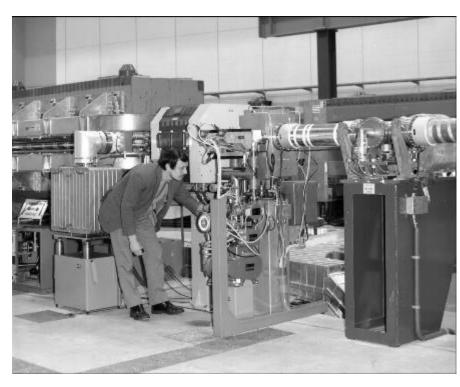

Practical Days Vacuum Systems

V. Baglin CERN TE-VSC, Geneva

CERN accelerators complex

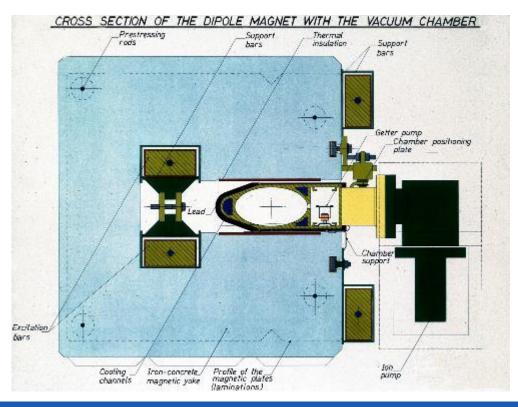
CERN vacuum systems

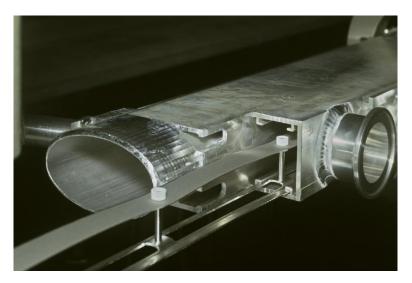
Machine	Туре	Year	Energy	Bakeout	Pressure (Pa)	Length	Particles
Linac, Booster, ISOLDE, PS, n-TOF and A	D Complex					2.6 km !	
LINAC 2	linac	1978	50 Me∨	lon pumps	10 ⁻⁷	40 m	р
ISOLDE	electrostatic	1992	60 keV	-	10 ⁻⁴	150 m	ions: 700 isotopes
REX-ISOLDE	linac	2001	3 Me∨/u	partly	10 ⁻⁵ - 10 ⁻¹⁰	20 m	and 70 (92) elements
LINAC 3	linac	1994	4.2 MeV/u	lon pumps	10 ⁻⁷	30 m	ions
LEIR	accumulator	1982/2005	72 MeV/u	complete	10 ⁻¹⁰	78 m	pbar, ions
PSB	synchrotron	1972	1-1.4 GeV	lon pumps	10 ⁻⁷	157 m	P, ions
PS	synchrotron	1959	28 GeV	lon pumps	10 ⁻⁷	628 m	P, ions
AD	decelerator	?	100 Me∨	complete	10 ⁻⁸	188 m	pbar
CTF3 complex	linac/ring	2004-09		partly	10 ⁻⁸	300 m	e
PS to SPS TL	Transfer line	1976	26 GeV	-	10 ⁻⁶	~1.3 km	P, ions
SPS Complex	I		ł			15.7 km !	
SPS	synchrotron	1976	Extra	Extractions	10 ⁻⁷	7 km	
SPS North Area	Transfer line	1976			~1.2 km	1	
SPS West Area	Transfer line	1976	450 GeV		10 ⁻⁶ - 10 ⁻⁷	~ 1.4 km	p, ions
SPS to LHC TI2/8 Line	Transfer line	2004/2006		-		2 x 2.7 km	
CNGS Proton Line	Transfer line	2005				~730 m	
LHC Accelerator	I	I	I		I	~109 km !	
LHC Arcs (Beam x2, Magnets & QRL insul.)				-		2 x (2 x 25 km)	p, ions
LSS RT separated beams	1	r 2007	2 × 7 TeV	complete	< 10 ⁻⁸	2 × 3.2 km	
LSS RT recombination	collider					~ 570 m	
Experimental areas						~ 180 m	
Beam Dump Lines TD62/68	Transfer line	2006	7 TeV	-	10 ⁻⁶	2 × 720 m	
		-		High Vacuum~20 kmUHV w/wo NEG~ 57.5 kmInsulation vacuum~ 50 km		~20 km	~128 km !
						~ 57.5 km	
						~ 50 km	


2850 ion pumps, 450 turbomolecular pumps, 325 Ti sublimation pumps,...
6 Km of NEG coated beam pipes, 2750 pressure gauges, 40 leak detectors and 100 RGAs, 1930 roughing valves and 510 gate sector valves

