

Beam Diagnostics and Instrumentation

JUAS 2019, Archamps

Peter Forck

Gesellschaft für Schwerionenforschnung (GSI) and University Frankfurt

Demands on Beam Diagnostics

Diagnostics is the 'sensory organs' for the beam.

It deals with <u>real</u> beams in <u>real</u> technical installations including all imperfections.

Three types of demands lead to different installations:

- ➤ Quick, non-destructive measurements leading to a single number or simple plots
 Used as a check for online information. Reliable technologies have to be used

 Example: Current measurement by transformers
- ➤ Instruments for daily check, malfunction diagnosis and wanted parameter variation *Example*: Profile measurement, in many cases 'intercepting' i.e destructive to the beam
- ➤ Complex instruments for severe malfunctions, accelerator commissioning & development
 The instrumentation might be destructive and complex

 Example: Emittance determination

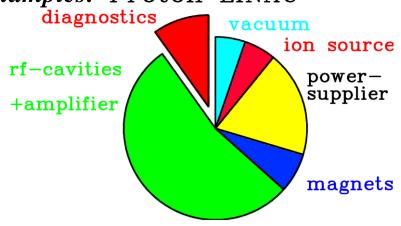
General usage of beam instrumentation:

- Monitoring of beam parameters for operation, beam alignment, acc. development.....
- ➤ Instruments for automatic, active beam control

Example: Closed orbit feedback using position measurement by BPMs

Non-destructive ('non-intercepting') methods are preferred:

- > The beam is not influenced
- ➤ The instrument is not destroyed


The Role of Beam Diagnostics

The cost of diagnostics is about 3 to 10 % of the total facility cost:

- $\geq \approx 3$ % for large accelerators *or* accelerators with standard technologies
- $\geq \approx 10$ % for versatile accelerators *or* novel accelerators and technologies.

Cost Examples: Proton LINAC

Super-conducting synchr.

The amount of man-power is about 10 to 20 %:

- > very different physics and technologies are applied
- technologies have to be up-graded, e.g. data acquisition and analysis
- > accelerator improvement calls for new diagnostic concepts.

3

Relevant physical Processes for Beam Diagnostics

- **Electro-magnetic influence by moving charges:**
 - \rightarrow Physics: classical electro-dynamics. Technique: U and I meas., low & high frequencies Examples: Faraday cups, beam transformers, pick-ups
- **Emission of photon by accelerated charges: (only for high relativistic electrons and p)**
 - → <u>Physics</u>: classical electro-dynamics. <u>Technique</u>: optical techniques (from visible to x-ray) *Example*: Synchrotron radiation monitors
- **➤** Interaction of particles with photons:
 - → <u>Physics</u>: optics, lasers. <u>Technique</u>: optical techniques, particle detectors Examples: laser scanners, short bunch length measurement, polarimeters
- **Coulomb interaction of charged particles with matter:**
- → <u>Physics</u>: atomic and solid state physics. <u>Technique</u>: *I* meas., optics, particle detectors *Examples*: scintillators, viewing screens, ionization chambers, residual gas monitors
- > Nuclear- or elementary particle physics interactions:
 - → Physics: nuclear physics. Technique: particle detectors

 Examples: beam loss monitors, polarimeters, luminosity monitors
- > And of cause accelerator physics for proper instrumentation layout.
- Beam diagnostics deals with the full spectrum of physics and technology,
- ⇒ this calls for experts on all these fields and is a challenging task!

Beam Quantities and their Diagnostics I

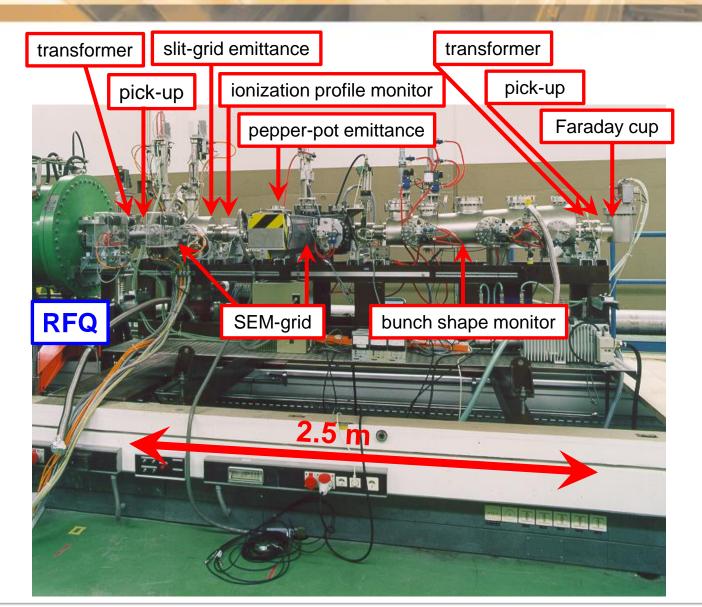
LINAC & transport lines: Single pass ↔ **Synchrotron:** multi pass

