
Transverse Beam Dynamics

JUAS 2019 - Tutorial 3 (solutions)

1 Exercise: Basics of lattice design
Design a FODO cell such that it has: phase advance µ = 90 degrees, a total length of 10 m, and a total bending angle of 5
degrees. What are βmax, βmin, Dmax, Dmin?

Answer.

Lattice parameters: L = 10 m, θ = 5 degrees= 0.087266 rad, f = 1√
2
L
2 = 3.535 m.

Maximum and minimum betatron functions:

βmax =
L+ L2

4f

sinµ
= L+

L2

4f
= 17.07 m, βmin =

L− L2

4f

sinµ
= L− L2

4f
= 2.93 m

Maximum and minimum dispersion:

Dmax =
Lθ
(
1 + 1

2 sin µ
2

)
4 sin2 µ

2

=
f

L

(
4f +

L

2

)
θ = 0.59060 m, Dmin =

Lθ
(
1− 1

2 sin µ
2

)
4 sin2 µ

2

=
f

L

(
4f − L

2

)
θ = 0.28207 m

2 Exercise: Bump and Orbit Control
Given two kickers located at the two ends of a FODO cell with phase advance 45 degrees (the two kickers are located at Lcell
distance from each other), compute the strengths of such kickers (in radians) in order to give the beam, initially at (xi, x

′
i) = (0, 0),

an arbitrary offset at the end of the cell while preserving its angle,
(
xf , x

′
f

)
= (xarbitrary, 0).

Solution
The transfer matrix of a periodic cell is:

M =

(
cosϕ+ α sinψ β sinϕ
−γ sinϕ cosϕ− α sinϕ

)
Substituting the value for the phase advance we get the matrix to apply to the beam right after the first kick k1:(

xf
x′f

)
=

√
2

2

(
1 + α β
−γ 1− α

)(
0
k1

)
=

√
2

2

(
βk1

(1− α)k1

)
From this we see that to achieve an arbitrary xf we need:

k1 =

√
2xf
β

The second kick, k2, has only to remove the final tilt:

k2 = −x′f = − (1− α)√
2

k1

Notice that one can reduce the strength of the kickers by placing them close to a focusing quadrupole, where β has its maximum.
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3 Exercise: Measurement of Twiss parameters
One of the possible ways to determine experimentally the Twiss parameters at a given point makes use of a so-called quadrupole
scan. One can measure the transverse size of the beam in a profile monitor, called Wire Beam Scanner (WBS), located at
a distance L downstream a focusing quadrupole, as a function of the normalised gradient in this quadrupole. This allows to
compute the emittance of the beam, as well as the β and the α functions at the entrance of the quadrupole.

Let’s consider a quadrupole Q with a length of l = 20 cm. This quadrupole is installed in an electron transport line where
the particle momentum is 300 MeV/c. At a distance L = 10 m from the quadrupole the transverse beam size is measured with
a WBS, for various values of the current IQ. The maximum value of the quadrupole gradient G is obtained for a current of 100
A, and is G = 1 T/m.

Hint: G is proportional to the current. Advice: use thin-lens approximation.

1. How does the normalised focusing strength K vary with IQ?

Answer. The quadrupole gradient G is proportional to the current flowing through the coils IQ

G = C · IQ,

C is the proportionality coefficient. We know that G = 1 T/m when IQ = 100 A, therefore C = 0.01 T/(A·m). The
normalised focusing strength is

K =
G

P/q
therefore K =

C · IQ
P/q

2. Give the expression Σ2 as function of α1, β1, and γ1

Answer. Let Σ1 and Σ2 be the 2× 2 matrices with the twiss parameters, Σ =

(
β −α
−α γ

)
, at the quadrupole entrance

and at the wire scanner, respectively.

