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• precision in VV by far not at the same level as DY. However:

General remarks
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Fig. 38: Cumulative number of events as a function of mn`,min.

In Figure 38 we study the reach of the three vector-boson pair production processes for future LHC1691

upgrades in the invariant-mass distributions of all produced charged leptons. We choose a scenario where1692

pT,min, defined as before in the three processes, is 20GeV in order to have at least a rough definition1693

of the fiducial phase-space. We show the expected number of events, assuming the same integrated1694

luminosities as stated above, for
p
s = 14TeV (dashed) and

p
s = 27TeV (solid) with a lower cut1695

mn` > mn`,min, where n is the number of leptons in the respective process, i.e., for W+W� production1696

it is the distribution in m2` (blue), for W±Z it is the one in m3` (green), and for ZZ in m4` (orange). The1697

significant reach in energy for both the HL run of the LHC and a potential HE upgrade is evident. With1698

“reach" we refer to the point where the curves cross the red horizontal one-event threshold. A resonance1699

in the tails of the invariant masses of two leptons (plus missing transverse momentum) or of four leptons1700

is indeed a realistic signature predicted by many BSM theories. While with the current Run II data (red,1701

dash-dotted line crossing the 14TeV results) searches can hardly pass the two TeV frontier, future LHC1702

upgrades will allow us to probe mass scales of a few TeV at 14TeV with 3 ab�1, or potentially even1703

up to ten TeV at 27TeV with 15 ab�1. We also notice that despite �
W

+
W

� � �
W

±
Z

� �ZZ holds1704

inclusively, the point where the three lines fall below one event is much closer. This is simply caused1705

by the fact that the phase space of the four-lepton system in ZZ production is larger than the one of1706

the three-lepton system in W±Z production, where some energy is taken by the additional neutrino.1707

An analogous interpretation applies to W+W� production. Furthermore, also here the significantly1708

enlarged phase space induced by the increase in energy at 27TeV is evident: The 27TeV results drop1709

by roughly 4� 5 orders of magnitude in the displayed range, while the 14TeV ones drop by more than1710

6 orders.1711

We continue our study by analysing the importance of the additional fiducial phase space that1712

becomes available with detector upgrades to enlarge the accessible rapidity range of charged leptons.1713

Since we found very similar results for W+W�, W±Z and ZZ production in that respect, in Figure 391714

we show the rapidity efficiency of the four-lepton signature for ZZ production only. The rapidity effi-1715

ciency is defined as the ratio of the cross section with an absolute-rapidity cut ⌘cut on all four charged1716

leptons, divided by the inclusive cross section. As for ⌘cut ! 1 no cut is applied, the ratio tends to unity1717

for large ⌘cut values. The efficiency as a function of ⌘cut is studied for three pT,min scenarios: inclusive1718

69

3ab-1 @ 14 TeV

15ab-1 @ 27 TeV

[upcoming HL/HE report]

• current reach (150fb-1) ~ 1% statistical precision up to about 500 GeV 
• reach for HL-LHC ~ 1% statistical precision up to about 1 TeV  
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• consistent EW input schemes: mZ,mW + 

EW schemes 

α(0)

α(mZ)
Gμ

SM input parameters: (natural choice)

αs, α, MW, MZ, MH, mf , VCKM

Issues:

• Setting of α: process-specific choice to

⋄ avoid sensitivity to non-preturbative light-quark masses
⋄ minimize universal EW corrections

Schemes: fix MW, MZ and α

⋄ α(0)-scheme: relevant for external photon
⋄ α(MZ)-scheme: relevant for internal photons at high energies (γ∗)
⋄ Gµ-scheme: αGµ =

√
2GµM

2
W(1−M2

W/M2
Z)/π, relevant for W, Z

• Warnings / pitfalls:

⋄ α must not be set diagram by diagram,

but global factors like α(0)mαn
Gµ

in gauge-invariant contributions mandatory !
⋄ weak mixing angle: sW ≠ free parameter if MW and MZ are fixed !
⋄ Yukawa couplings are uniquely fixed by fermion masses !

Stefan Dittmaier, Electroweak Physics at the LHC – Lecture 1 Freiburg, Oct 2015 – 16

} sin ✓2W = 1�m2
W /m2

ZLO

NLO

• consistent EW renormalisation schemes: 

α(0)

α(mZ)

Gμ

free of mass singularities for external photons

absorbs universal corrections into LO→ NLO EW/LO reduced

→mixed scheme:  

relevant for high-energetic virtual photon exchange

Input-parameter schemes including electroweak NLO corrections

Cross section: σNLO = αNALO (1 + δEW) , δEW = O(α)

• α(0)-scheme: σLO = α(0)NALO

• α(MZ)-scheme: σLO = α(MZ)
NALO, δα(MZ)

EW = δα(0)
EW +N∆α(MZ) + . . .

• Gµ-scheme: σLO = α(Gµ)
NALO, δ

Gµ

EW = δα(0)
EW +N∆r + . . .

• Mixed scheme: N = n+ nγ , nγ = # external photons

σLO = α(Gµ)
nα(0)nγALO, δmix

EW = δα(0)
EW + n∆r + . . .

⋄ absorbs all ∆α terms in LO to all orders

⋄ absorbs ∆ρ terms in LO (all for Ws up to 2 loops, parts for Zs)

⋄ factor α in δEW can still be adjusted appropriately

(e.g. α→α(0) if γ radiation dominates, α→αGµ if weak corrections dominate)

⋄ example: qq̄′ → Wγ, n = nγ = 1

Stefan Dittmaier, Electroweak Physics at the LHC – Lecture 1 Freiburg, Oct 2015 – 19

for nγ resolved photons
�NLO = �LO (1 + �EW)

Input-parameter schemes including electroweak NLO corrections

Cross section: σNLO = αNALO (1 + δEW) , δEW = O(α)

• α(0)-scheme: σLO = α(0)NALO

• α(MZ)-scheme: σLO = α(MZ)
NALO, δα(MZ)

EW = δα(0)
EW +N∆α(MZ) + . . .

