes!

Multi-boson precision physics at LHC

- The theoretical calculations for multi-boson processes at LHC use as default the G_{μ} scheme.
 - M_w, M_z at the on-shell value
 - Z-couplings to fermions not at value measured at LEP, s2w = 0.22289
 should be s2w = 0.23152
 - Two scales of $\alpha_{\sf OED}$:
 - $\alpha(0) = 1/137$, used for radiative corrections, $Z \gamma$ hard processes
 - α_{Gu} = 1/132 , used for γ couplings in matrix elements

Requires attention to avoid breaking gauge-cancellations

- EW genuine and lineshape corrections often not available in MC's tools:
 eg. MATRIX. Requires using correcting scalings calculated with
 "effective" couplings instead eg. for predicting Z-polarisation in WZ
 events.
- More advanced technique, i.e. reweighting with wt^{EW} could provide pragmatic/operational solution.

Gauge boson polarisation in WZ events

ATLAS-CONF-2018-034

$$\begin{split} &\frac{1}{\sigma_{W^{\pm}Z}}\frac{d\sigma_{W^{\pm}Z}}{d\cos\theta_{\ell,W}} = \frac{3}{8}f_{L}(1\mp\cos\theta_{\ell,W})^{2} + \frac{3}{8}f_{R}(1\pm\cos\theta_{\ell,W})^{2} + \frac{3}{4}f_{0}\sin^{2}\theta_{\ell,W}\,,\\ &\frac{1}{\sigma_{W^{\pm}Z}}\frac{d\sigma_{W^{\pm}Z}}{d\cos\theta_{\ell,Z}} = \frac{3}{8}f_{L}(1+2\alpha\cos\theta_{\ell,Z}+\cos^{2}\theta_{\ell,Z}) + \frac{3}{8}f_{R}(1+\cos^{2}\theta_{\ell,Z}-2\alpha\cos\theta_{\ell,Z}) + \frac{3}{4}f_{0}\sin^{2}\theta_{\ell,Z} \end{split}$$

$$\alpha = \frac{2c_v c_a}{c_v^2 + c_a^2}$$
 $c_v = -\frac{1}{2} + 2\sin^2\theta_W^{\text{eff}}$ $c_a = -\frac{1}{2}$

Predictions at EW LO, using effective

$$\sin^2 \theta_{\mathbf{W}}^{\text{eff}} = 0.23152$$

Summary

- The LEP legacy EW scheme should be kept as a reference to allow for continuity with so far best measured SM parameters definitions.
- Keeping the standard of splitting genuine EW+lineshape corr. and FSR/ISR/IFI corrections is mandatory, because of experimental analyses complexity and required precision of theoretical predictions.
- Choice of the EW scheme: a trade-off between parametric uncertainty and correction size. Optimal choice depends on measurement and its accuracy.
 - Be aware that "G $_{\mu}$ scheme" for input parameters comes with large parametric uncertainty on M $_{W}$ input parameter known to ± 15 MeV only (=> 20 30 10-5 on $\sin^2\theta_{eff}$)
- For multi-bosons: to get correct Z-polarisation mandatory to obtain $\sin^2\theta_{eff}$ =0.23153 whichever input parameters one starts from.

SPARES slides

Powheg_ew: EW LO, NLO, NLO+HO

Cross-section

	EW ander	90 02 C-V	90 100 C-V	70 120 C-M	i 🗖
	EW order	$m_{ee} = 89 - 93 \text{ GeV}$	$m_{ee} = 80 - 100 \text{ GeV}$	$m_{ee} = 70 - 120 \text{ GeV}$	
$\alpha(0)$ v0	LO	630.848722	906.156051	959.658977	
$\alpha(0)$ v1	LO	571.411296	821.363274	870.729908	
G_{μ}	LO	612.514433	880.446121	933.363827	- σ (pb)
$\alpha(0)$ v1	NLO	600.185042	863.142557	915.580114	(pb)
G_{μ}	NLO	607.142292	873.173294	926.253246	
$\alpha(0)$ v1	NLO+HO	607.551746	873.717147	926.761229	
G_{μ}	NLO+HO	607.515354	873.655348	926.681425	
$\alpha(0)$ v1	NLO/LO	1.050350	1.05087	1.05151	- G.wa/G.a
G_{μ}	NLO/LO	0.991230	0.99174	0.99238	σ_{NLO}/σ_{LO}
$\alpha(0)$ v1	NLO+HO/LO	1.063247	1.063740	1.064349	」
G_{μ}	NLO+HO/LO	0.991038	0.992287	0.992840	$- \sigma_{\text{NLO+HO}}/\sigma_{\text{LO}}$
$\alpha(0)$ v1 / $\alpha(0)$ v0	LO	0.90578	0.906426	0.90733	Potios botygon
$G_{\mu}/\alpha(0)$ v1	LO	1.07193	1.07193	1.07193	Ratios between
$G_{\alpha}/\alpha(0)$ v1	NLO	1.01159	1.01162	1.01166	EW schemes
$G_{\mu}/\alpha(0)$ v1	NLO+HO	0.99994	0.99993	0.99991	LO, NLO, NLO+HO
$G_{\mu}/\alpha(0)$ v0	LO	0.97094	0.97163	0.97260	

