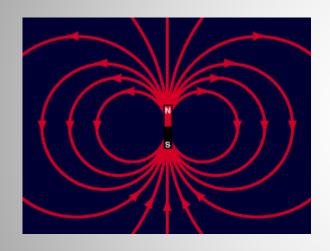
Joint Universities Accelerator School JUAS 2019

Archamps, France, $18^{th} - 20^{th}$ February 2019

Normal-conducting accelerator magnets Lecture 4: Applied numerical design

Thomas Zickler CERN

Lecture 4: Numerical design



Which code shall I use?
Introduction to 2D numerical design
How to evaluate the results
Field analysis
Typical application examples

Numerical design

Common computer codes: Opera (2D) or Tosca (3D), Poisson, ANSYS, Roxie, Magnus, Magnet, Mermaid, Radia, FEMM, COMSOL, etc...

Technique is iterative

- calculate field generated by a defined geometry
- adjust geometry until desired distribution is achieved

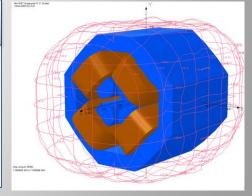
Computing time <u>increases</u> for high accuracy solutions, non-linear problems and time dependent analysis → compromise between accuracy and computing time

2D

- 2D analysis is often sufficient
- magnetic solvers allow currents only perpendicular to the plane
- fast

3D

- produces large amount of elements
- mesh generation and computation takes significantly longer
- end effects included
- powerful modeller



FEM codes are powerful tools, but be cautious:

- Always check results if they are 'physical reasonable'
- Use FEM for quantifying, not to qualify

Numerical design process

Design process in 2D (similar in 3D):

Create the model (pre-processor or modeller)

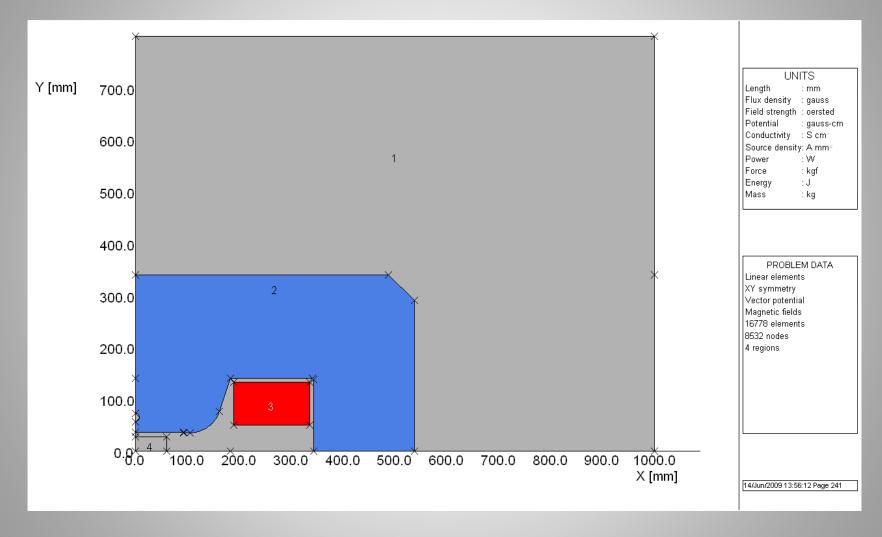
Define boundary conditions, set material properties

Calculations (solver)

Visualize and asses the results (post-processor)

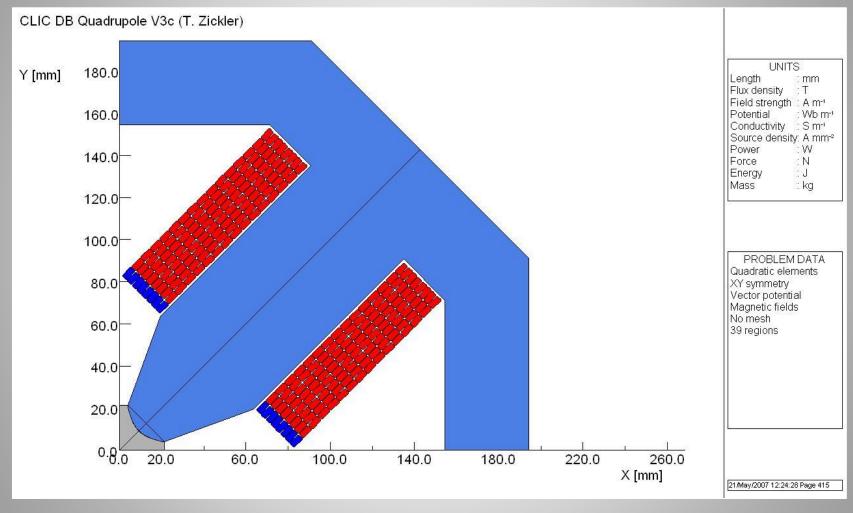
Optimization by adjusting the geometry (manually or optimization code)