• Gµ-scheme: σLO = α(Gµ)
NALO, δ

Gµ

EW = δα(0)
EW +N∆r + . . .

• Mixed scheme: N = n+ nγ , nγ = # external photons

σLO = α(Gµ)
nα(0)nγALO, δmix

EW = δα(0)
EW + n∆r + . . .

⋄ absorbs all ∆α terms in LO to all orders

⋄ absorbs ∆ρ terms in LO (all for Ws up to 2 loops, parts for Zs)

⋄ factor α in δEW can still be adjusted appropriately

(e.g. α→α(0) if γ radiation dominates, α→αGµ if weak corrections dominate)

⋄ example: qq̄′ → Wγ, n = nγ = 1
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→consistent schemes required at LO and NLO EW  
           (in particular for reweighting of Monte Carlo samples) 

Input-parameter schemes including electroweak NLO corrections

Cross section: σNLO = αNALO (1 + δEW) , δEW = O(α)

• α(0)-scheme: σLO = α(0)NALO

• α(MZ)-scheme: σLO = α(MZ)
NALO, δα(MZ)

EW = δα(0)
EW +N∆α(MZ) + . . .

• Gµ-scheme: σLO = α(Gµ)
NALO, δ

Gµ

EW = δα(0)
EW +N∆r + . . .

• Mixed scheme: N = n+ nγ , nγ = # external photons

σLO = α(Gµ)
nα(0)nγALO, δmix

EW = δα(0)
EW + n∆r + . . .

⋄ absorbs all ∆α terms in LO to all orders

⋄ absorbs ∆ρ terms in LO (all for Ws up to 2 loops, parts for Zs)

⋄ factor α in δEW can still be adjusted appropriately

(e.g. α→α(0) if γ radiation dominates, α→αGµ if weak corrections dominate)

⋄ example: qq̄′ → Wγ, n = nγ = 1
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carried out analytically using the computer algebra program FORM [88]. To avoid numerical

instabilities, potentially small Gram-determinants, which occur in the tensor reduction of

particular four-point-functions are cancelled at the analytical level using FORM.

We use two different analytical implementations of the Passarino–Veltman algorithm [89]

(based on Mathematica and FORM, respectively) to reduce tensor coefficients to scalar in-

tegrals. The reduction was also tested against the numerical approach implemented in

the LoopTools 2.5 [85, 90] library, which is used for the evaluation of the scalar one-loop

integrals.

For the calculation of the gluon-induced process (2.3) we use the fully automated setup

of FeynArts and FormCalc, where the computation of the squared one-loop amplitude as

well as the summation over polarisations are carried out numerically.

The ultraviolet (UV) divergences that arise in the computation of the one-loop dia-

grams are treated in dimensional regularization going from 4 to D = 4 − 2ϵ space-time

dimensions, where the UV divergences appear as single poles in the small complex param-

eter ϵ. After adding the counterterms in a proper renormalization procedure, the poles

vanish, and the limit ϵ → 0 can be taken to obtain physical results.

Our results are based on the on-shell renormalization scheme defined in the following.

3.1.1 On-shell scheme

Our choice for the renormalization prescription is the on-shell (OS) renormalization scheme

as specified in Ref. [91]. Instead of defining the electromagnetic coupling constant α in the

Thomson-limit, however, we work in the Gµ scheme where α is derived from the Fermi-

constant Gµ via

αGµ =

√
2GµM2

W

π

(

1−
M2

W

M2
Z

)

. (3.7)

In this scheme, the weak corrections to muon decay ∆r are included in the charge renor-

malization constant δZe by the replacement

δZe

∣

∣

α(0)
→ δZe

∣

∣

αGµ
= δZe

∣

∣

α(0)
−

∆r

2
(3.8)

in the calculation of the counterterm contributions (see, e.g., Ref. [92]). As a consequence,

the EW corrections are independent of logarithms of the light-quark masses. Moreover,

this definition effectively resums the contributions associated with the running of α from

zero to the weak scale and absorbs some leading universal corrections ∝ Gµm2
t from the

ρ parameter into the LO amplitude.

3.2 Real corrections

In a second step, the diagrams contributing to the bremsstrahlung amplitude Mqq̄→WWγ
0

(see Fig. 7) must be considered. In the first approach the amplitudes are generated with

FeynArts and analytically squared within Mathematica using FeynCalc [93]. We use

MadGraph [94] and FormCalc for internal checks, however, the computational performance

of the FeynArts/FeynCalc-based code turns out to be more efficient. Alternatively, the
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↵Gµ or ↵(0)
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Figure 18. Distribution in the missing transverse momentum, 6ET, for pp ! e+e�⌫⌫̄ at 13 TeV. Details as
in Fig. 16.
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Figure 19. Distribution in the e+e� pair, m``, for pp ! e+e�⌫⌫̄ at 13 TeV. Details as in Fig. 16.

The invariant mass of the e
+
e
� pair (Fig. 19) represents a powerful discriminant between WW

and ZZ channels. On the one hand, most of the spectrum is driven by WW contributions and
behaves very similarly as for the corresponding different-flavour observable shown in Fig. 12. On
the other hand, in the vicinity of m`` ⇡ MZ , the ZZ channel gives rise to a sharp Z ! e

+
e
� peak

well above the WW continuum. In this region photon radiation off the charged leptons induces
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• in particular in WW there are sizeable γ-induced contributions 

γ-induced contributions

γPDF
0.9

1.0

1.1

CT14

LUX
none
NNPDF3.0

pp → e+ µ− νe ν̄µ

d
σ

/
d

σ
N

L
O

Q
C

D
×

E
W

20 50 100 200 500 1000 2000

0.9

1.0

1.1

NLO QCD×EWVI

NLO QCD×EWVI ⊗YFS
NLO QCD×EWVI ⊗CSS

pT,ℓ1
[GeV]

d
σ

/
d

σ
N

L
O

Q
C

D
×

E
W

[S. Kallweit, JML, M. Schönherr, S. Pozzorini, ’17]

‣ sizeable impact of ɣPDF: 10% at 1 TeV pTl1 / mllpTl1
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Figure 3. Sample of photon-induced Born diagrams contributing to 2`2⌫ production in the different-
flavour case (` 6= `0) and in the same-flavour case (` = `0). Double-resonant (a,b), single-resonant (c) and
non-resonant (d) diagrams are shown.