It is worth explaining that the matrix Σ multiplied by the emittance ε is the covariance matrix of the beam distribution:

Σε =

(
βε −αε
−αε γε

)
=

(
〈x2〉 〈xx′〉
〈x′x〉 〈x′2〉

)
The transverse beam size of the beam is given by σx =

√
〈x2〉 =

√
βxεx (horizontal beam size), and σy =

√
〈y2〉 =

√
βyεy

(vertical beam size). Here we will simply use the following notation: σ1 =
√
β1ε for the beam size (horizontal or vertical)

at position 1, and σ2 =
√
β2ε for the beam size (horizontal or vertical) at position 2.The matrix Σ propagates from position

1 to position 2 as follows:

Σ2 = MΣ1M
T

where M is the transfer matrix of the system and MT its transpose. We have:

Σ2 =

(
β2 −α2

−α2 γ2

)
=

(
1−KlL L
−Kl 1

)(
β1 −α1

−α1 γ1

)(
1−KlL −Kl

L 1

)
=

(
β1L

2(Kl)2 + 2L(α1L− β1)Kl + β1 − 2α1L+ γ1L
2 β1L(Kl)2 + (2α1L− β1)Kl + γ1L− α1

β1L(Kl)2 + (2α1L− β1)Kl + γ1L− α1 β1(Kl)2 + 2α1Kl + γ1

) (1)
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3. Show that β2 can be written in the form: β2 = A2 (Kl)
2

+ A1 (Kl) + A0, and express A0, A1, and A2 as a function of L,
α1, β1, and γ1.

Answer. We can see from Eq. (1) that:

β2 = β1L
2(Kl)2 + 2L(α1L− β1)Kl + β1 − 2α1L+ γ1L

2

and therefore:

A2 = β1L
2

A1 = 2L(α1L− β1)

A0 = β1 − 2α1L+ γ1L
2

Hint for the next questions: show that if one expresses β2 as

β2 = B0 +B1 (Kl −B2)
2

one has:
B0 = A0 −A2

1/4A
2
2 = L2/β1

B1 = A2 = L2β1

B2 = −A1/A2 = 1/L− α1/β1

4. Express the final beam size, σ2, as a function of Kl, and find its minimum, which will correspond to (Kl)min.

Answer. The transverse r.m.s. beam size is σ =
√
εβ, where ε is the transverse (geometric) emittance. As we have seen

in the previous questions β2 depends quadratically on Kl: β2 = B0 + B1 (Kl −B2)
2. Since ε is constant, if we want to

minimise σ2, we have to minimise β2:

dβ2

d(Kl)
= 0 −→ 2B1(Kl −B2) = 0 −→ (Kl)min = B2 =

1

L
− α1

β1
(2)

We can write:

σ2
2 = β2ε =

L2

β1

(
1 + β2

1(Kl − (Kl)min)2
)
ε

Why is this useful? By means of a quadrupole scan (i.e. changing the quadrupole strength) we identify the strength Kl
which minimises the value σ2

2 . We fit a parabola to the measurements σ2
2 vs. Kl, and select then σ2

2((Kl)min). The
minimum beam size is given by:

Min(σ2) = L

√
ε

β1
=
√
B0ε (3)

5. How does σ2 vary with Kl when |Kl − (Kl)min| � 1/β1 ?

Answer. Under this condition:

σ2
2 =

L2

β1

(
1 + β2

1(Kl − (Kl)min)2
)
ε −→ σ2 ' L

√
β1ε(Kl − (Kl)min)

For |Kl − (Kl)min| � 1/β1, σ2 depends linearly on Kl, with slope

dσ2

d(Kl)
=
L2β1

σ2
(Kl − (kl)min)ε.
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6. Deduce the values of α1, β1, and γ1 from the measurement σ2, as a function of the quadrupole current IQ.