Creating the model



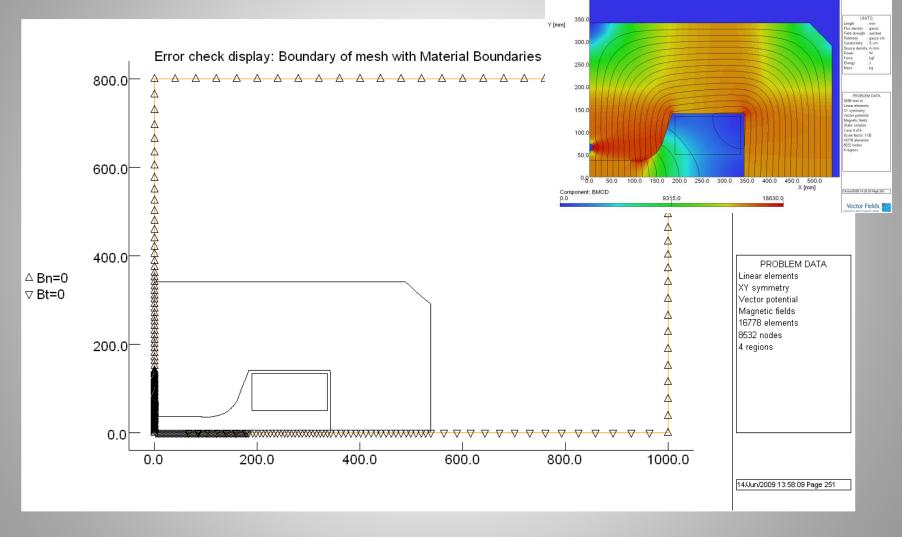
GUI vs. Script

Model symmetries

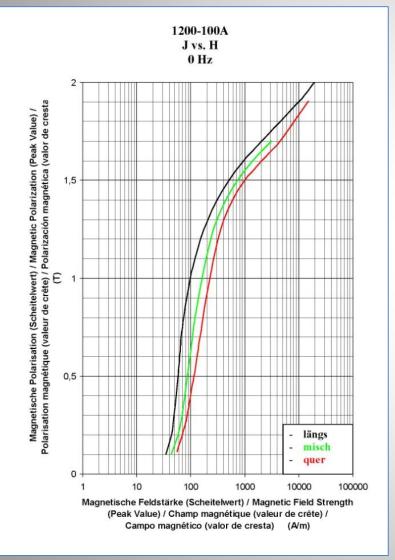


Note: one eighth of quadrupole could be used with opposite symmetries defined on horizontal and y = x axis

Boundary conditions



Material properties



Permeability:

- either fixed for linear solution
- or permeability curve for nonlinear solution
- can be anisotropic
- apply correction for steel packing factor
- pre-defined curves available

Conductivity:

- for coil and yoke material
- required for transient eddy current calculations

Mechanical and thermal properties:

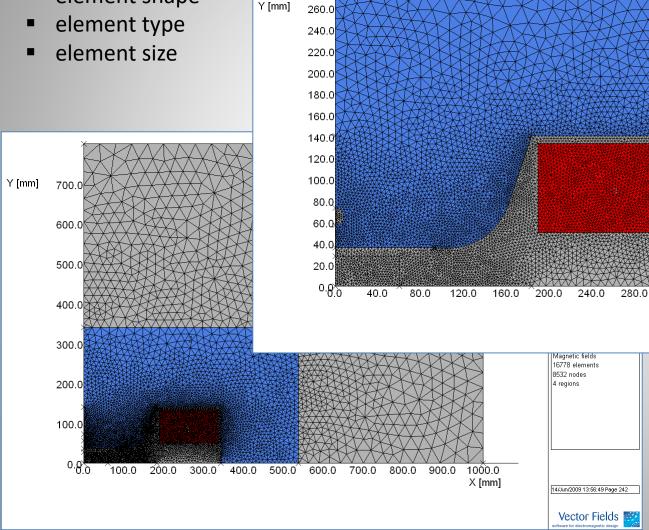
 in case of combined structural or thermal analysis

Current density in the coils

Data source: Thyssen/Germany

Mesh generation

element shape



280.0

Length Flux density gauss Field strength : oersted Potential gauss-cm Conductivity :Som Source density: A mm Power Force : kgf Energy : J PROBLEM DATA Linear elements XY symmetry Vector potential Magnetic fields 16778 elements 8532 nodes 4 regions

UNITS

14/Jun/2009 13:57:45 Page 246

400.0

360.0

X [mm]

320.0

Vector Fields

Data processing

Solution

- linear: predefined constant permeability for a single calculation
- non-linear: permeability table for iterative calculations

Solver types

- static
- steady state (sine function)
- transient (ramp, step, arbitrary function, ...)