�

�

`
+

`
�

⌫`0

⌫̄`0

`
�

`

Z

�

�

`
+

⌫`0

`
�

⌫̄`0

Z
`

`

(a) (b)

Figure 4. Sample of photon-induced Born diagrams contributing to 2`2⌫ final states only in the same
lepton-flavour case, both for `0 = ` or `0 6= `. Only single-resonant diagrams contribute.

two previously discussed DFWW and SFZZ channels. Consequently, this channel is referred to as
SFWW/ZZ channel, and all diagrams shown in Figs. 1–2 are representatives of the tree-level diagrams
contributing here.

Due to the fact that the phase-space regions with resonant intermediate W
+
W

� and ZZ states
are typically distinct, the assumption is justified that the SFWW/ZZ cross section is dominated by
the incoherent sum of double-resonant contributions of one and the other type, while the effect of
quantum interferences is small. It is, however, not obvious if this assumption still holds in phase-
space regions away from such double-resonant topologies. Interference effects are studied in detail
in Section 4.2 by comparing exact predictions in the SFWW/ZZ channel against the incoherent sum
of the W

+
W

� and ZZ channels.

2.2 Photon-induced production

Besides the dominant qq̄ production mode, 2`2⌫ final states can also be produced in photon–
photon scattering. As we do not count the photon PDF as an O(↵) suppressed quantity, such
�� ! 2`2⌫ processes contribute already at the LO, i.e. at O(↵4). Their quantitative relevance
varies significantly between the channels. Photon-induced contributions to the DF channel are
dominated by �� ! W

+
W

�
! e

+
µ
�
⌫e⌫̄µ topologies, which are accompanied by single-resonant

topologies involving t-channel lepton-pair production with an emission of a W boson off one of
the produced leptons, and non-resonant diagrams with multiperipheral topologies. Sample tree
diagrams for the described DF topologies are collected in Fig. 3. Due to a t-channel pole, regulated
by the W mass, the contribution of the double-resonant diagram depicted in Fig. 3(a) is enhanced
for large invariant masses of the intermediate W

+
W

� pair [9, 10]. In fact, for on-shell W+
W

�

pair production the contribution of the �� channel was found to increase beyond 10% of the LO qq̄

annihilation mode for mWW > 800GeV [9]. In this paper we investigate the significance of the �-
induced production mode using state-of-the-art PDFs and taking into account NLO EW corrections,
as well as realistic selection cuts on the 2`2⌫ final state.

The DF channel �� ! e
+
e
�
⌫µ/⌧ ⌫̄µ/⌧ does not involve any double-resonant topology due the

lack of triple and quartic gauge couplings among neutral EW bosons. Similarly, non-resonant multi-
peripheral topologies do not exist due to lepton-flavour conservation. Thus, lepton-pair production

– 5 –

�

�

`
+

⌫l

`
0�

⌫̄`0

W
+

W

W
�

�

�

`
+

⌫`

`
0�

⌫̄`0

W
+

W
�

�

�

`
+

⌫`

`
0�

⌫̄`0

`
�

`

W
�

�

�

`
+

⌫`

`
0�

⌫̄`0

`

`
0

W

(a) (b) (c) (d)

Figure 3. Sample of photon-induced Born diagrams contributing to 2`2⌫ production in the different-
flavour case (` 6= `0) and in the same-flavour case (` = `0). Double-resonant (a,b), single-resonant (c) and
non-resonant (d) diagrams are shown.

�

�

`
+

`
�

⌫`0

⌫̄`0

`
�

`

Z

�

�

`
+

⌫`0

`
�

⌫̄`0

Z
`

`

(a) (b)

Figure 4. Sample of photon-induced Born diagrams contributing to 2`2⌫ final states only in the same
lepton-flavour case, both for `0 = ` or `0 6= `. Only single-resonant diagrams contribute.

two previously discussed DFWW and SFZZ channels. Consequently, this channel is referred to as
SFWW/ZZ channel, and all diagrams shown in Figs. 1–2 are representatives of the tree-level diagrams
contributing here.

Due to the fact that the phase-space regions with resonant intermediate W
+
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� and ZZ states
are typically distinct, the assumption is justified that the SFWW/ZZ cross section is dominated by
the incoherent sum of double-resonant contributions of one and the other type, while the effect of
quantum interferences is small. It is, however, not obvious if this assumption still holds in phase-
space regions away from such double-resonant topologies. Interference effects are studied in detail
in Section 4.2 by comparing exact predictions in the SFWW/ZZ channel against the incoherent sum
of the W
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� and ZZ channels.

2.2 Photon-induced production

Besides the dominant qq̄ production mode, 2`2⌫ final states can also be produced in photon–
photon scattering. As we do not count the photon PDF as an O(↵) suppressed quantity, such
�� ! 2`2⌫ processes contribute already at the LO, i.e. at O(↵4). Their quantitative relevance
varies significantly between the channels. Photon-induced contributions to the DF channel are
dominated by �� ! W

+
W

�
! e

+
µ
�
⌫e⌫̄µ topologies, which are accompanied by single-resonant

topologies involving t-channel lepton-pair production with an emission of a W boson off one of
the produced leptons, and non-resonant diagrams with multiperipheral topologies. Sample tree
diagrams for the described DF topologies are collected in Fig. 3. Due to a t-channel pole, regulated
by the W mass, the contribution of the double-resonant diagram depicted in Fig. 3(a) is enhanced
for large invariant masses of the intermediate W

+
W

� pair [9, 10]. In fact, for on-shell W+
W
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pair production the contribution of the �� channel was found to increase beyond 10% of the LO qq̄

annihilation mode for mWW > 800GeV [9]. In this paper we investigate the significance of the �-
induced production mode using state-of-the-art PDFs and taking into account NLO EW corrections,
as well as realistic selection cuts on the 2`2⌫ final state.

