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discussed in the RF engineering module
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Classical	electromagnetic	theory	(Maxwell	equations)

source

wellr · ~E = ⇢/✏0

r · ~B = 0

r · ~E = ⇢/✏0
r⇥ ~E = �@ ~B

@t

✏0@ ~E/@t ~J

✏0@ ~E/@t ~J

r · ~B = 0

r⇥ ~E = �@ ~B

@t

r · ~B = 0

r · ~E = ⇢/✏0

r⇥ ~B = µ0✏0
@ ~E

@t
+ µ0

~J
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1.
Charges are the sources of 
E-field.

2.
B-field has no sources.

3.
Time varying E-field and 
B-field are chained. 

4.
B-field is chained to  
current. 
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Maxwell	equations	in	vacuum

Electric Field 
Magnetic Flux Density

Electric Charge Density
Electric Current Density

r⇥ ~E = �@ ~B

@t

r · ~B = 0

r · ~E = ⇢/✏0 (V/m)
�
Wb/m2

�

�
A/m2

�

�
C/m3

�

r · ~E = ⇢/✏0

r · ~B = 0

r⇥ ~B = µ0✏0
@ ~E

@t
+ ~J

r · ~E = ⇢/✏0 sources

fields

µ0 = 4⇡ 10�7 (H/m) ✏0 = 1/c2µ0 = 8.8542 10�12 (F/m) c = 1/
p
µ0✏0 = 299792458 (m/s)

Magnetic constant
(permeability of free space)

Electric constant 
(permittivity of free space)

Speed of light

Divergence operator Curl operator

r · ~A = . . .

The source of

~A is ...

~B is chained to

~A
r⇥ ~A = ~C

r⇥ ~A = ~C

~A is chained to

~C

r⇥ ~B = µ0✏0
@ ~E

@t
+ µ0

~J

6

~B is chained to

~A
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Some	consequences	of	the	IV	equation
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r⇥ ~B = µ0

 
✏0
@ ~E

@t
+ ~J

!

0 = r ·r⇥ ~B = µ0r ·
 
✏0
@ ~E

@t
+ ~J

!
= 0

The current density has 
closed lines.

0 = r ·r⇥ ~B = µ0r ·
 
✏0
@ ~E

@t
+ ~J

!
= 0

0 = r ·r⇥ ~B = µ0r ·
 
✏0
@ ~E

@t
+ ~J

!
= 0

Displacement
current

0 = r ·r⇥ ~B = µ0r ·
 
✏0
@ ~E

@t
+ ~J

!
= 0

Continuity 
equationr · ~J = �@⇢

@t

At a given position the source of J 
is the decrease of charge in time.

tFixed position

0 = r ·r⇥ ~B = µ0r ·
 
✏0
@ ~E

@t
+ ~J

!
= 0

r · ~E = ⇢/✏0
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Maxwell	equations:	the	static	limit

Kirchhoff Laws

@

@t
= 0 r · ~J = �@⇢

@t
= 0

Ohm Law

Lumped elements 
(electric networks)

@

@t
⇡ 0

The lumped elements model for electric networks is used also when 
the field variation is negligible over the size of the network.

@

@t
= 0

r⇥ ~E = 0

The E field is conservative.

The energy gain of a charge in closed circuit is zero.

r⇥ ~E = 0

No static, circular accelerators (RF instead!).

~E = �rV
r · ~E = 0

r2V = 0
free space

Laplace 
equation

8

r⇥ ~E = 0
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Particle	interaction with	time	varying	fields

Beam manipulation

External sources acting on the beam 
through EM fields.