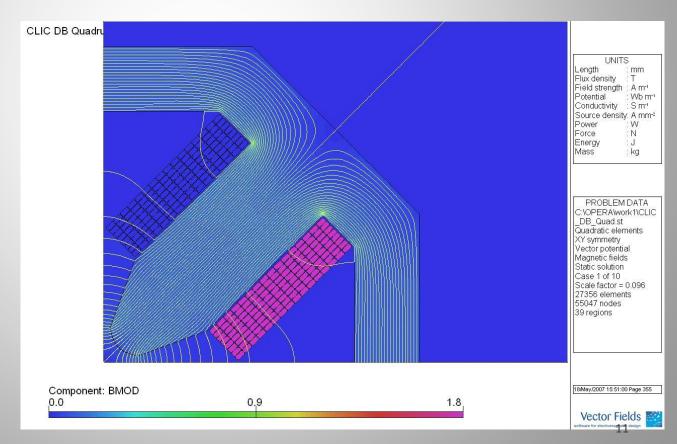
Solver settings

- number of iterations,
- convergence criteria
- precision to be achieved, etc...

Analyzing the results

With the help of the post-processor, field distribution and field quality and be visualized in various forms on the pre-processor model:

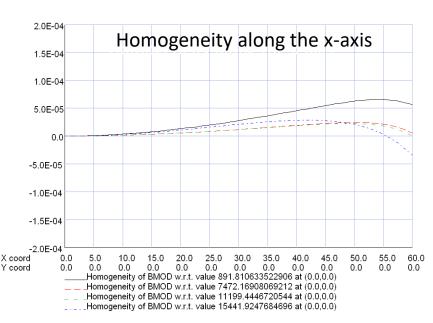
- Field lines and colour contours plots of flux, field, and current density
- Graphs showing absolute or relative field distribution
- Homogeneity plots

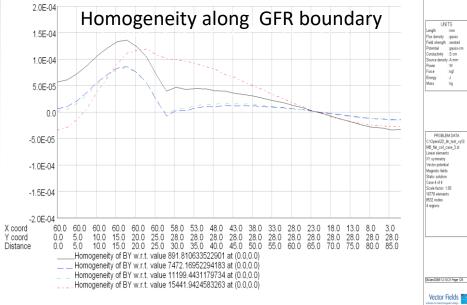


Field homogeneity in a dipole

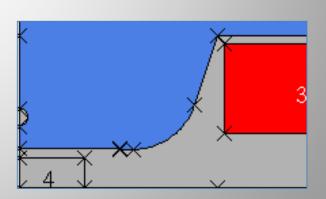
A simple judgment of the field quality can be done by plotting the field homogeneity

$$\frac{\Delta B}{B_0} = \frac{B_y(x, y)}{B_y(0, 0)} - 1 \qquad \frac{\Delta B}{B_0} \le 0.01\%$$