The DF channel �� ! e
+
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⌫µ/⌧ ⌫̄µ/⌧ does not involve any double-resonant topology due the
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photon bremsstrahlung, and also from �q ! 2`2⌫q channels with initial-state q ! q� splittings,
cf. Figs. 7–8. While the separation into qq̄ and �� channels can still be preserved for virtual and
photon-bremsstrahlung contributions, such separation is no longer meaningful for the q�-initiated
channels due to their singularity structure: both above-mentioned splittings result in infrared-
divergent configurations, and these q� channels simultaneously cancel infrared poles arising in qq̄

and �� channels. This situation demands the inclusion of the full NLO EW corrections to the qq̄

and �� Born processes to guarantee infrared safety and consistency. To deal with the mediation of
these divergences between virtual and real corrections the QED extension of the dipole-subtraction
method [37–39] is applied (see Appendix A).

Instead of a separation of NLO contributions into qq̄ and �� channels, we quantify the impact
of photon-induced processes by considering contributions involving at least one photon PDF factor
and all other contributions that are also present under the assumption of vanishing photon PDFs. At
LO this distinction coincides with the splitting according to production modes, while at NLO EW
it combines �� and �q channels in spite of the fact that the latter involves qq̄-related contributions.

3 Technical ingredients and setup of the simulations

3.1 Tools

The calculations presented in this paper have been performed with the automated frameworks Mu-

nich+OpenLoops and Sherpa+OpenLoops. They automate the full chain of all operations—
from process definition to collider observables—that enter NLO QCD+EW simulations at parton
level. The recently achieved automation of EW corrections [24, 26] is based on the well established
QCD implementations and allows for NLO QCD+EW simulations for a vast range of SM processes,
up to high particle multiplicities, at current and future colliders.

In these frameworks virtual amplitudes are provided by the OpenLoops program [28], which
is based on the open-loops algorithm [27] – a fast numerical recursion for the evaluation of one-loop
scattering amplitudes. Combined with the Collier tensor reduction library [40], which imple-
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Figure 6. Sample of one-loop diagrams contributing to 2`2⌫ final states only in the same-flavour (wrt. the
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in t-channel topologies with subsequent emission of a Z boson with Z ! ⌫⌫̄ is the only photon-
induced production mechanism at LO, as shown in the sample diagrams of Fig. 4. Consequently,
the invariant mass of the charged-lepton pair does not show a Breit–Wigner peak around MZ .

Similarly as for quark–antiquark annihilation, the �� ! e
+
e
�
⌫e⌫̄e channel is build from the

coherent sum of all diagrams entering �� ! e
+
µ
�
⌫e⌫̄µ and �� ! e

+
e
�
⌫µ/⌧ ⌫̄µ/⌧ .

2.3 Ingredients of QCD and EW corrections

At NLO QCD all O(↵s↵
4) contributions to pp ! 2`2⌫ are taken into account. In the qq̄ channel, the

only QCD loop corrections arise from virtual-gluon exchange, while the real corrections result from
real-gluon emission and crossed topologies describing (anti-)quark–gluon channels. The infrared
divergences separately arising in these two contributions are mediated by the standard dipole-
subtraction approach [35, 36]. We note that the �� channels do not receive QCD corrections at
NLO, due to the absence of any QCD partons in all tree-level diagrams.

At NLO EW we include the full set of O(↵5) contributions to pp ! 2`2⌫. At this order both
the qq̄ and �� channels receive corrections from virtual EW bosons and from closed fermion loops,
cf. Figs. 5–6. These corrections include Higgs resonances with decay into four fermions coupled
to weak bosons (in the qq̄ channel) or coupled to a heavy-fermion loop (in the �� channel). The
real corrections in the qq̄ channel can be split into real-photon emission channels and �q ! 2`2⌫q
channels1 with initial-state � ! qq̄ splittings. The �� channel also receives real corrections from

1Corresponding �q̄-induced channels are implicitly understood here and in the following.
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The invariant mass of the e
+
e
� pair (Fig. 19) represents a powerful discriminant between WW

and ZZ channels. On the one hand, most of the spectrum is driven by WW contributions and
behaves very similarly as for the corresponding different-flavour observable shown in Fig. 12. On
the other hand, in the vicinity of m`` ⇡ MZ , the ZZ channel gives rise to a sharp Z ! e

+
e
� peak

well above the WW continuum. In this region photon radiation off the charged leptons induces
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The invariant mass of the e
+
e
� pair (Fig. 19) represents a powerful discriminant between WW

and ZZ channels. On the one hand, most of the spectrum is driven by WW contributions and
behaves very similarly as for the corresponding different-flavour observable shown in Fig. 12. On
the other hand, in the vicinity of m`` ⇡ MZ , the ZZ channel gives rise to a sharp Z ! e

+
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� peak

well above the WW continuum. In this region photon radiation off the charged leptons induces
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which consists only of virtual fermion-loop contributions associated with the photon wave function
renormalisation. It can be understood as a negative correction to the �PDF that compensates real
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Including also the logarithmic dependence on µF, which appears in the P operator in (A.15), the
effect of the �PDF renormalisation can be summarised through an overall renormalisation factor,
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for each initial-state photon.

Contributions form � ! `
+
`
�

splittings

Photon splittings into qq̄ and `
+
`
� should be included on the same footing at O(↵). Thus, as

pointed out above, the photon anomalous dimension of (A.14) should include both quark and
lepton contributions. This should be clear, since �� represents contributions of virtual type, and
different kinds of fermion loops are indistinguishable. Moreover, omitting leptonic contributions to
�� would jeopardise the cancellations of fermion-mass singularities between (A.24) and the virtual
corrections to the hard cross section (see Appendix A.3).

Since �� in (A.24) arises from the renormalisation of the �PDF of (A.21), virtual � ! `
+
`
�

splittings should be taken into account also in the evolution of �(x, µF). In addition, for consistency
with the sum rule (A.23), also real � ! `

+
`
� splittings and thus lepton distributions should be

included in the PDF evolution. While this is desirable from the theoretical viewpoint, the effect of
� ! `

+
`
� splittings hardly exceeds 1% in the photon PDF [22] and is completely negligible in the

quark PDFs. Moreover, lepton-induced processes are extremely suppressed at the LHC [70]. Thus,
excluding � ! `

+
`
� splittings from the PDF evolution, as in the CT14qed set used in the nominal

predictions in this paper, is well justified.