Answer. We know that

Kl =
G · l
p/e

=
C · l · IQ
p/e

=
0.01[T/(Am)]·0.2[m]
(0.3[GeV]/0.3)[Tm]

· IQ = 2× 10−3 · IQ

If we measure σ2 as a function of the quadrupole current IQ, from the minimum value we can get β1 (Eq. (3)), and since
from the measurement we obtain (Kl)min = 2 × 10−3(IQ)min, using Eq. (2) we can calculate α1. Once we know β1 and
α1, it is then straightforward to calculate γ1 = (1 + α2

1)/β1.

4 Exercise: The spectrometer line of CTF3
The CTF3 (CLIC Test Facility 3) experiment at CERN consists of a linac that injects very short electron bunches into an
isochronous ring. A spectrometer line made of one quadrupole and one bending magnet is located at the end of the linac where
the particle momentum is 350 MeV/c. The goal of the spectrometer is to measure the energy before injecting the electrons in
the ring. The spectrometer line is sketched on the figure below. It is made of a focusing quadrupole of focal length f , a drift
space of length L1, a bending magnet of deflection angle θ in the horizontal plane, and a drift space of length L2. We assume
that the spectrometer line starts at the quadrupole and ends at the end of the second drift. We neglect the focusing effect of the
dipole.

1. If the effective length of the dipole is lB = 0.43 m, what should be the magnetic field (in Tesla) inside the dipole to deflect
the electrons by an angle of 35 degrees?

Answer. One has θ = l
ρ and Bρ = 3.356 p: B =

3.356 p θ

l
= 1.66 T.

2. Starting from the general horizontal 3 × 3 transfer matrix of a sector dipole of deflection angle θ, show that the transfer
matrix of a dipole in the thin-lens approximation is

Mdipole =

 1 0 0
0 1 θ
0 0 1


Which approximations are done?

Hint: A sector dipole has the following 3× 3 transfer matrix:

Mdipole =

 cos θ ρ sin θ ρ(1− cos θ)
− sin θ

ρ cos θ sin θ

0 0 1


Answer. We need to compute the limit for l → 0 while keeping θ = l

ρ = const. Remember that, if θ is a small angle,
cos θ ≈ 1, sin θ ≈ θ. Besides the trivial elements, such as m11, m22, and m23, the others read:
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m12 : lim
l→0

ρ sin θ = lim
l→0

sin θ
1
ρ

= lim
l→0

l ·
sin l

ρ

l
ρ︸ ︷︷ ︸

const

= 0

m13 : lim
l→0

ρ (1− cos θ) = lim
l→0

ρ

(
1− cos

l

ρ

)
= lim
l→0

l ·
1− cos l

ρ

l
ρ︸ ︷︷ ︸

const

= 0

m21 : lim
l→0
− sin θ

ρ
= lim
ρ→∞

− sin θ

ρ
= 0

therefore, in thin-lens approximation the matrix of a dipole magnet, is

Mdipole =

 1 0 0
0 1 θ
0 0 1

 .

3. In the thin-lens approximation, derive the horizontal extended 3 × 3 transfer matrix of the spectrometer line. Show that
it is:

Mspectro =

 f−L1−L2

f L1 + L2 L2θ

− 1
f 1 θ

0 0 1


Answer. For the spectrometer line, one has

Mspectro = MDrift2 ·MDipole ·MDrift1 ·MQuad

therefore:

Mspectro =

 1 L2 L2θ
0 1 θ
0 0 1

×
 1− L1

f L1 0

− 1
f 1 0

0 0 1

 .

4. Assuming D = D′ = 0 at the entrance of the quadrupole, what is the dispersion and its derivative at the end of the
spectrometer line? Give the numerical value of D′ at the end of the spectrometer line for the angle of 35 degrees.

Answer. At the entrance of the line, D = 0 and D′ = 0. If M is the transfer matrix of a system the dispersion D at exit
is the element m13 of M , whereas D′ is the element m23:

D = L2θ,

D′ = θ = 35 degrees = 0.61.

5. What is the difference between a periodic lattice and a beam transport lattice (or transfer line) as concerns the betatron
function ?

