A few comments on EW schemes in VV

Ionas M. Lindert

General remarks

- precision in VV by far not at the same level as DY. However:

- current reach ($150 \mathrm{fb}^{-1}$) ~ 1\% statistical precision up to about 500 GeV
- reach for HL-LHC ~ 1% statistical precision up to about 1 TeV

EW schemes

- consistent EW input schemes: $\mathrm{mZ}, \mathrm{mW}+$

- consistent EW renormalisation schemes:
$\alpha(0) \quad$ free of mass singularities for external photons
NLO $\quad \boldsymbol{\alpha}(\mathrm{mZ}) \quad$ relevant for high-energetic virtual photon exchange
$G \mu \quad$ absorbs universal corrections into LO \rightarrow NLO EW/LO reduced

$$
\left.\left.\delta Z_{e}\right|_{\alpha(0)} \rightarrow \delta Z_{e}\right|_{\alpha_{C_{\mu}}}=\left.\delta Z_{e}\right|_{\alpha(0)}-\frac{\Delta r}{2}
$$

\rightarrow mixed scheme: $\quad \sigma_{\mathrm{LO}}=\alpha\left(G_{\mu}\right)^{n} \alpha(0)^{n_{\gamma}} A_{\mathrm{LO}} \quad$ for n_{γ} resolved photons

$$
\begin{align*}
& \sigma_{\mathrm{NLO}}=\sigma_{\mathrm{LO}}\left(1+\delta_{\mathrm{EW}}\right) \quad \delta_{\mathrm{EW}}^{\mathrm{mix}}=\delta_{\mathrm{EW}}^{\alpha(0)}+n \Delta r+\ldots=\mathcal{O}(\alpha) \tag{3}\\
& \text { nes required at } \mathrm{LO} \text { and NLO EW } \\
& \text { reweighting of Monte Carlo samples) }
\end{align*} \alpha_{G_{\mu}} \text { or } \alpha(0)
$$

γ-induced contributions

- in particular in WW there are sizeable γ-induced contributions

LO

pTI1

- sizeable impact of yPDF : 10% at I TeV pTII / mll
impact strongly jet-veto
dependent. Here: $H_{T}^{\text {jet }}<0.2 H_{T}^{\text {lep }}$
- CTI4qed and LUXqed agree at $\sim 2 \%$ level

EW schemes for γ-induced

[S. Kallweit, JML, M. Schönherr, S. Pozzorini, ' I 7]

- external photon in hard process $\boldsymbol{\rightarrow} \boldsymbol{\alpha}(0)$?
- PDF renormalisation at $\mathrm{O}(\boldsymbol{\alpha})$ yields for each initial state photon: $\delta Z_{\gamma, \mathrm{PDF}}=\frac{\alpha}{2 \pi} \gamma_{\gamma}\left[\frac{C_{\epsilon}}{\epsilon}+\ln \left(\frac{\mu_{\mathrm{D}}^{2}}{\mu_{\mathrm{F}}^{2}}\right)\right]$
- This collinear singularity has to be cancelled by renormalisation of photon wave function and EM coupling: $\delta Z_{\gamma, \text { virt }}=\frac{\delta \alpha}{\alpha}+\delta Z_{A A}$
in $\boldsymbol{\alpha}(0)$-scheme: $\left.\quad \delta Z_{\gamma, \text { virt }}\right|_{\text {OS, light }}=\left[\frac{\delta \alpha(0)}{\alpha(0)}+\delta Z_{A A}\right]_{\text {light }}=0 \sim \begin{aligned} & \text { no fermion mass singularities } \\ & \text { in on-shell scheme! }\end{aligned}$
in $\boldsymbol{\alpha}(\mathrm{mZ})$-scheme: $\left.\quad \delta Z_{\gamma, \text { virt }}\right|_{M_{Z, \text { light }}}=-\left(\Pi_{\text {light }}^{\gamma \gamma}(0)-\Pi_{\text {light }}^{\gamma \gamma}\left(M_{Z}^{2}\right)\right)$

$$
=\frac{\alpha}{2 \pi} \gamma_{\gamma}\left[\frac{C_{\epsilon}}{\epsilon}+\ln \left(\frac{\mu_{\mathrm{D}}^{2}}{M_{Z}^{2}}\right)+\frac{5}{3}\right]-\frac{\alpha}{3 \pi} \sum_{f \in F_{\mathrm{m}}} N_{\mathrm{C}, f} Q_{f}^{2}\left[\ln \left(\frac{m_{f}^{2}}{M_{Z}^{2}}\right)+\frac{5}{3}\right]
$$

$\left.\rightarrow \delta Z_{\gamma, \text { virt }}\right|_{M_{z}, \text { light }}+\delta Z_{\gamma, \text { PDF }}$ free from manifest $1 / \varepsilon$ singularities
\rightarrow couplings of initial-state photons and unresolved final-state photons should be parametrised in terms of $\boldsymbol{\alpha}(\mathrm{mZ})$ or any other short-distance scheme, e.g. $\mathrm{G} \boldsymbol{\mu} / \overline{\mathrm{MS}}$

Validation

- There are subtle differences in implementation of these schemes in particular in the context of CMS (complex mass scheme).
\rightarrow Have been studied for ZZ in the context of [LHI7, I 803.07977]

```
a) PSP \(1 \quad B / 10^{-15} \quad V_{\text {finite }} / 10^{-16} \quad V_{1} / 10^{-17} \quad V_{2} / 10^{-17}\)
```

$\mathrm{u} \overline{\mathrm{u}} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \mu^{+} \mu^{-}$

MadLoop	5.26592465401088
RECOLA	5.26592465401090
OpenLoops	5.26592465401100
GoSAM	5.26592465401086
NLOX	5.26592465401084

c) $\operatorname{PSP} 1$
$B / 10^{-13}$
$V_{\text {finite }} / 10^{-14}$
$V_{1} / 10^{-15}$
$V_{2} / 10^{-15}$
$\gamma \gamma \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \mu^{+} \mu^{-}$
6.60297993618509 6.60088670209820 6.60088670210145 6.60088670209788 6.60088670211436
$2.63915540074976-3.09566543908773$ $2.63915540075328-3.09566543908732$ $2.63915540078563-3.09566543905505$ $2.63915540076095-3.09566543909091$ $2.63915540076702-3.09566543908783$

MadLoop
RECOLA 4.63762790127830
$6.79330655006349 \quad 4.07216839247769-2.23061748556626$
6.7016366248600

```
OpnLOops \(4.63762790127838 \quad 6.79163662486753-4.07216839246097-2.23061748560388\)
\(\begin{array}{llllll}\text { GoSAM } & 4.63762790127830 & 6.79163662486761 & 4.07216839247955 & -2.23061748556541\end{array}\)
\(\rightarrow\) very convincing agreement between automated tools

\section*{Conclusions}
- scheme of choice: \(G \boldsymbol{\mu}\) or \(\boldsymbol{\alpha}(m Z)\) for hard processes and initial state photons combined with \(\alpha(0)\) for resolved final state photons
- This is the default scheme implemented for NLO EW in

Sherpa+OpenLoops, MATRIX+OpenLoops, Sherpa+Recola, MoCaNLO+Recola
- Questions/Comments:
- Best scheme for WZ polarizations?
- EW scheme uncertainties at NLO have not been studied in VV. Necessary?
- See also: "Dictionary for electroweak corrections" by S. Dittmaier in [LH2O|3,I405.I067]```