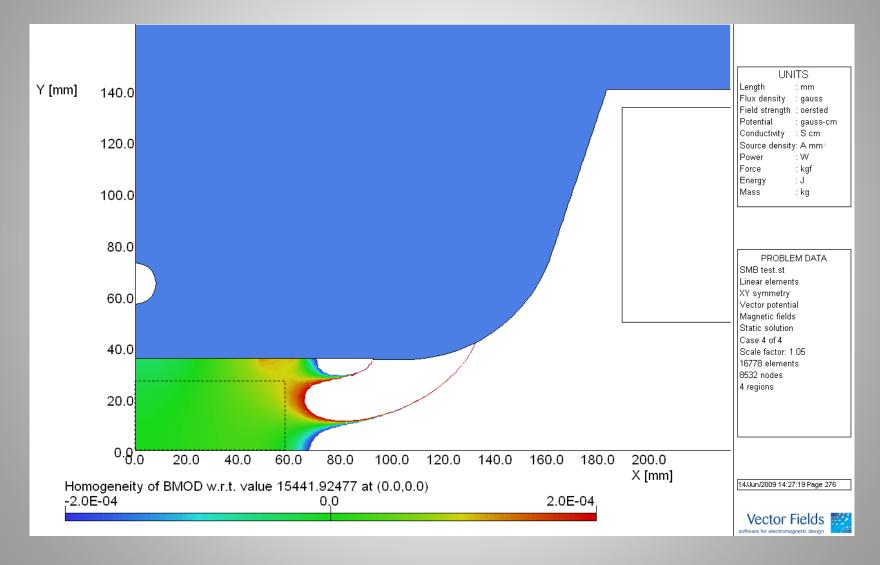




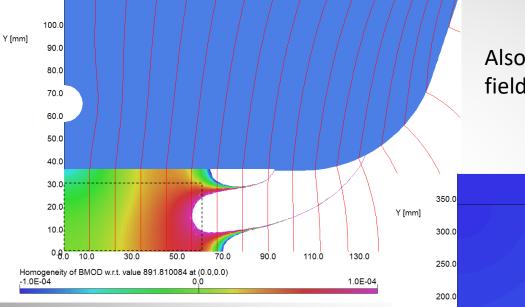
SH 0.6 mm, SL 12.5 mm, SP 105.0 mm, HH 65.0 mm, HR 8.0 mm, GL 84.0 mm, GH 19.6 mm



Field homogeneity in a dipole

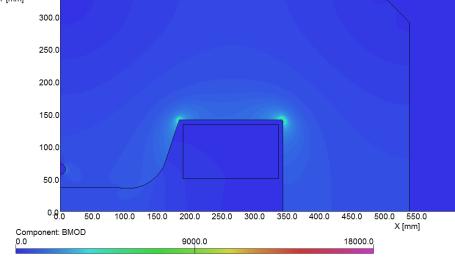


Saturation and field quality



Also very low fields can disturb the field quality significantly

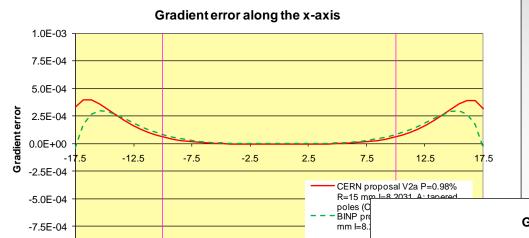
Field quality can vary with field strength due to saturation



-1.0E-03

2D-numerical simulation - Design evaluation - Field analysis - Examples - Summary

Field quality in a quadrupole



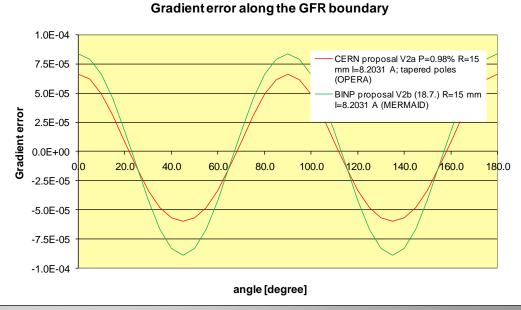
x [mm]

Field error in a quadrupole

$$\varepsilon = \frac{B(x, y)}{B'(0, 0)\sqrt{x^2 + y^2}} - 1$$

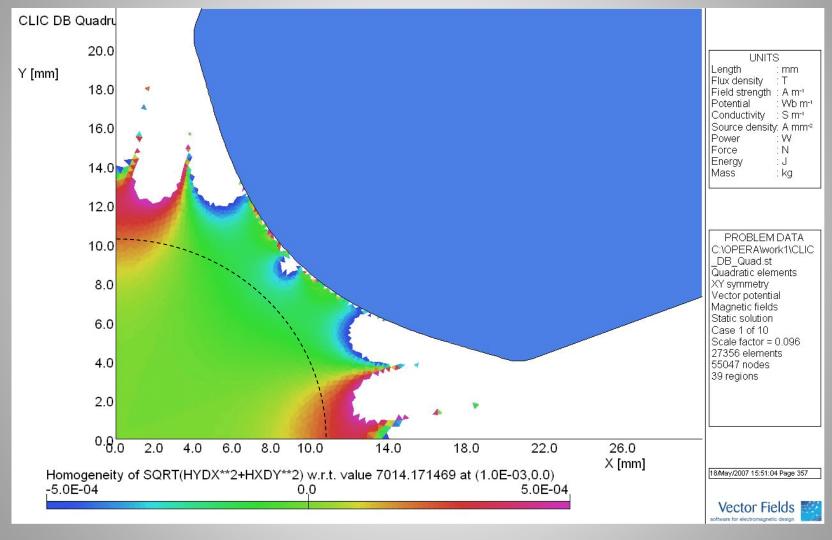
Gradient homogeneity along the x-axis

$$\frac{\Delta B'}{B'_0} = \frac{B'(x, y)}{B'(0, 0)} - 1 \qquad \frac{\Delta B'}{B'_0} \le 0.1\%$$



