A few comments on EW schemes in VV

Jonas M. Lindert

LHCEWWG 13. December 2018

General remarks

precision in VV by far not at the same level as DY. However:

- current reach (150fb⁻¹) ~ 1% statistical precision up to about 500 GeV
- reach for HL-LHC ~ 1% statistical precision up to about 1 TeV

EW schemes

consistent EW input schemes: mZ,mW +

LO
$$\alpha(0)$$

$$\alpha(mZ)$$

$$\beta \sin\theta_W^2 = 1 - m_W^2/m_Z^2$$

$$\alpha(mZ)$$

$$\alpha(mZ)$$

$$\alpha(mZ)$$

$$\alpha(mZ)$$

- consistent EW renormalisation schemes:
 - $\alpha(0)$ free of mass singularities for external photons
- $NLO \quad \alpha$ (mZ) relevant for high-energetic virtual photon exchange
 - Gµ absorbs universal corrections into LO → NLO EW/LO reduced $\delta Z_e \big|_{\alpha(0)} \to \delta Z_e \big|_{\alpha_{G_\mu}} = \delta Z_e \big|_{\alpha(0)} \frac{\Delta r}{2}$
 - ightharpoonup mixed scheme: $\sigma_{\mathrm{LO}} = \alpha (G_{\mu})^{n} \alpha (0)^{n_{\gamma}} A_{\mathrm{LO}}$ for n_{γ} resolved photons $\sigma_{\mathrm{NLO}} = \sigma_{\mathrm{LO}} \left(1 + \delta_{\mathrm{EW}} \right)$ $\delta_{\mathrm{EW}}^{\mathrm{mix}} = \delta_{\mathrm{EW}}^{\alpha(0)} + n \Delta r + \dots = \mathcal{O}(\alpha)$
 - ightharpoonup consistent schemes required at LO and NLO EW (in particular for reweighting of Monte Carlo samples) $\alpha_{G_{\mu}}$ or $\alpha(0)$

Y-induced contributions

ullet in particular in WW there are sizeable γ -induced contributions

EW schemes for γ -induced

[S. Kallweit, JML, M. Schönherr, S. Pozzorini, '17]

- external photon in hard process $\rightarrow \alpha(0)$?
- PDF renormalisation at $O(\mathbf{\alpha})$ yields for each initial state photon: $\delta Z_{\gamma,\text{PDF}} = \frac{\alpha}{2\pi} \gamma_{\gamma} \left[\frac{C_{\epsilon}}{\epsilon} + \ln \left(\frac{\mu_{\text{D}}^2}{\mu_{\text{F}}^2} \right) \right]$
- This collinear singularity has to be cancelled by renormalisation of photon wave function and EM coupling: $\delta Z_{\gamma, \mathrm{virt}} = \frac{\delta \alpha}{\alpha} + \delta Z_{AA}$

in
$$\alpha(0)$$
-scheme: $\delta Z_{\gamma, \mathrm{virt}} \Big|_{\mathrm{OS, light}} = \left[\frac{\delta \alpha(0)}{\alpha(0)} + \delta Z_{AA} \right]_{\mathrm{light}} = 0$ no fermion mass singularities in on-shell scheme!

in
$$\alpha(\text{mZ})$$
-scheme: $\delta Z_{\gamma, \text{virt}} \big|_{M_Z, \text{light}} = -\left(\Pi_{\text{light}}^{\gamma\gamma}(0) - \Pi_{\text{light}}^{\gamma\gamma}(M_Z^2)\right)$

$$= \frac{\alpha}{2\pi} \gamma_\gamma \left[\frac{C_\epsilon}{\epsilon} + \ln\left(\frac{\mu_{\text{D}}^2}{M_Z^2}\right) + \frac{5}{3} \right] - \frac{\alpha}{3\pi} \sum_{f \in F_{\text{m}}} N_{\text{C},f} Q_f^2 \left[\ln\left(\frac{m_f^2}{M_Z^2}\right) + \frac{5}{3} \right]$$

- $\rightarrow \delta Z_{\gamma, \mathrm{virt}}|_{M_Z, \mathrm{light}} + \delta Z_{\gamma, \mathrm{PDF}}$ free from manifest 1/ ϵ singularities
- \rightarrow couplings of initial-state photons and unresolved final-state photons should be parametrised in terms of $\alpha(mZ)$ or any other short-distance scheme, e.g. $G\mu$ / \overline{MS}

from dispersion relations

Validation

- There are subtle differences in implementation of these schemes in particular in the context of CMS (complex mass scheme).
 - → Have been studied for ZZ in the context of [LH17, 1803.07977]

→very convincing agreement between automated tools

Conclusions

- scheme of choice: $G\mu$ or $\alpha(mZ)$ for hard processes and initial state photons combined with $\alpha(0)$ for resolved final state photons
- This is the default scheme implemented for NLO EW in Sherpa+OpenLoops, MATRIX+OpenLoops, Sherpa+Recola, MoCaNLO+Recola
- Questions/Comments:
 - Best scheme for WZ polarizations?
 - EW scheme uncertainties at NLO have not been studied in VV. Necessary?

• See also: "Dictionary for electroweak corrections" by S. Dittmaier in [LH2013,1405.1067]