Better than 0.01% agreement on σ between EW schemes at NLO+HO!

EW schemes: input parameters

SM fundamental relation used to calculate EW parameters at LO in different EW schemes, on-mass-shell definition.

EW scheme: G_{μ} , α , $M_{\rm Z}$		α, M_W, M_Z	G_{μ}, M_W, M_Z	
Parameter $\alpha(0)$ v0		α(0) v1	G μ	
M_Z	91.1876 GeV	91.1876 GeV	91.1876 GeV	
Γ_Z	2.4952 GeV	2.4952 GeV	2.4952 GeV	
Γ_W	2.085 GeV	2.085 GeV	2.085 GeV	
α	1/137.03599	1/137.03599	1/132.23323	
G_{μ}	$1.1663787 \cdot 10^{-5} \text{ GeV}^{-2}$	$1.1254734 \cdot 10^{-5} \text{ GeV}^{-2}$	$1.1663787 \cdot 10^{-5} \text{ GeV}^{-2}$	
M_W	80.93886 GeV	80.385 GeV	80.385 GeV	
s_W^2	0.2121517	0.2228972	0.2228972	
$\frac{G_{\mu} \cdot M_z^2 \cdot \Delta^2}{\sqrt{2} \cdot 8\pi \cdot \alpha}$	1.0	1.0	1.0	

$$s_W^2 = 1 - m_W^2 / m_Z^2$$

$$G_{\mu} = \frac{\pi \alpha}{\sqrt{2} M_W^2 s_W^2}$$

EW schemes: $\alpha(0)$ v0, $\alpha(0)$ v1 – same value of α G_{μ} , $\alpha(0)$ v1 – same value of s^2w

	PowhegZj
	91.1876 GeV
	2.4952 GeV
	2.085 GeV
	1/128.88859
	$1.16638 \cdot 10^{-5} \text{ GeV}^{-2}$
Ī	79.958 GeV
	0.2311300
	1.0

MC events used for reweighting

Validating reweighting with wt EW: EW LO

- Ratio of differential cross-sections (lineshapes) driven by relative balance between Z and γ contributions.
- EW α (0) v1 and G $_{\mu}$ schemes chosen as such that ratio of cross-sections is equal to ratio of QED couplings squared.

Validating reweighting with wt^{EW}: EW LO

 ΔA_{FB} : driven by s_W^2 value (same for $\alpha(0)$ v1 and G_{μ} schemes)

Benchmark for wt^{EW} reweighting

Double difference:

 ΔA_{FB} (DYTURBO) - ΔA_{FB} (PowhegZj+wt^{EW})

$$\alpha(0) \text{ v1} - \alpha(0) \text{ v0}$$
 $G_{\mu} - \alpha(0) \text{ v0}$

Agreement on $\Delta(\Delta A_{FB})$ within ± 0.0002

27

Should redo it with much finer binning around Z-pole to better estimate precision.

EW LO schemes in practice

 SM fundamental relations used to calculate EW parameters in EW LO schemes

$$G_{\mu} = \frac{\pi \alpha}{\sqrt{2} M_W^2 s_W^2} \longrightarrow$$

$$\frac{G_{\mu} \cdot M_z^2 \cdot \Delta^2}{\sqrt{2} \cdot 8\pi \cdot \alpha} = 1 \qquad \Delta^2 = 16 \cdot s_W^2 \cdot (1 - s_W^2)$$

$$\Delta^2 = 16 \cdot s_W^2 \cdot (1 - s_W^2)$$

EW scheme: G_{μ} , α , M_Z $\alpha(0)$ v0

EW scheme:
$$\alpha$$
, M_W , M_Z α (0) v1

EW scheme: G_{μ}, M_{W}, M_{Z}

$$d2 = \frac{\sqrt{2} \cdot 8\pi \cdot \alpha}{G_{\mu} \cdot M_z^2}$$
$$s_W^2 = (-1 + \sqrt{1 - d2/4})/2$$