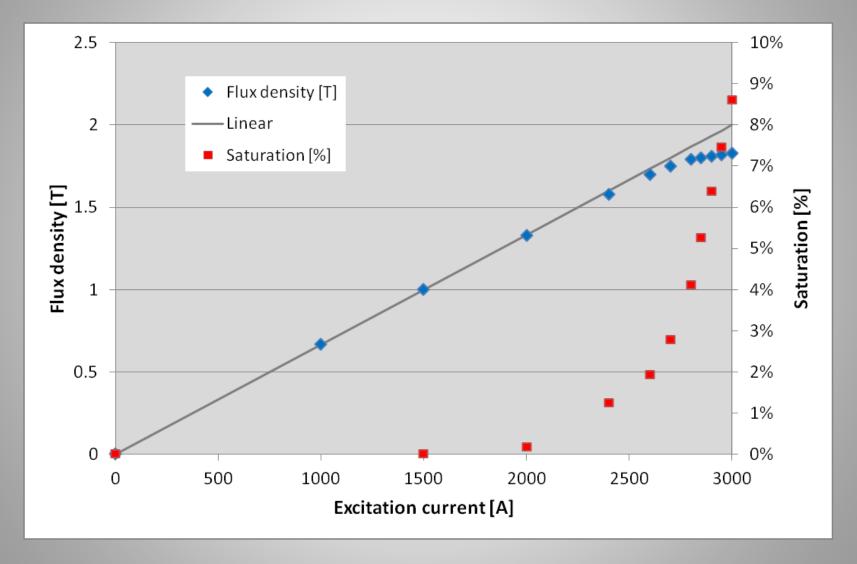
Gradient homogeneity along circular GFR

Saturation and field quality



Field quality varies with field strength due to saturation

Saturation



Field analysis

Picking up from lecture 1

$$B_{y}(z) + iB_{x}(z) = \sum_{n=1}^{\infty} (B_n + iA_n) \left(\frac{z}{R_{ref}}\right)^{n-1}$$

and introducing dimensionless normalized multipole coefficients

$$b_n = \frac{B_n}{B_N} 10^4$$
 and $a_n = \frac{A_n}{B_N} 10^4$

with $B_{\rm N}$ being the fundamental field of a magnet: $B_{\rm N~(dipole)} = B_1$; $B_{\rm N~(quad)} = B_2$; ...

Fundamental field
$$B_{y}(z) + iB_{x}(z) = \frac{B_{N}}{10^{4}} \sum_{n=1}^{\infty} \left(b_{n} + ia_{n}\right) \left(\frac{z}{R_{ref}}\right)^{n-1}$$
Harmonic distortions

Field analysis

19

These normalized multipole coefficients are good indicators to asses the field quality of a magnet i.e. to describe the deviations of the actual field from the ideal one.

Normal dipole: $\vec{B}_{id}(x,y) = B_1 \vec{J}$

$$B_{y}(z) + iB_{x}(z) = B_{1} + \frac{B_{1}}{10^{4}} \left[ia_{1} + (b_{2} + ia_{2}) \left(\frac{z}{r_{0}} \right) + (b_{3} + ia_{3}) \left(\frac{z}{r_{0}} \right)^{2} + (b_{4} + ia_{4}) \left(\frac{z}{r_{0}} \right)^{3} + \cdots \right]$$

$$b_{2} = \frac{B_{2}}{B_{1}} 10^{4} \quad b_{3} = \frac{B_{3}}{B_{1}} 10^{4} \quad a_{1} = \frac{A_{1}}{B_{1}} 10^{4} \quad a_{2} = \frac{A_{2}}{B_{1}} 10^{4} \quad \dots$$

Normal quadrupole: $\vec{B}_{id}(x,y) = B_2[x\vec{j} + y\vec{i}] \frac{1}{r_0}$

$$B_{y}(z) + iB_{x}(z) = B_{2} \frac{z}{r_{0}} + \frac{B_{2}}{10^{4}} \left[ia_{2} \left(\frac{z}{r_{0}} \right) + (b_{3} + ia_{3}) \left(\frac{z}{r_{0}} \right)^{2} + (b_{4} + ia_{4}) \left(\frac{z}{r_{0}} \right)^{3} + \cdots \right]$$

$$b_3 = \frac{B_3}{B_2} \ 10^4$$
 $b_4 = \frac{B_4}{B_2} \ 10^4$ $a_2 = \frac{A_2}{B_2} \ 10^4$...