A.3 Definition and renormalisation of ↵ in processes with external photons

The collinear singularities in (A.24) have to be combined with corresponding singularities that
arise from the 1-loop counterterms associated with the renormalisation of the photon wave function
(�ZAA) and of the electromagnetic coupling ↵. Such counterterms yield a universal correction factor

�Z�,virt =
�↵

↵
+ �ZAA (A.25)

for each external (incoming or outgoing) photon in the hard scattering process. In the following, in
order to articulate the interplay between the renormalisation of ↵ and the cancellation of collinear
singularities, we will focus on the contributions from light fermions with 0  mf < MZ , which can
be either treated in dimensional regularisation or using finite fermion masses. While all massless and
massive fermions are assumed to contribute to the virtual corrections and to the ultraviolet renor-
malisation, only massless fermions are assumed to be included in the Catani-Seymour subtraction
and in the �PDF renormalisation.

The photon wave function counterterm reads,

�ZAA = �⇧��(0) = �⇧��

light
(0)�⇧��

heavy
(0) , (A.26)
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where light and heavy refer, respectively, to light-fermion and top-quark plus bosonic contributions.
The UV and collinear singularities in (A.26) can be separated from each other by rewriting
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where the anomalous dimension �� , defined in (A.14), accounts for all massless fermion loops, while
the sum over f 2 Fm includes all light fermions with 0 < mf < MZ . As is well known, �↵(M2

Z
) is

associated with the running of ↵ from Q
2 = 0 to Q

2 = M
2

Z
. In order to arrive at a finite expression

for �↵(M2

Z
), all fermions could be treated as massive, in which case �� = 0. Alternatively, hadronic

contributions to �↵(M2

Z
) can be obtained via dispersion relations. However, we advocate the

approach of choosing an appropriate definition of ↵, such as to cancel all singularities associated
with �↵(M2

Z
) in the final result. As detailed in the following, such a definition depends on the

presence of resolved external photons in the processes at hand.

Resolved final-state photons

In processes with resolved on-shell photons that do not split into ff̄ pairs the collinear singularity
from �ZAA remains uncancelled unless the electromagnetic coupling is renormalised in the on-shell
scheme. Thus, ↵ should be defined as the photon coupling in the on-shell limit q

2
! 0. The

resulting counterterm is related to the photon wave-function renormalisation via [71]
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where ✓w is the weak mixing angle. Light-fermion contributions to (A.30) read
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while using the ↵(MZ) scheme, cf. (A.35)–(A.36), would lead to
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Thus, as is well known, in order to avoid fermion-mass singularities from �↵(M2

Z
) in the hard cross

section, the couplings of on-shell (resolved) final-state photons should be parametrised in terms of
↵(0).

13For simplicity, in the following we omit mass-suppressed terms of O(m2
f/M

2
Z) from light fermions with 0 < mf <

MZ . However such terms are typically included in realistic calculations, as it is the case for the calculation presented
in this paper.
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Thus, as is well known, in order to avoid fermion-mass singularities from �↵(M2

Z
) in the hard cross

section, the couplings of on-shell (resolved) final-state photons should be parametrised in terms of
↵(0).

13For simplicity, in the following we omit mass-suppressed terms of O(m2
f/M

2
Z) from light fermions with 0 < mf <

MZ . However such terms are typically included in realistic calculations, as it is the case for the calculation presented
in this paper.
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where light and heavy refer, respectively, to light-fermion and top-quark plus bosonic contributions.
The UV and collinear singularities in (A.26) can be separated from each other by rewriting
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represents the UV divergent piece, while all collinear singularities are contained in
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where the anomalous dimension �� , defined in (A.14), accounts for all massless fermion loops, while
the sum over f 2 Fm includes all light fermions with 0 < mf < MZ . As is well known, �↵(M2

Z
) is

associated with the running of ↵ from Q
2 = 0 to Q

2 = M
2

Z
. In order to arrive at a finite expression

for �↵(M2

Z
), all fermions could be treated as massive, in which case �� = 0. Alternatively, hadronic

contributions to �↵(M2

Z
) can be obtained via dispersion relations. However, we advocate the

approach of choosing an appropriate definition of ↵, such as to cancel all singularities associated
with �↵(M2

Z
) in the final result. As detailed in the following, such a definition depends on the

presence of resolved external photons in the processes at hand.

Resolved final-state photons

In processes with resolved on-shell photons that do not split into ff̄ pairs the collinear singularity
from �ZAA remains uncancelled unless the electromagnetic coupling is renormalised in the on-shell
scheme. Thus, ↵ should be defined as the photon coupling in the on-shell limit q

2
! 0. The

resulting counterterm is related to the photon wave-function renormalisation via [71]
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where ✓w is the weak mixing angle. Light-fermion contributions to (A.30) read

�↵(0)

↵(0)

���
light

= ⇧��

light
(0) , (A.31)
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Thus, as is well known, in order to avoid fermion-mass singularities from �↵(M2

Z
) in the hard cross

section, the couplings of on-shell (resolved) final-state photons should be parametrised in terms of
↵(0).

13For simplicity, in the following we omit mass-suppressed terms of O(m2
f/M
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MZ . However such terms are typically included in realistic calculations, as it is the case for the calculation presented
in this paper.
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where the anomalous dimension �� , defined in (A.14), accounts for all massless fermion loops, while
the sum over f 2 Fm includes all light fermions with 0 < mf < MZ . As is well known, �↵(M2
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where ✓w is the weak mixing angle. Light-fermion contributions to (A.30) read
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Thus, as is well known, in order to avoid fermion-mass singularities from �↵(M2

Z
) in the hard cross

section, the couplings of on-shell (resolved) final-state photons should be parametrised in terms of
↵(0).