Electrons: always relativistic \leftrightarrow **Protons/Ions:** non-relativistic for $E_{kin} < 1$ GeV/u

Depending on application: Low current ↔ high current

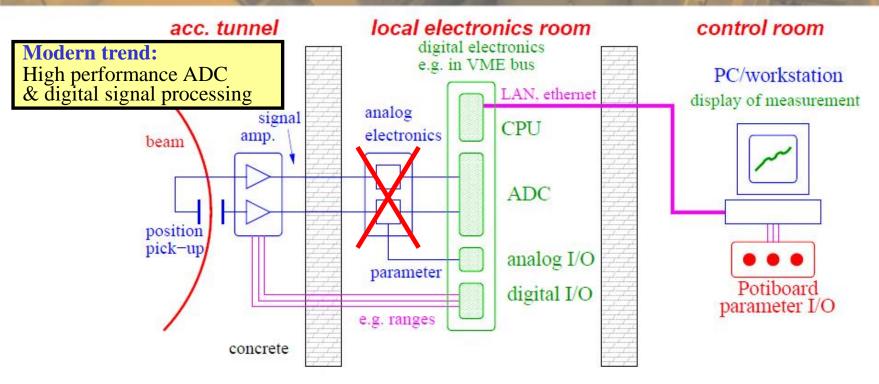
Overview of the most commonly used systems:

Beam quantity		LINAC & transfer line	Synchrotron	
Current I	General	Transformer, dc & ac	Transformer, dc & ac	
		Faraday Cup		
	Special	Particle Detectors	Pick-up Signal (relative)	
Profile x _{width}	General	Screens, SEM-Grids	Ionization Profile Monitor	
		Wire Scanners, OTR Screen	Wire Scanner,	
			Synchrotron Light Monitor	
	Special	MWPC, Fluorescence Light		
Position x_{cm}	General	Pick-up (BPM)	Pick-up (BPM)	
	Special	Using position measurement		
Transverse Emittance ε_{trans}	General	Slit-grid	Ionization Profile Monitor	
ii uits		Quadrupole Variation	Wire Scanner	
	Special	Pepper-Pot	Transverse Schottky	


Beam Quantities and their Diagnostics II

Beam quantity		LINAC & transfer line	Synchrotron	
Bunch Length Δφ	General	Pick-up	Pick-up	
			Wall Current Monitor	
	Special	Secondary electrons arrival	Streak Camera	
		Electro-optical laser mod.	Electro-optical laser mod.	
Momentum p and	General	Pick-ups (Time-of-Flight)	Pick-up (e.g. tomography)	
Momentum Spread <i>∆p/p</i>	Special	Magnetic Spectrometer	Schottky Noise Spectrum	
Longitudinal Emittance	General	Buncher variation		
$arepsilon_{long}$	Special	Magnetic Spectrometer	Pick-up & tomography	
Tune and Chromaticity Q , ξ	General		Exciter + Pick-up	
	Special		Transverse Schottky Spectrum	
Beam Loss r _{loss}	General	Particle Detectors		
Polarization P	General	Particle Detectors		
	Special	Laser Scattering (Compton scattering)		
Luminosity L	General	Particle Detectors		

- Destructive and non-destructive devices depending on the beam parameter.
- ➤ Different techniques for the same quantity ↔ Same technique for the different quantities.

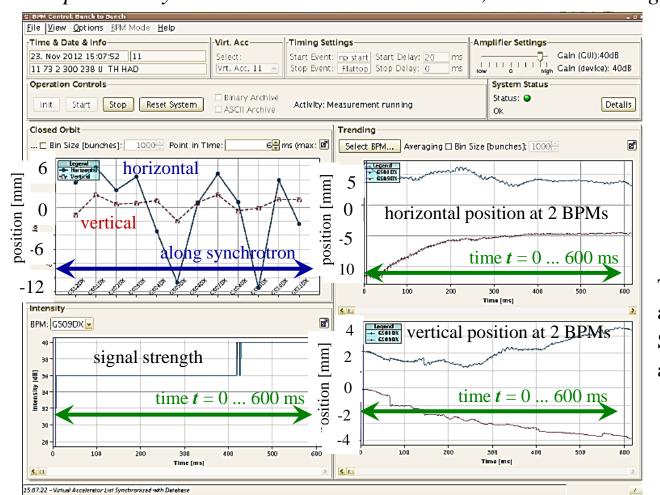

Remark: In most cases no diagnostics device installed inside the rf-cavities (except cyclotron)