Intersecting Storage Rings

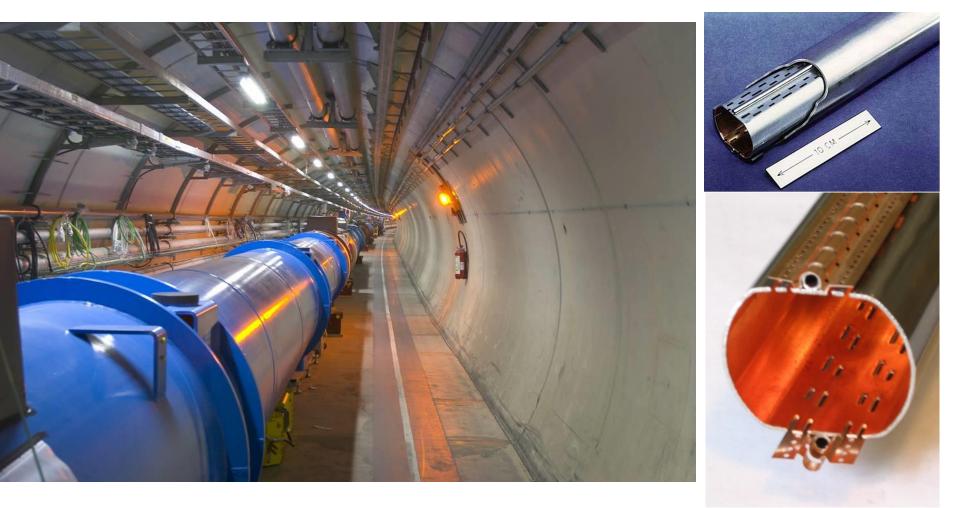
- Discovery of :
 - Vacuum stability and pressure runaway
 - Beam induced multipacting (electron cloud)
- Developments of laboratory studies and cleaning methods





Large Electron Positron Collider

- Synchrotron radiation in LEP:
 - From 6 to 660 keV critical energy
 - Gas desorption studies
- Innovative pumping system
 - Antechamber with NEG pumping strip
 - Water cooled and lead shielded



Vacuum, Surfaces & Coatings Group Technology Department

6

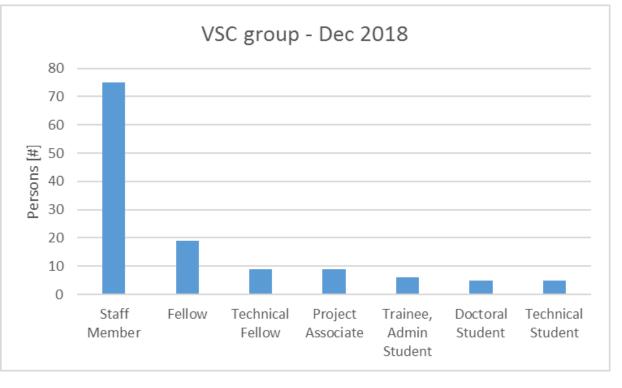
Large Hardon Collider

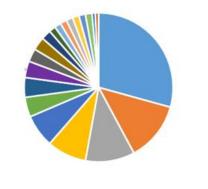
- Cold bore (CB) at 1.9 K which ensures leak tightness
- Beam screen (BS) at 5-20 K which intercepts thermal loads and acts as a screen

Vacuum, Surface and Coatings group

Design, construction, operation, maintenance and upgrade of high & ultra-high vacuum systems for Accelerators and Detectors.

- Expertise and support on thin-walled vacuum chambers, windows and bellows compensation systems
- Expertise in vacuum sealing and leak-tightness technology
- Expertise in dynamic vacuum phenomena
- Management of the industrial support contract for vacuum work in accelerators
- Expertise in vacuum control systems, vacuum interlocks and monitoring tools


Coatings, surfaces treatments, surface and chemical analysis for Accelerators and Detectors. Expertise and support in the fields of:

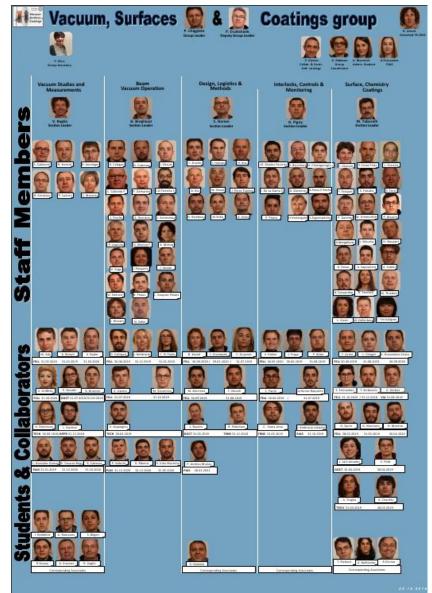

- Coatings, electroplating and surface cleaning techniques
- UHV characterization and of material and surfaces
- Degassing analysis and treatments