Field analysis

The field quality of a magnet can be also described by:

- Homogeneity plot:
 - difference between the actual field B and the ideal field $B_{\rm id}$, normalized by the ideal field $B_{\rm id}$

$$\frac{\Delta B}{B} = \frac{B(x, y) - B_{id}(x, y)}{B_{id}(x, y)}$$

– can be expressed by multipole coefficients: for a dipole with $B_{y,id}(x)=B_1$

$$B_{y}(x) = B_{1} + \frac{B_{1}}{10^{4}} \left[b_{2} \left(\frac{x}{r_{0}} \right) + b_{3} \left(\frac{x}{r_{0}} \right)^{2} + b_{4} \left(\frac{x}{r_{0}} \right)^{3} + \cdots \right]$$

$$\frac{\Delta B}{B}(x) = \frac{1}{10^{4}} \left[b_{2} \left(\frac{x}{r_{0}} \right) + b_{3} \left(\frac{x}{r_{0}} \right)^{2} + b_{4} \left(\frac{x}{r_{0}} \right)^{3} + \cdots \right]$$

• Harmonic distortion factor $F_{\rm d}$:

$$F_d(r_0) = \sum_{n=1; n \neq N}^K \sqrt{b_n^2(r_0) + a_n^2(r_0)}$$

Note: For good field quality, $F_{\rm d}$ should be a few units in 10⁻⁴

2D-numerical simulation - Design evaluation - Field analysis - Examples - Summary

Field analysis

Multipole errors can be divided into two families:

,Allowed' multipoles are design intrinsic and result from the finite size of the poles

$$n = N(2m+1)$$

n: order of multipole component

N: order of the fundamental field

m: integer number (m≥1)

fully symmetric dipole

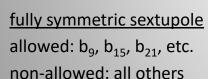
allowed: b_3 , b_5 , b_7 , b_9 , etc.

non-allowed: all others

fully symmetric quadrupole

allowed: b₆, b₁₀, b₁₄, b₁₈, etc.

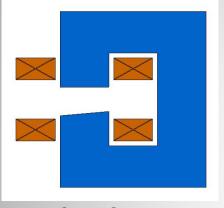
non-allowed: all others

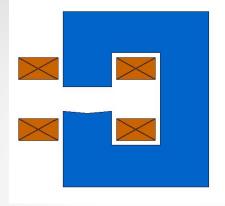


,Non-allowed' multipoles result from a violation of symmetry and indicate a fabrication or assembly error

Asymmetries

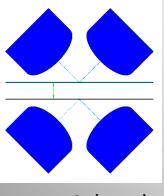
Asymmetries generating 'non-allowed' harmonics



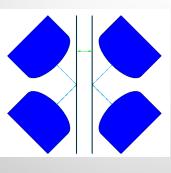


n = 3, 6, 9, ...

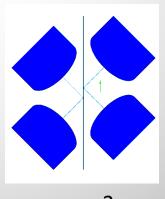
Comprehensive studies about the influence of manufacturing errors on the field quality have been done by K. Halbach.



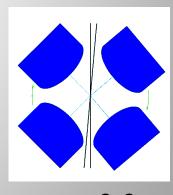
n = 4 (neg.)



n = 4 (pos.)



n = 3

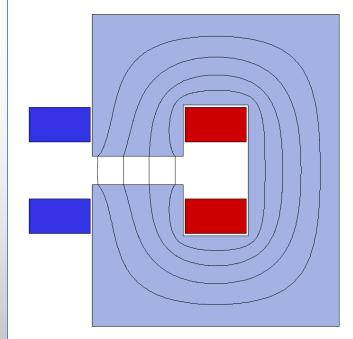


n = 2, 3

These errors can seriously affect machine behaviour and must be controlled!