13For simplicity, in the following we omit mass-suppressed terms of O(m2
f/M

2
Z) from light fermions with 0 < mf <

MZ . However such terms are typically included in realistic calculations, as it is the case for the calculation presented
in this paper.
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Initial-state photons and unresolved final-state photons

In the case of initial-state photons, virtual contributions to the �PDF renormalisation (A.21) are
designed such as to absorb the collinear singularity of �ZAA. Thus, by construction, the combination
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is free from 1/✏ mass singularities, and there is no need to adopt the ↵(0) scheme. In fact, expressing
the coupling of initial-state photons in terms of

↵(M2

Z
) =

↵(0)

1��↵(M2

Z
)
, (A.35)

with counterterm

�↵(M2

Z
)

↵(M2

Z
)

=
�↵(0)

↵(0)
��↵(M2

Z
) = ⇧��

light
(M2

Z
) +⇧��

heavy
(0)� 2

sin ✓w
cos ✓w

⌃AZ

T
(0)

M
2

Z

, (A.36)

results in the overall initial-state photon factor
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which is manifestly free from 1/✏ fermion-mass singularities, while, as usual, those degrees of freedom
that do not contribute as active fermions in the PDF evolution give rise to logarithms of mf in the
hard-scattering cross section. Vice versa, using the ↵(0) scheme for initial-state photons would lead
to the divergent result
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A fully analogous cancellation mechanism applies also to unresolved final-state photons, where the
term proportional to n

(out)

�,✏ in (A.20), which originates from final-state � ! ff̄ splittings, plays a
similar role as the �PDF counterterm for initial-state photons.

Thus, in order to avoid fermion-mass singularities in the hard cross section, the couplings of
initial-state photons and unresolved final-state photons should be parametrised in terms of ↵(M2

Z
)

or any other scheme where ↵ is defined at a hard scale, such as the Gµ-scheme or a running ↵(µ2

R
)

with µ
2

R
⇠ ŝ. For the case of initial-state photons, this was first pointed out in [25] based on

arguments related to the PDF evolution.

B Flavour-number scheme conversion

As discussed in Section 3.4, in order to avoid single-top contributions, we compute parton-level cross
sections using mb > 0 and omitting external b-quarks, both in the initial and in the final state.
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→ free from manifest 1/ε singularities

→ couplings of initial-state photons and unresolved final-state photons should be parametrised in terms  
    of α(mZ) or any other short-distance scheme, e.g. Gμ / MS

[see also: Harland-Lang et.al.,1605.04935]

from dispersion relations
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Validation
• There are subtle differences in implementation of these schemes in  

particular in the context of CMS (complex mass scheme).  
→Have been studied for ZZ in the context of [LH17, 1803.07977]

 
 

 
 
 
 
 
 

a) PSP 1 B/10≠15 Vfinite/10≠16 V1/10≠17 V2/10≠17

MadLoop 5.26592465401088 6.60297993618509 2.63915540074976 ≠3.09566543908773
Recola 5.26592465401090 6.60088670209820 2.63915540075328 ≠3.09566543908732
OpenLoops 5.26592465401100 6.60088670210145 2.63915540078563 ≠3.09566543905505
GoSam 5.26592465401086 6.60088670209788 2.63915540076095 ≠3.09566543909091
NLOX 5.26592465401084 6.60088670211436 2.63915540076702 ≠3.09566543908783

a) PSP 2 B/10≠12 Vfinite/10≠13 V1/10≠14 V2/10≠14

MadLoop 2.74057953273116 ≠3.10720743529659 2.47558966660999 ≠1.61109736655361
Recola 2.74057953273120 ≠3.10783717792090 2.47558966661119 ≠1.61109736655360
OpenLoops 2.74057953273113 ≠3.10783717792216 2.47558966660688 ≠1.61109736655762
GoSam 2.74057953273109 ≠3.10783717792575 2.47558966661326 ≠1.61109736655355
NLOX 2.74057953273088 ≠3.10783717791578 2.47558966660321 ≠1.61109736655852

a) PSP 3 B/10≠4 Vfinite/10≠6 V1/10≠7 V2/10≠7

MadLoop 1.21906911746527 ≠4.79121605677418 ≠9.28399419983122 ≠7.16650993758228
Recola 1.21906911746653 ≠4.77231274104044 ≠9.28399419025240 ≠7.16650993468800
OpenLoops 1.21906911746730 ≠4.77231273844357 ≠9.28399415556438 ≠7.16650990014111
GoSam 1.21906911746070 ≠4.77231359778343 ≠9.28399407990066 ≠7.16650993856488
NLOX 1.21906911748497 ≠4.77231281258676 ≠9.28399522232122 ≠7.16651015319136

a) PSP 4 B/10≠6 Vfinite/10≠7 V1/10≠8 V2/10≠8

MadLoop 4.77962555243898 1.65145000279798 ≠3.61194825362166 ≠2.80978604924244
Recola 4.77962555246723 1.63956377750150 ≠3.61194826344888 ≠2.80978605025647
OpenLoops 4.77962555244817 1.63956377748191 ≠3.61194826326975 ≠2.80978605006768
GoSam 4.77962555243871 1.63956377924796 ≠3.61194825975445 ≠2.80978604980914
NLOX 4.77962555244696 1.63956377842641 ≠3.61194826211540 ≠2.80978605014797

Table I.10: Matrix-element comparison at the phase-space points given in Table I.9 for the
partonic process uū æ e+e≠µ+µ≠.

in order to validate that all input parameters have been set correctly. As we shall see, it is
interesting to perform the comparison both on far o�-shell and on-shell phase-space points for
each of the two di�erent partonic channels considered, namely the respective uū-induced and
““-induced channels of each of the processes.

In Table I.9 we first list the two far o�-shell kinematic configurations labelled PSP 1 and
PSP 2 that apply to all processes. We then consider the points PSP 3 and PSP 4 for the
e+e≠µ+µ≠ production processes a) and c) where the invariant mass of the muon–anti-muon
pair is exactly at the pole mass of the Z boson, and finally the points PSP 5 and PSP 6 for the
e+‹eµ≠‹̄µ processes b) and d) where the invariant mass of the positron and its neutrino sits at
exactly the pole mass of the W boson.