Vacuum, Surface and Coatings group

Design, construction, installation and operation of the CERN vacuum systems 75+53 = 128 persons

BE NO SE CZ FI HU DE DK BY AT

■ IT = ES = PT ■ PL ■ CH ■ RU ■ NL ■ GR ■ GB


Several collaborators from different countries and institutes

TE-VSC organisation

Group management + 5 sections:

- Vacuum studies and measurements
- Beam vacuum operation
- Design, logistics & methods
- Interlock, controls & monitoring
- Surface, chemistry & coatings

Organisation of practical days

The group is split in two smaller group (~ 6):

Laboratory work

Modelisation work

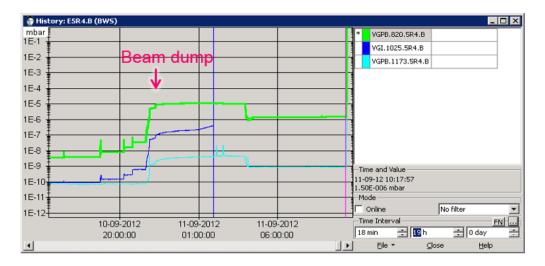
2x2 tutors

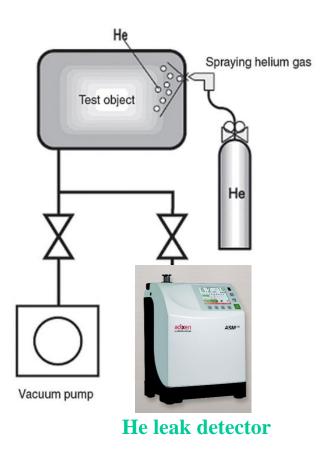
Two half day sessions

Lunch with tutors

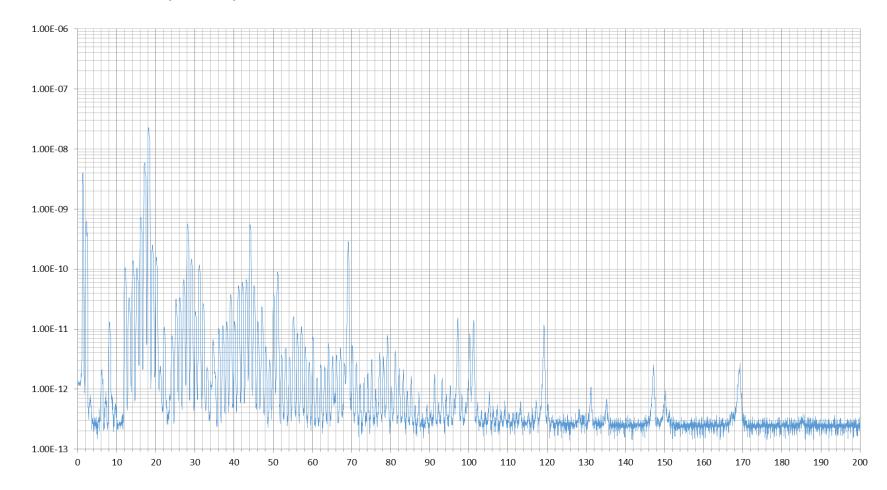
Bring your own laptop, or we can loan one to you for the session if needed

Laboratory activities: pump down


- Pump down of a vacuum system:
 - start pumping
 - open roughing valve
 - expected pump down curve

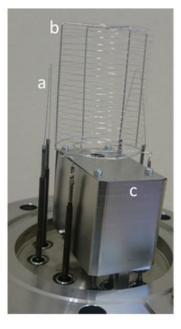

Laboratory activities: leak detection

• How to locate / identify leaks in a vacuum system ?



Laboratory activities: gas analysis

- is my residual gas composition reasonable ?
- Estimation of the partial pressure