Answer. In a periodic lattice the β-functions are periodic and contained in the (periodic) transfer matrix of the lattice. In
transfer line one needs to know the initial conditions in order to calculate the β-functions at any point (using the transfer
matrix).

6. Derive the betatron function β2 at the end of the spectrometer line in terms of L1, L2, f and β1, assuming α1 = 0.

Hint 1. Remember from the lecture: β
α
γ


s

=

 C2 −2SC S2

−CC ′ SC ′ + S′C −SS′
C ′2 −2S′C ′ S′2

 β
α
γ


0

An alternative way to transport the Twiss parameters is through the σ matrix:

σi =

(
βi −αi
−αi γi

)

5



This matrix multiplied by the emittance ε gives the so-called beam matrix (which has already been introduced during the
lecture):

Σi =

(
βiε −αiε
−αiε γiε

)
If σ1 is the matrix at the entrance of the transfer line, the matrix σ2 at the exit of the transfer line is given by

σ2 = Mσ1M
T

where M is the 2 × 2 transfer matrix of the line extracted from the extended 3 × 3 transfer matrix (see question 3), and
MT the transpose matrix of M .

Hint 2. For the calculations, write M as M =

(
m11 m12

m21 m22

)
and replace the values of the matrix elements only at the

end.

Answer. One has σ2 = Mσ1M
T . If α1 = 0, then σ1 =

(
β1 0
0 1/β1

)

σ2 =

(
m11 m12

m21 m22

)(
β1 0
0 1/β1

)(
m11 m21

m12 m22

)

σ2 =

(
β1m

2
11 +m2

12/β1 β1m11m21 +m12m22/β1

β1m11m21 +m12m22/β1 β1m
2
21 +m2

22/β1

)
Therefore:

β2 = β1m
2
11 +m2

12/β1

Since m11 = f−L1−L2

f and m12 = L1 + L2, one has:

β2 = β1

(
1− L1 + L2

f

)2

+
(L1 + L2)

2

β1
.

7. Given the numerical values L1 = 1 m, L2 = 2 m, β1 = 10 m, α1 = 0, compute the value of the focal length f such that the
betatron function at the end of the spectrometer line is minimum.

Answer. If L1 = 1 m, L2 = 2 m, and β1 = 10 m, then β2 = 0.9 + 10
(

1− 3
f

)2

. To have β2 minimum one needs(
1− 3

f = 0
)
.Therefore, f = 3 m.

8. For an off-momentum particle, compute the deviation from the design orbit? Why is it important to minimise the β
function in the spectrometer?

Answer. With dispersion, the deviation from the design orbit is ∆x = D∆P
P0

. Measuring ∆x allows to determine ∆P and
therefore P , if one has calibrated the spectrometer at P0. It is important to minimise β2 (at the screen location) in order
to have the best possible resolution for ∆x: a smaller β2 will result in a smaller transverse beam size on the screen, which
favours an accurate measurement of the momentum.

5 Exercise: Transfer matrix of a dipole magnet
• Remember weak focusing:

K = 1
ρ2

:

MDipole =

 cos
(√

KL
)

1√
K

sin
(√

KL
)

−
√
K sin

(√
KL

)
cos
(√

KL
)  =

(
cos L

ρ
ρ sin L

ρ

− 1
ρ
sin L

ρ
cos L

ρ

)
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• Compute the 3× 3 matrix of a sector dipole including the dispersion terms.

Remembering that:

D (s) = S (s)

∫ s

0

1

ρ (t)
C (t) dt− C (s)

∫ s

0

1

ρ (t)
S (t)dt

one can easily find that:

D (L) = ρ

(
1− cos

L

ρ

)
D′ (L) = sin

L

ρ

which allows to write Mdipole as 3× 3 matrix in the form:

MDipole =

 C S D
C ′ S′ D′

0 0 1


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