Example: Diagnostics Bench for the Commissioning of an RFQ

Typical Installation of a Diagnostics Device

- local electronics room:

 → analog treatment, partly combining other parameters


 → digitalization, data bus systems (GPIB, VME, cPCI, µTCA...)

Close Orbit Measurement with Beam Position Monitors BPM

Single bunch position averaged over 1000 bunches \rightarrow closed orbit with ms time steps. It differs from ideal orbit by misalignments of the beam or components.

Example: GSI-synchrotron at two BPM locations, 1000 turn average during acceleration:

Closed orbit:

Beam position averaged over many turns (i.e. betatron oscillations).

The result helps to align the accelerator!

Some device parameters are shown to prove functionality.

Outline of the Lecture

The ordering of the subjects is oriented by the beam quantities:

- **Current measurement:** Transformers, cups, particle detectors
- **Profile measurement:** Various methods depending on the beam properties
- ➤ Transverse emittance measurement: Destructive devices, determination by linear transformations
- ➤ Pick-ups for bunched beams: Principle and realization of rf pick-ups, closed orbit and tune measurements
- ➤ Measurement of longitudinal parameters: Beam energy with pick-ups, time structure of bunches for low and high beam energies, longitudinal emittance
- **Beam loss detection:** Secondary particle detection for optimization and protection
- It will be discussed: The action of the beam to the detector, the design of the devices, generated raw data, partly analog electronics, results of the measurements.
- It will not be discussed: Detailed signal-to-noise calculations, analog electronics, digital electronics, data acquisition and analysis, online and offline software....
- General: Standard methods and equipment for stable beams with moderate intensities.

Organization of the Lecture

- ➤ Pick-up
- ➤ Longi. Parameters

Lecture:

- Current
- > Transverse profile

Exercise

Lecture:

- > Transverse profile
- Emittance

Schedule 2019	Monday Feb 25th	Tuesday Feb 26th	Wednesday Feb 27th	Thursday Feb 28th	Friday March 1st	
09:00	Beam instrumentation lecture	Beam instrumentation lecture	Beam instrumentation lecture	Bus leaves at 8:00 from	Bus leaves at 8:00 from	
10:00 10:15 10:30	P. Forck Coffee Break Beam instrumentation lecture	P. Forck Coffee Break Beam instrumentation lecture	P. Forck Coffee Break Beam instrumentation tutorial	Exercise: Your hard work! Lecture:		
11:15	P. Forck Beam instrumentation lecture	P. Forck Beam instrumentation lecture	P. Forck Beam instrumentation tutorial			
12:15	P. Forck WORKING LUNCH	P. Forck BREAK	P. Forck BREAK	M. Be	eam loss det.	
14:00	Beam instrumentation lecture P. Forck	Superconducting RF Cavities lecture F. Caspers	Superconducting RF Cavities tutorial F. Caspers	V. Bagiin R. Kersevan MAGNET coordinators: J. Bauche	R. Kersevan MAGNET coordinators: J. Bauche	
15:00	Beam instrumentation tutorial P. Forck	Superconducting RF Cavities lecture F. Caspers	Superconducting RF Cavities tutorial F. Caspers	L. Fiscarelli SUPERCONDUCTIVITY coordinator: J. Fleiter	L. Fiscarelli SUPERCONDUCTIVITY coordinator: J. Fleiter	
16:15	Coffee Break Beam instrumentation tutorial P. Forck	Coffee Break Superconducting RF Cavities lecture F. Caspers	Coffee Break Superconducting RF Cavities lecture F. Caspers	CLEAR coordinators: R. Corsini W. Farabolini	CLEAR coordinators: R. Corsini W. Farabolini	
17:15			Building Large Accelerators	Bus leaves at 17:30 from CERN	Bus leaves at 17:30 from CERN	

AFTER WORK AT ESI

General: Please ask questions & make comments → interrupts are welcome!

This is your event!

The goal of the lecture should be:

- **▶** Understanding the signal generation of various device
- Showing examples for real beam behavior
- > Enabling a correct interpretation of various measurements.