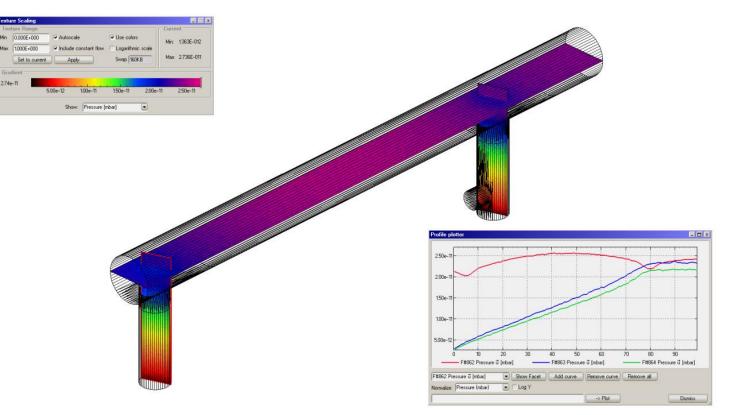


Laboratory activities: vacuum gauge

- Vacuum gauges descriptions
- Vacuum gauge calibration

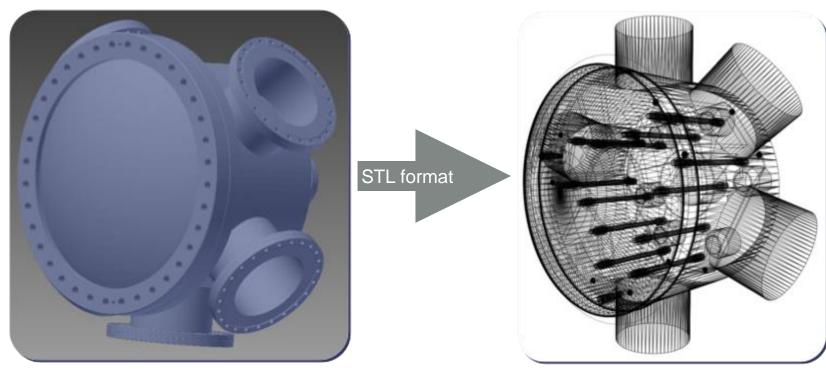
Laboratory activities: pumping speed measurement

• Pumping speed measurement



Design of vacuum systems

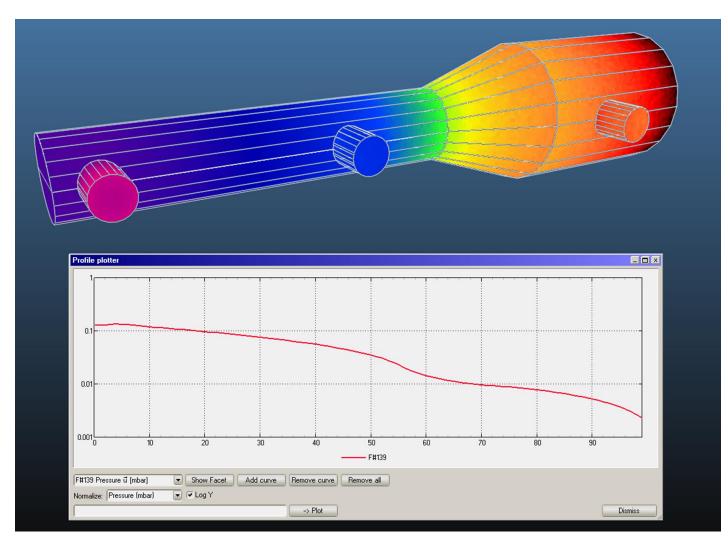
- A test particle Monte-Carlo code for molecular flow
- http://molflow.web.cern.ch/
- R. Kersevan M. Ady


A simple accelerator part with a pumping port

Step 1: creating geometry

CAD

Molflow+



Step 2: adding physics

Molflow+ 2.6.39 64-bit (Feb 22 2017) [simple_geo.zip]		– 🗆 X
File Selection Tools Facet Vertex View Test Time		Profile plotter 🚍 🕅 🗙
		V228 F:139 Dim(5,4,18) Area/216.18 U228 F:139 Dim(5,4,18) Area/216.18 U30 Viewer settings Rules Normals U,7 Lines Leaks Hits Volume Texture Vertices Indices Selected Facet (3 selected) Particles in Desorption Coutgassing (mbar*1/s) Dutg/area(mbar*1/s) Dutg/area(mbar*1/s) Particles out Sticking factor: Pumping Speed (I/s): Sides: 1 Sided
Front Top Side Persp	Front Top Side Ortho. 🕶 X=-2.25, Y=-2.56576	Opacity: 1 Temperature (°K): 293.15
000		Sum Area (cm²): 13.90576475 Profile: None ✓ Adv Details Coord ▲ Simulation ✓ ✓ Simulation ✓ ✓ Auto update scene Update Hits 182.76 Mhit (32 Mhit/s) Des. 2.02 Mdes (34.9 Kdes/s) Leaks None Time Stopped: 00:00:58 # Hits Des Abs 67 6261377 0 68 6280336 0 0 4
Front Top Side Ortho. 💌 Z=0.868734, Y=-7.51712 🔛 🕅 🐯 🌚 🖓 🕞	Front Top Side Ortho. 💌 X=-8.5575, Z=10.54	Trans. Prob. Divide by 0

Step 3: simulation and results

100k molecules

You are welcome to join our group for the practical days !

Thank you for your attention !!!