Parasitic effects

Wakefields and coupling impedance

Extraction of beam energy

Particle acceleration, deflection …

Beam Instabilities

Diagnostics
RF devices

r⇥ ~B = µ0✏0
@ ~E

@t
+ µ0

~J

r · ~E = ⇢/✏0

~J = ⇢~v =
Q

2⇡r
� (r) � (z � vt)~v
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Particle	acceleration by	time	varying	fields

r⇥ ~E = �@ ~B

@t

magnet

magnet X X X

cavity

Betatron or
”unbunched” acceleration

Resonant or
”bunched” acceleration

Linear accelerator (LINAC)
Cyclotron
Synchrotron

𝐸
𝐵

r · ~E = ⇢/✏0r⇥ ~E = �@ ~B

@t

𝐸
𝐵

Courtesy of P. Bryant

Charge
Charge
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Parasitic	effects:	the	wakefield

Particle in accelerators are charged, thus they are sources of EM fields …

Courtesy of Cho Ng, SLAC
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Wakefields	extract	beam	energy	to	EM	field

The principle is used in general purpose RF sources (e.g. klystrons) as well as 
in accelerators (e.g. particle wakefield accelerators)

Courtesy of Cho Ng, SLAC
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Maxwell	equations	in	matter:	the	physical	approach

charges and currents IN VACUUM

Insulator

… the modelThe reality …

r · ~B = 0

r · ~E = ⇢/✏0

Superconductor, 
Ferrite …

Magnetic medium:

13
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Maxwell	equations	in	matter:	the	mathematics

Electric insulators (dielectric) Magnetic materials
(ferrite, superconductor)

Polarization charges Magnetization currents

~D = ✏0 ~E + ~P ~H =
~B

µ0
� ~M

Magnetic Field Electric Flux Density

MagnetizationElectric Polarization

~D = ✏0 ~E + ~P

~D = ✏0 ~E + ~P

~H =
~B

µ0
� ~M

~H =
~B

µ0
� ~M

�
C/m2

�
(A/m)

�
C/m2

�
(A/m)

Constitutive relations

Equivalence Principles in Electromagnetics Theory
14
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Maxwell	equations:	general	expression	and	solution

r · ~D = ⇢

r⇥ ~H =
@ ~D

@t
+ ~J

r⇥ ~E = �@ ~B

@t

r · ~B = 0
Magnetic Field 

Electric Flux Density~D = ✏0 ~E + ~P

~H =
~B

µ0
� ~M

�
C/m2

�

(A/m)

Electric Field 

Magnetic Flux Density

Electric Charge Density
Electric Current Density

(V/m)

�
Wb/m2

�

�
A/m2

�

�
C/m3

�

r · ~E = ⇢/✏0

r · ~B = 0

r⇥ ~B = µ0✏0
@ ~E

@t
+ ~J

r · ~E = ⇢/✏0
so

ur
ce

s
fie

ld
s

~H =
~B

µ0
� ~M

in vacuum

15

r⇥r⇥ ~E = r(r · ~E)�r2 ~E

�µ0
@

@t
(r⇥ ~H) = �µ0✏0

@2 ~E

@t

r⇥r⇥ ~E = r(r · ~E)�r2 ~E = �r2 ~E

=
=

Maxwell Equations: free space, no sources

1

v2
= µ0✏0 =) v =

1
p
µ0✏0

= c

Wave 
equation

r2 ~H = µ0✏0
@2 ~H

@t2

r2 ~E = µ0✏0
@2 ~E

@t2
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Harmonic	time	dependence	and	phasors

Assuming sinusoidal electric field (Fourier)

Time dependence ej!t = ej2⇡f t @

@t
· · · = j! . . .

~E(~r, t) = Re
n

~E(~r,!)ej!t
o

Phasors are complex vectors

Power/Energy depend on time average of quadratic quantities ��� ~E(~r, t)
���
average

=
1

T

Z T

0

~E(~r, t) · ~E(~r, t)dt = · · · =
1

2
~E(~r,!) · ~E⇤(~r,!) =

��� ~ERMS(~r,!)
���
2

��� ~ERMS

��� =
��� ~E

��� /
p
2

In the following we will use the same symbol for

Complex vectorsReal vectors
~E(~r, t), ~H(~r, t), . . .