$$\begin{array}{cccc} s_W^2 & = & 1 - m_W^2 / m_Z^2 \\ c_W^2 & = & m_W^2 / m_Z^2 \\ g2 & = & 4 \cdot \pi \cdot \alpha / s_W^2 \\ \hline G_\mu & = & \sqrt{2} \cdot g2 / 8 / m_W^2 \end{array}$$

$$\begin{array}{cccc} s_W^2 &=& 1 - m_W^2 / m_Z^2 \\ c_W^2 &=& m_W^2 / m_Z^2 \\ g2 &=& 8 \cdot G_\mu \cdot m_W^2 / \sqrt{2} \\ \alpha &=& g2 \cdot s_W^2 / 4 / \pi \end{array}$$

calculated

EW LO schemes: details

Running and fixed Z-boson width in the propagator: taking into account photonic - loop corrections to $\Gamma_{\rm Z}$

• Fixed width
$$\chi_Z(s) = \frac{1}{s - M_Z^2 + i \cdot \Gamma_Z \cdot M_Z}$$
.

Running width (LEP legacy)

$$\chi_{Z}^{'}(s) = \frac{1}{s - M_{Z}^{2} + i \cdot \Gamma_{Z} \cdot s / M_{Z}}$$

Both equivalent if redefined parameters m_z , Γ_z , N_z (normalization). Change in the normalisation can (?) be absorbed into G_μ redefinition. In case of "pole" convention (last slide) it was absorbed into α .

$$\chi_{Z}'(s) = \frac{1}{s(1+i\cdot\Gamma_{Z}/M_{Z}) - M_{Z}^{2}}$$

$$= \frac{(1-i\cdot\Gamma_{Z}/M_{Z})}{s(1+\Gamma_{Z}^{2}/M_{Z}^{2}) - M_{Z}^{2}(1-i\cdot\Gamma_{Z}/M_{Z})}$$

$$= \frac{(1-i\cdot\Gamma_{Z}/M_{Z})}{(1+\Gamma_{Z}^{2}/M_{Z}^{2})} \frac{1}{s - \frac{M_{Z}^{2}}{1+\Gamma_{Z}^{2}/M_{Z}^{2}} + i\cdot\frac{\Gamma_{Z}M_{Z}}{1+\Gamma_{Z}^{2}/M_{Z}^{2}}}$$

$$= N_{Z} \frac{1}{s - M_{Z}^{'2} + i\Gamma_{Z}^{'}M_{Z}^{'}}$$

$$M_{Z}' = \frac{M_{Z}}{\sqrt{1+\Gamma_{Z}^{2}/M_{Z}^{2}}}$$

$$\Gamma_{Z}' = \frac{\Gamma_{Z}}{\sqrt{1+\Gamma_{Z}^{2}/M_{Z}^{2}}}$$

$$N_{Z} = \frac{(1-i\cdot\Gamma_{Z}/M_{Z})}{(1+\Gamma_{Z}^{2}/M_{Z}^{2})} = \frac{(1-i\cdot\Gamma_{Z}^{'}/M_{Z}^{'})}{(1+\Gamma_{Z}^{'2}/M_{Z}^{'2})}$$

Impact of $\Delta \alpha_{had}^{(5)}(M_z^2)$

Predictions from Dizet 6.21 library

Parameter	$\Delta \alpha_h^{(5)}(M_Z^2) = 0.0280398$	$\Delta \alpha_h^{(5)}(M_Z^2) = 0.02753$	Ratio
$\alpha(M_Z^2)$	0.00775884	0.00775463	
$1/\alpha(M_Z^2)$	128.885224	128.95522	0.99932
s_W^2	0.22351946	0.22331458	1.00092
$sin^2 \theta_W^{eff}(M_Z^2)$ (electron, muon)	0.23175990	0.23157062	1.00082
$sin^2\theta_W^{eff}(M_Z^2)$ (up-quark)	0.23164930	0.23146414	1.00080
$sin^2\theta_W^{eff}(M_Z^2)$ (down-quark)	0.23152214	0.23133715	1.00080
M_W	80.35281 GeV	80.36341 GeV	1.00013
Δr	0.03694272	0.03631342	1.01733
Δr_{rem}	0.01169749	0.01170244	0.99958
Peu	1.005408	1.005426	0.99998
K_e	1.036649	1.036770	0.99988
K_u	1.036172	1.036293	0.99988
K_{eu}	1.074146	1.074397	0.99977
Ped	1.005894	1.005906	0.99999
K_e	1.036649	1.036699	0.99995
K_d	1.035603	1.035719	0.99989
K_{ed}	1.073556	1.073859	0.99972

shift of about -0.00020 due to corrections to M_w

← shift by +11 MeV

ATLAS measurement $M_W = 80370 \pm 19 \text{ MeV}$

$$M_W = \frac{M_Z}{\sqrt{2}} \sqrt{1 + \sqrt{1 - \frac{4A_0^2}{M_Z^2(1 - \Delta r)}}}$$
$$\Delta r = \Delta \alpha (M_Z^2) + \Delta r_{EW}$$
$$A_0 = \sqrt{\frac{\pi \alpha(0)}{\sqrt{\pi}}}$$