The numerical results for B, Vfinite , V1 , and V2 obtained with the di�erent involved OLPs
(MadLoop, Recola, OpenLoops, GoSam, and NLOX) are displayed in Tables I.10–I.13. In
general, an agreement among all OLPs of more than 10 digits for o�-shell kinematics (typically
a bit worse for on-shell kinematics) is found for the quantities B, V1 , and V2 , whereas Vfinite
obtained with MadLoop shows di�erences of up to the percent level compared to the corre-
sponding results from the other programs, which show reasonable agreement among themselves.
Such small deviations are to be expected due to di�erences in the details of the implementa-
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a) PSP 1 B/10≠15 Vfinite/10≠16 V1/10≠17 V2/10≠17
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Recola 5.26592465401090 6.60088670209820 2.63915540075328 ≠3.09566543908732
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NLOX 5.26592465401084 6.60088670211436 2.63915540076702 ≠3.09566543908783

a) PSP 2 B/10≠12 Vfinite/10≠13 V1/10≠14 V2/10≠14

MadLoop 2.74057953273116 ≠3.10720743529659 2.47558966660999 ≠1.61109736655361
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a) PSP 3 B/10≠4 Vfinite/10≠6 V1/10≠7 V2/10≠7
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NLOX 1.21906911748497 ≠4.77231281258676 ≠9.28399522232122 ≠7.16651015319136

a) PSP 4 B/10≠6 Vfinite/10≠7 V1/10≠8 V2/10≠8

MadLoop 4.77962555243898 1.65145000279798 ≠3.61194825362166 ≠2.80978604924244
Recola 4.77962555246723 1.63956377750150 ≠3.61194826344888 ≠2.80978605025647
OpenLoops 4.77962555244817 1.63956377748191 ≠3.61194826326975 ≠2.80978605006768
GoSam 4.77962555243871 1.63956377924796 ≠3.61194825975445 ≠2.80978604980914
NLOX 4.77962555244696 1.63956377842641 ≠3.61194826211540 ≠2.80978605014797

Table I.10: Matrix-element comparison at the phase-space points given in Table I.9 for the
partonic process uū æ e+e≠µ+µ≠.

in order to validate that all input parameters have been set correctly. As we shall see, it is
interesting to perform the comparison both on far o�-shell and on-shell phase-space points for
each of the two di�erent partonic channels considered, namely the respective uū-induced and
““-induced channels of each of the processes.

In Table I.9 we first list the two far o�-shell kinematic configurations labelled PSP 1 and
PSP 2 that apply to all processes. We then consider the points PSP 3 and PSP 4 for the
e+e≠µ+µ≠ production processes a) and c) where the invariant mass of the muon–anti-muon
pair is exactly at the pole mass of the Z boson, and finally the points PSP 5 and PSP 6 for the
e+‹eµ≠‹̄µ processes b) and d) where the invariant mass of the positron and its neutrino sits at
exactly the pole mass of the W boson.

The numerical results for B, Vfinite , V1 , and V2 obtained with the di�erent involved OLPs
(MadLoop, Recola, OpenLoops, GoSam, and NLOX) are displayed in Tables I.10–I.13. In
general, an agreement among all OLPs of more than 10 digits for o�-shell kinematics (typically
a bit worse for on-shell kinematics) is found for the quantities B, V1 , and V2 , whereas Vfinite
obtained with MadLoop shows di�erences of up to the percent level compared to the corre-
sponding results from the other programs, which show reasonable agreement among themselves.
Such small deviations are to be expected due to di�erences in the details of the implementa-
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c) PSP 1 B/10≠13 Vfinite/10≠14 V1/10≠15 V2/10≠15

MadLoop 4.63762790127829 6.79330655006349 4.07216839247769 ≠2.23061748556626
Recola 4.63762790127830 6.79163662486900 4.07216839245629 ≠2.23061748556050
OpenLoops 4.63762790127838 6.79163662486753 4.07216839246097 ≠2.23061748560388
GoSam 4.63762790127830 6.79163662486761 4.07216839247955 ≠2.23061748556541

c) PSP 2 B/10≠10 Vfinite/10≠11 V1/10≠12 V2/10≠11

MadLoop 2.26737153141645 1.88180804083847 2.38584215397888 ≠1.09056584355518
Recola 2.26737153141650 1.88096074990550 2.38584215406775 ≠1.09056584355509
OpenLoops 2.26737153141649 1.88096075053150 2.38584215383146 ≠1.09056584370294
GoSam 2.26737153141644 1.88096075053592 2.38584215397731 ≠1.09056584355520

c) PSP 3 B/10≠6 Vfinite/10≠6 V1/10≠9 V2/10≠9

MadLoop 1.37978612284930 1.55018919031339 4.89785291501769 ≠6.63652265273678
Recola 1.37978612284863 1.55013518201790 4.89788114834105 ≠6.63652866815621
OpenLoops 1.37978612284923 1.55013518232261 4.89788114988480 ≠6.63652866830139
GoSam 1.37978612284092 1.55011760547612 4.89816579319493 ≠6.63658173170046

c) PSP 4 B/10≠7 Vfinite/10≠6 V1/10≠10 V2/10≠9

MadLoop 2.19037672578717 1.68165624485106 7.61526199100670 ≠1.05353269570773
Recola 2.19037672578999 1.68164383557005 7.61526198688565 ≠1.05353269571203
OpenLoops 2.19037672578763 1.68164383554897 7.61526198357373 ≠1.05353269576734
GoSam 2.19037672578690 1.68164383554095 7.61526199187791 ≠1.05353269572332

Table I.12: Matrix-element comparison at the phase-space points given in Table I.9 for the
partonic process ““ æ e+e≠µ+µ≠.

while other model parameters such as (MZ, MW, MH, mt) remain fixed. Within this setup, we
then compute the relative di�erence of Vfinite(⁄) between Recola/OpenLoops28 and Mad-
Loop,

”Vfinite(⁄) = 2

------
V MadLoop

finite (⁄) ≠ V Recola/OpenLoops
finite (⁄)