Note that, with phasors, a time animation is identical to phase rotation.
16

~E (~r,!) , ~H (~r,!) , . . .

��� ~E(~r, t)
���
average

=
1

T

Z T

0

~E(~r, t) · ~E(~r, t)dt = · · · =
1

2
~E(~r,!) · ~E⇤(~r,!) =

��� ~ERMS(~r,!)
���
2

2
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Electromagnetic	radiation	spectrum

17Source: Common knowledge (Wikipedia)
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Electromagnetic	radiation	spectrum:	users	point	of	view

18
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The	electromagnetic	spectrum	for	RF	engineers

19Source: Pozar, Microwave Engineering 4ed, 2012
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The	RF	spectrum	and	particle	accelerator	devices

800MHz

110GHz3MHz

1.3GHz

3GHz 450GHz

dielectricfuture
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The	RF	spectrum	and	particle	accelerator	devices

800MHz

110GHz3MHz

1.3GHz

3GHz 450GHz

dielectricfuture
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The	RF	spectrum	and	particle	accelerator	electronics

1.3GHz

A. Gallo Lecture @ CAS RF engineering (2010)
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Harmonic	fields	in	media:	constitutive	relations

~D = ✏0 ~E + ~P

~H =
~B

µ0
� ~M

~D = ✏c ~E

~B = µ ~H

✏c = ✏0 � j✏00

µ = µ0 � jµ00

Hyp: Linear, Homogeneous, Isotropic and non Dispersive media

complex permittivity

complex permeability

~Jc = � ~E �Ohm Law conductivity (S/m)

Losses (heat) due to damping of vibrating dipoles

Losses (heat) due to 
moving charges 
colliding with lattice

Source: Pozar, Microwave Engineering 4ed, 2012
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Harmonic	fields	in	media:	Maxwell	Equations

~D = ✏0 ~E + ~P

~H =
~B

µ0
� ~M

~D = ✏c ~E

~B = µ ~H

✏c = ✏0 � j✏00

µ = µ0 � jµ00

Hyp: Linear, Homogeneous, Isotropic and non Dispersive media

complex permittivity

complex permeability

~Jc = � ~E �Ohm Law conductivity (S/m)

r · ~D = ⇢

r⇥ ~E = �j!µ ~H

@ @
t
··
·=

j!
..
.

✏ = ✏0 � j✏00 � j
�

!

tan � =

!✏00 + �

!✏0
=

Losses

Displacement current

✏0 = ✏r✏0

✏ = ✏r✏0 (1� j tan �)

r⇥ ~H = j! ~D + ~Jc + ~J = · · · = j!✏ ~E + ~J

Losses (heat) due to damping of vibrating dipoles

Losses (heat) due to 
moving charges 
colliding with lattice

Dielectric constant

Loss tangent

24

r · ~B = 0
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Harmonic	fields	in	media:	Maxwell	Equations

~D = ✏0 ~E + ~P

~H =
~B

µ0
� ~M

~D = ✏c ~E

~B = µ ~H

✏c = ✏0 � j✏00

µ = µ0 � jµ00

Hyp: Linear, Homogeneous, Isotropic and non Dispersive media

complex permittivity

complex permeability

~Jc = � ~E �Ohm Law conductivity (S/m)

r · ~D = ⇢ r · ~B = 0

r⇥ ~E = �j!µ ~H

@ @
t
··
·=

j!
..
.