Impact of m_t

Parameter	$m_t = 171 \text{ GeV}$	$m_t = 173 \text{ GeV}$	$m_t = 175 \text{ GeV}$
$\alpha(M_Z^2)$	0.00775882	0.00775884	0.00775885
$1/\alpha(M_Z^2)$	128.888558	128.885224	128.885079
s_W^2	0.22375411	0.22351946	0.22328310
$sin^2 \theta_W^{eff}(M_Z^2)$ (electron, muon)	0.23181756	0.23175990	0.23169368
$sin^2\theta_W^{eff}(M_Z^2)$ (up-quark)	0.23171096	0.23164930	0.23169368
$sin^2 \theta_W^{eff}(M_Z^2)$ (down-quark)	0.23158377	0.23152214	0.23145996
Δr	0.03766186	0.03694272	0.03621664
Δr_{rem}	0.01165959	0.01169749	0.01173500
$ ho_{eu}$	1.005229	1.005408	1.005589
K_e	1.035837	1.036649	1.037467
K_u	1.035361	1.036172	1.036990
K_{eu}	1.072465	1.074146	1.075843
Ped	1.005714	1.005894	1.006075
K_e	1.035837	1.036649	1.037467
K_d	1.034792	1.035603	1.036420
K_{ed}	1.071876	1.073556	1.075252

±2 GeV shift in m_t corresponds to ±0.00005 shift in \sin^2_{eff}

Dizet 6.21 -> 6.42-> 6.44

AMT4 = 4 - available in Dizet 6.21

Pragmatic question: is it indeed more precise estimate to use AMT4=5 or AMT4=6? Or better stay with well tested AMT4=4? What uncertaintity attribute to this correction?

arXiv:1302.1395v3

Table 1: ZFITTER v.6.44beta, with the input values $\alpha_s = 0.1184$, $M_Z = 91.1876$ GeV, $M_H = 125$ GeV, $m_t = 173$ GeV. The dependence on electroweak NNLO corrections is studied for IMOMS=1 (input values are α_{em} , M_Z , G_μ). AMT4=4: with two-loop sub-leading corrections and re-summation recipe of [23-28] of [13]; AMT4=5: with fermionic two-loop corrections to M_W according to [29,30,32] of [13]; AMT4=6: with complete two-loop corrections to M_W [37] and fermionic two-loop corrections to $\sin^2\theta_W^{\text{lept,eff}}$ [52] of [13]. IBAIKOV=0 (no α_s^4 QCD corrections) or IBAIKOV=2012 [190].

AMT4	4	5	6	Diff.	Exp. Err.		
IBAIKOV=0							
$\Gamma_Z(\mu^+\mu^-)$, MeV	83.9782	83.9748	83.9807	0.0059	0.086		
Γ_Z , MeV	2494.7863	2494.6019	2494.8688	0.2669	2.3		
$\Gamma_W(l\nu)$, MeV	226.3185	226.2877	226.2922	0.0308	1.9		
Γ_W , MeV	2090.3308	2090.0465	2090.0882	0.2843	42		
M_W , GeV	80.3578	80.3541	80.3546	0.0037	0.015		
$\sin^2 \theta_{\rm eff}^{\rm lept}$	0.231722	0.231791	0.231670	0.000121	0.00012		
IBAIKOV=2012							
$\Gamma_Z(\mu^+\mu^-), MeV$	83.9782	83.9748	83.9807	0.0059	0.086		
Γ_Z , MeV	2494.5591	2494.3747	2494.6416	0.2669	2.3		
$\Gamma_W(l\nu)$, MeV	226.3185	226.2877	226.2922	0.030	1.9		
Γ_W , MeV	2090.1117	2089.8274	2089.8691	0.2843	42		
M_W , GeV	80.3578	80.3541	80.3546	0.0037	0.015		
$\sin^2 \theta_{\rm eff}^{\rm lept}$	0.231722	0.231791	0.231670	0.000121	0.00012		

 \pm 0.00005 around nominal value of $sin^2\theta_{eff}$ with AMT4=4