V MadLoop
finite (⁄) + V Recola/OpenLoops

finite (⁄)

------
(I.63)

at di�erent values of ⁄, as displayed in Figs. I.15 and I.16. The expected scaling of the relative
di�erence ”Vfinite(⁄) with the parameter ⁄ is dictated by the expected contribution of the UV
mass counterterms ”m, which we can schematically write as follows,

V ”m
finite Ã

1
p2

V ≠ m2
V + imV �V

”m
1

p2
V ≠ m2

V + imV �V
. (I.64)

The assumption is that the UV mass counterterms ”m in MadLoop only di�ers from the ones
of the other OLPs by terms of order O(–�2, –2�). We can substitute this functional form of
the di�erence in Eqs. (I.64) and (I.63) to deduce the expected dependence of ”Vfinite(⁄) on the
scaling parameter ⁄ for ⁄ æ 0,

”Vfinite(⁄) = ⁄Ÿ”V (Ÿ)
finite + O(⁄Ÿ+1) , (I.65)

28Given that the implementation in all involved OLPs except for MadLoop is identical, we restrict ourselves
to the results of Recola and OpenLoops in this comparison: We use their point-wise average for the central
values, and the di�erence between them as an estimate for the numerical precision.
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c) PSP 1 B/10≠13 Vfinite/10≠14 V1/10≠15 V2/10≠15

MadLoop 4.63762790127829 6.79330655006349 4.07216839247769 ≠2.23061748556626
Recola 4.63762790127830 6.79163662486900 4.07216839245629 ≠2.23061748556050
OpenLoops 4.63762790127838 6.79163662486753 4.07216839246097 ≠2.23061748560388
GoSam 4.63762790127830 6.79163662486761 4.07216839247955 ≠2.23061748556541

c) PSP 2 B/10≠10 Vfinite/10≠11 V1/10≠12 V2/10≠11

MadLoop 2.26737153141645 1.88180804083847 2.38584215397888 ≠1.09056584355518
Recola 2.26737153141650 1.88096074990550 2.38584215406775 ≠1.09056584355509
OpenLoops 2.26737153141649 1.88096075053150 2.38584215383146 ≠1.09056584370294
GoSam 2.26737153141644 1.88096075053592 2.38584215397731 ≠1.09056584355520

c) PSP 3 B/10≠6 Vfinite/10≠6 V1/10≠9 V2/10≠9

MadLoop 1.37978612284930 1.55018919031339 4.89785291501769 ≠6.63652265273678
Recola 1.37978612284863 1.55013518201790 4.89788114834105 ≠6.63652866815621
OpenLoops 1.37978612284923 1.55013518232261 4.89788114988480 ≠6.63652866830139
GoSam 1.37978612284092 1.55011760547612 4.89816579319493 ≠6.63658173170046

c) PSP 4 B/10≠7 Vfinite/10≠6 V1/10≠10 V2/10≠9

MadLoop 2.19037672578717 1.68165624485106 7.61526199100670 ≠1.05353269570773
Recola 2.19037672578999 1.68164383557005 7.61526198688565 ≠1.05353269571203
OpenLoops 2.19037672578763 1.68164383554897 7.61526198357373 ≠1.05353269576734
GoSam 2.19037672578690 1.68164383554095 7.61526199187791 ≠1.05353269572332

Table I.12: Matrix-element comparison at the phase-space points given in Table I.9 for the
partonic process ““ æ e+e≠µ+µ≠.

while other model parameters such as (MZ, MW, MH, mt) remain fixed. Within this setup, we
then compute the relative di�erence of Vfinite(⁄) between Recola/OpenLoops28 and Mad-
Loop,

”Vfinite(⁄) = 2

------
V MadLoop

finite (⁄) ≠ V Recola/OpenLoops
finite (⁄)

V MadLoop
finite (⁄) + V Recola/OpenLoops

finite (⁄)

------
(I.63)

at di�erent values of ⁄, as displayed in Figs. I.15 and I.16. The expected scaling of the relative
di�erence ”Vfinite(⁄) with the parameter ⁄ is dictated by the expected contribution of the UV
mass counterterms ”m, which we can schematically write as follows,

V ”m
finite Ã

1
p2

V ≠ m2
V + imV �V

”m
1

p2
V ≠ m2

V + imV �V
. (I.64)

The assumption is that the UV mass counterterms ”m in MadLoop only di�ers from the ones
of the other OLPs by terms of order O(–�2, –2�). We can substitute this functional form of
the di�erence in Eqs. (I.64) and (I.63) to deduce the expected dependence of ”Vfinite(⁄) on the
scaling parameter ⁄ for ⁄ æ 0,

”Vfinite(⁄) = ⁄Ÿ”V (Ÿ)
finite + O(⁄Ÿ+1) , (I.65)

28Given that the implementation in all involved OLPs except for MadLoop is identical, we restrict ourselves
to the results of Recola and OpenLoops in this comparison: We use their point-wise average for the central
values, and the di�erence between them as an estimate for the numerical precision.
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Fig. I.18: Technical comparison of NLO EW corrections to the distribution in the invariant mass
of the 4¸ system (high-energy region) for hadronic e+e≠µ+µ≠ (o�-shell ZZ) production. See
main text of Sec. 7.3.4 for details.
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Fig. I.18: Technical comparison of NLO EW corrections to the distribution in the invariant mass
of the 4¸ system (high-energy region) for hadronic e+e≠µ+µ≠ (o�-shell ZZ) production. See
main text of Sec. 7.3.4 for details.
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→very convincing agreement between automated tools



�7

Conclusions

•  scheme of choice: Gμ or α(mZ) for hard processes and initial state photons combined with  
                           α(0) for resolved final state photons 

•  This is the default scheme implemented for NLO EW in  
 Sherpa+OpenLoops, MATRIX+OpenLoops, Sherpa+Recola, MoCaNLO+Recola

• Questions/Comments: 
• Best scheme for WZ polarizations?
• EW scheme uncertainties at NLO have not been studied in VV. Necessary?

 
 

• See also:  “Dictionary for electroweak corrections” by S. Dittmaier in [LH2013,1405.1067] 
 