✏ = ✏0 � j✏00 � j
�

!

tan � =

!✏00 + �

!✏0
=

Losses

Displacement current

✏0 = ✏r✏0

✏ = ✏r✏0 (1� j tan �)

r⇥ ~H = j! ~D + ~Jc + ~J = · · · = j!✏ ~E + ~J

Losses (heat) due to damping of vibrating dipoles

Losses (heat) due to 
moving charges 
colliding with lattice

Dielectric constant

Loss tangent

Source: Pozar, Microwave Engineering 4ed, 2012
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Boundary	Conditions

Surface Charge Density
Surface Current Density

�
C/m2

�

(A/m)

⇢s

~Js

n̂ ·
⇣
~D2 � ~D1

⌘
= ⇢s n̂ ·

⇣
~B2 � ~B1

⌘
= 0

n̂⇥
⇣
~H2 � ~H1

⌘
= ~Jsn̂⇥

⇣
~E2 � ~E1

⌘
= 0

n̂⇥ ~E1 = n̂⇥ ~E2 n̂⇥ ~H1 = n̂⇥ ~H2

n̂ · ~D1 = n̂ · ~D2 n̂ · ~B1 = n̂ · ~B2Fields at a lossless
dielectric interface

⇢s = 0 ~Js = 0

⇢s = 0 ~Js = 0

Perfect conductor 
(electric wall)

n̂ · ~D = ⇢s n̂ · ~B = 0

n̂⇥ ~E = 0 n̂⇥ ~H = ~Js

� ! 1

Magnetic Wall 
(dual of the E-wall)

approx.

n̂⇥ ~H = 0 n̂⇥ ~E 6= 0

n̂ · ~B = 0n̂ · ~D = 0

26

n̂⇥ ~E = 0~E
⇢s = 0 ~Js = 0

~H

n̂⇥ ~E = 0~H

~E
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Helmotz	equation	and	its	simplest	solution
Helmotz equation

r2 ~E = µ0✏0
@2 ~E

@t2

ej!t ! @2

@t2
· · · = �!2 . . .

r2 ~E + !2µ✏ ~E = 0

r2 ~H + !2µ✏ ~H = 0

k = !
p
µ✏ (1/m)

Propagation/phase  constant
Wave number

The simples solution: the plane wave
x̂ ŷ ẑ

x̂ ŷ ẑ

x̂ ŷ ẑ

~

E = E

x

x̂

Uniform in x, y

Lossless medium
@

@x

=
@

@y

= 0
d2E

x

dz2
+ k2E

x

= 0 E
x

(z) = E+e�jkz + E�ejkz

E

x

(z, t) = Re

�
E(x,!)e

j!t

 
= E

+
cos (!t�kz) + E

�
cos (!t+kz)

It is a wave, moving in the +z direction or –z direction

Velocity at which a fixed phase point on the wave travelsPhase velocity

!t⌥ kz = const

vp =

dz

dt
=

d

dt

✓
!t⌥ const

k

◆
=

!

k
=

1

p
µ✏

Speed of light

27

E(z,!)ej!t
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Plane	waves	and	Transverse	Electro-Magnetic	(TEM)	waves

The ration of E and E component is an impedance called wave impedance

Distance between two consecutive maxima (or minima or …)Wave length

(!t� kz)� [!t� k(z + �)] = 2⇡ � =
2⇡

k
=

2⇡vp
!

=
vp
f

r⇥ ~E = �j!µ ~H H
x

= H
y

= 0 H
y

=
j

!µ

@E
x

@z
=

1

⌘

�
E+e�jkz � E�ejkz

�

⌘ =
!µ

k
=

r
µ

✏
Intrinsic impedance of the medium (⌦) ⌘0 =

r
µ0

✏0
= 377 ⌦

x̂ ŷ ẑ

x̂ ŷ ẑ

x̂ ŷ ẑ

~

E = x̂E

x

~k = ẑk ~k = �ẑk

~H = �ŷHy
~H = ŷHy

~

E = x̂E

x

~H = �ŷHy
~H = ŷHy

~k = ẑk ~k = �ẑk

~H =
1

⌘
k̂ ⇥ ~E

TEM wave E and H field are transverse to 
the direction of propagation. ZTEM = ⌘

~

E = x̂E

x

~H = �ŷHy
~H = ŷHy

~k = ẑk ~k = �ẑk

Compute	H	…

28

E
x

(z) = E+e�jkz + E�ejkz
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Plane	waves	and	Transverse	Electro-Magnetic	(TEM)	waves

The ratio of E and H component is an impedance called wave impedance

Distance between two consecutive maxima (or minima or …)Wave length

(!t� kz)� [!t� k(z + �)] = 2⇡ � =
2⇡

k
=

2⇡vp
!