Asymmetry in a C-magnet

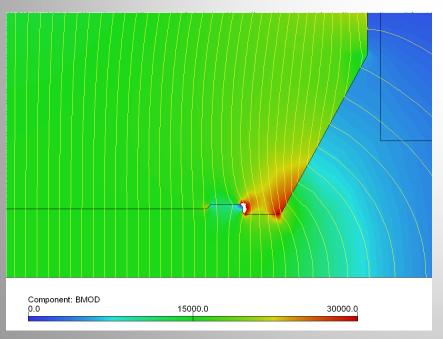
- C-magnet: one-fold symmetry
- Since $NI = \oint \overrightarrow{H} \cdot \overrightarrow{dl} = const.$ the contribution to the integral in the iron has different path lengths
- Finite (low) permeability will create lower B on the outside of the gap than on the inside
- Generates 'forbidden' harmonics with n = 2, 4, 6, ... changing with saturation
- Quadrupole term resulting in a gradient around 0.1% across the pole

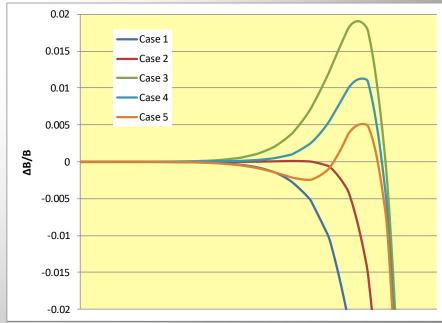


Pole optimization

,Shimming' (often done by 'try-and-error') can improve the field homogeneity

- Add material on the pole edges: field will rise and then fall
- Remove some material: curve will flatten
- Round off corners: takes away saturation peak on edges
- 4. Pole tapering: reduces pole root saturation -> Rogowsky profile

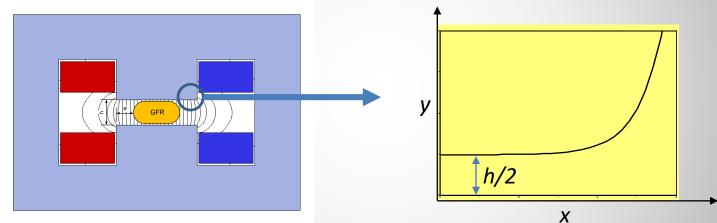




Rogowsky roll-off

The 'Rogowsky' profile provides the maximum rate of increase in gap with a monotonic decrease in flux density at the surface, i.e. no saturation at the pole edges!

The edge profile is shaped according to: $y = \frac{h}{2} + \left(\frac{h}{\pi}\right) \exp\left(\left(\frac{x\pi}{h}\right) - 1\right)$



For an optimized pole:

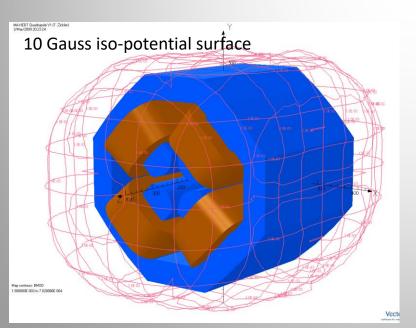
$$x_{optimized} = 2\frac{a}{h} = -0.14 \ln \frac{\Delta B}{B_0} - 0.25$$

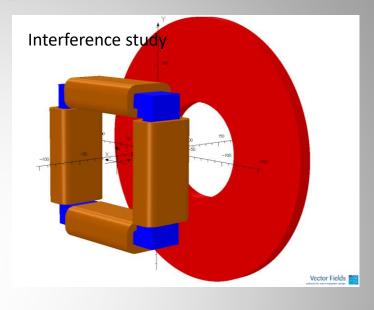
- pole overhang normalized to the gap *X*:
- pole overhang: excess pole beyond the edge of the good field region to reach the required a: field uniformity
- h: magnet gap

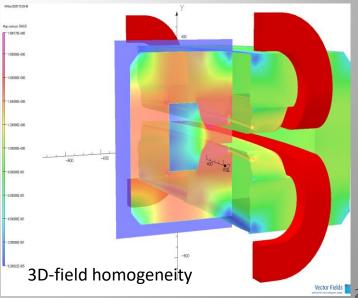
3D Design

Becomes necessary to study:

- the longitudinal field distribution
- end effects in the yoke
- end effects from coils
- magnets where the aperture is large compared to the length
- spacial field distribution
- particle motion in electro-magnetic fields



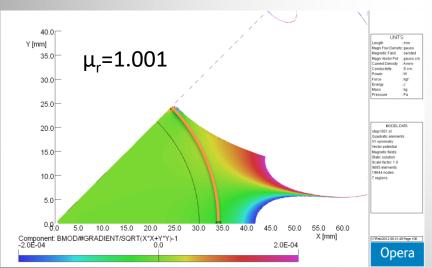


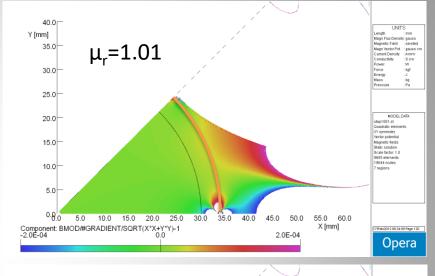


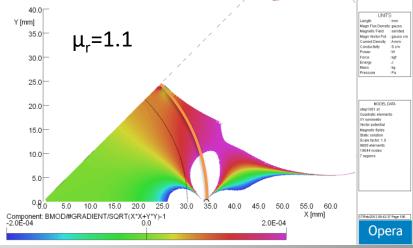
Case 1: A material problem

Welding seam on stainless-steel vacuum chamber:

- GFR radius: 30 mm
- Chamber radius: 35 mm
- Welding seam diameter: 1 mm
- Rel. permeability of 316 LN: < 1.001



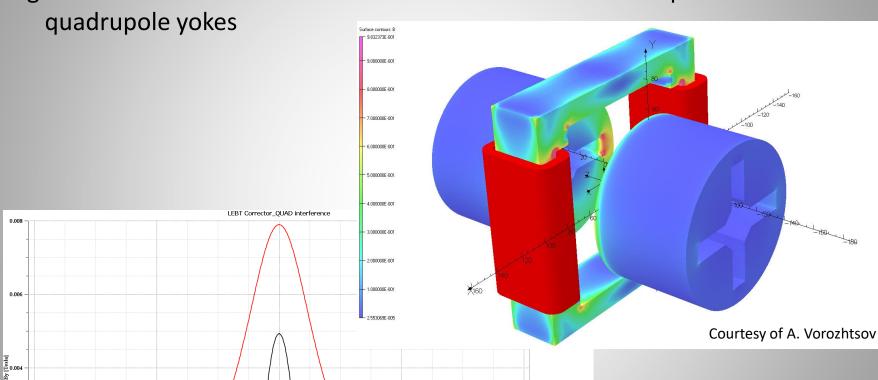




A small distortion can significantly influence the field quality in the GFR!

Case 2: An interference problem

Significant attenuation of the corrector field due to the close presence of two

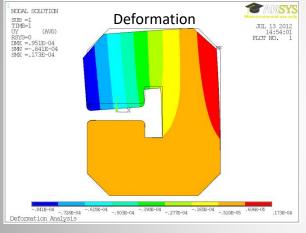


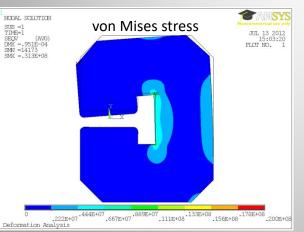
Z [mm]

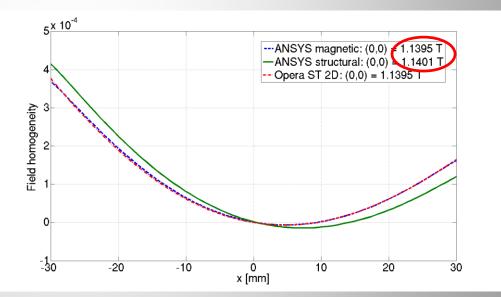
2D-numerical simulation – Design evaluation – Field analysis – Examples – Summary

Case 3: Mechanical deformation

- Mechanical deformation due to magnetic pressure can influence the field homogeneity
- Multi-physics models can help to quantify the effect







Field homogeneity calculated for the center line of the magnet with ANSYS magnetic, ANSYS structural + magnetic, and Opera ST 2D

Limitations of numerial calculation

Advantages

- predict behaviour without having the physical object
- for relatively simple cases they are fast and inexpensive

Limitations

- multi-physics model: including all couplings (thermal, mechanical) and phenomena (magnetostriction, magneto-resistivity ...) that may be relevant is very complex and expensive
- off-nominal geometry: random assembly errors can dominate field distribution and quality; often, a large number of degrees-of-freedom and the resulting combinatorial explosion makes Monte Carlo prediction costly
- material properties uncertainty: inhomogeneous properties cannot practically be measured throughout volume; even homogeneous materials can be measured only within 2-5% typical accuracy
- numerical errors: e.g. singularities in re-entrant corners, boundary location of open regions may spoil results; special techniques (special corner elements, BEM) require special skills and time
- high cost of detailed 3D models ($\propto \Delta x^{2^{\sim 3}}$); transient simulations increase computing time significantly

Computer simulation targeting <10⁻⁴ accuracy are difficult and expensive

Summary

- A large varity of FE-codes with different features exist the right choice depends of the complexity of the problem
- The FE-models shall be as simple as possible and adapted to the problem to reduce computing time
- Numeric computations should be used to quantify, <u>not</u> to qualify
- Benchmarking the results with measurements is a good practice
- Computer simulations have a lot of advantages, but also their limitations