=
vp
f

r⇥ ~E = �j!µ ~H

H
y

=
j

!µ

@E
x

@z
=

1

⌘

�
E+e�jkz � E�ejkz

�

⌘ =
!µ

k
=

r
µ

✏
Intrinsic impedance of the medium (⌦) ⌘0 =

r
µ0

✏0
= 377 ⌦

x̂ ŷ ẑ

x̂ ŷ ẑ

x̂ ŷ ẑ

~

E = x̂E

x

~k = ẑk ~k = �ẑk

~H = �ŷHy
~H = ŷHy

~

E = x̂E

x

~H = �ŷHy
~H = ŷHy

~k = ẑk ~k = �ẑk

~H =
1

⌘
k̂ ⇥ ~E

TEM wave E and H field are transverse to 
the direction of propagation. ZTEM = ⌘

~

E = x̂E

x

~H = �ŷHy
~H = ŷHy

~k = ẑk ~k = �ẑk

29

H
x

= H
z

= 0

E
x

(z) = E+e�jkz + E�ejkz
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Plane	waves	and	Transverse	Electro-Magnetic	(TEM)	waves
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Plane	wave	in	lossy	media

Definition: � = ↵+ j� = j!
p
µ✏ = j!

p
µ✏0✏r(1� j tan �)

r2 ~E + !2µ✏ ~E = 0 tan � =

!✏00 + �

!✏0
=

Losses

Displacement current

✏ = ✏r✏0 (1� j tan �)

x̂ ŷ ẑ

x̂ ŷ ẑ

x̂ ŷ ẑ

~

E = E

x

x̂

Uniform in x, y
d2E

x

dz2
� �2E

x

= 0

e��z = e�↵ze�j�z
e�↵z

cos (!t� �z)

vp =
!

� � =
2⇡

�

H
y

=
j

!µ

@E
x

@z
= � j�

!µ

�
E+e��z � E�e�z

�
=

1

⌘

�
E+e��z � E�e�z

�
⌘ =

j!µ

�

Positive z direction

E
x

(z) = E+e��z + E�e�z

Phase constantAttenuation constant

time

⌘ =
!µ

k
=

r
µ

✏

ZTEM = ⌘x̂ ŷ ẑ

x̂ ŷ ẑ

x̂ ŷ ẑ

~

E = x̂E

x

~H = �ŷHy
~H = ŷHy

~� = ẑ�

complex

~H =
1

⌘
�̂ ⇥ ~E

Attenuating
TEM “wave” …

31
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Plane	waves	in	good	conductors

Good conductor Conduction current >> displacement current

Characteristic depth of penetration: skin depth �s =
1

↵
=

r
2

!µ�

vacuum

E0

conductor

�s =
1

↵
=

r
2

!µ�
z

� = ↵+ j� = j!
p
µ✏ ' (1 + j)

r
!µ�

2

�E � !✏cE

tan � =
!✏00 + �

!✏0
⇡ �

!✏0✏r

32

vacuum conductor

z

E
x

(z) = E+e��z + E�e�z



Andrea.Mostacci@uniroma1.it

Plane	waves	in	good	conductors

Good conductor Conduction current >> displacement current

Characteristic depth of penetration: skin depth �s =
1

↵
=

r
2

!µ�

vacuum

E0

conductor

�s =
1

↵
=

r
2

!µ�
z

�s = 8.14 10�7 m

�s = 6.60 10�7 m

�s = 7.86 10�7 m

�s = 6.40 10�7 m

@ 10 GHz

Al

Cu

Au

Ag

⌘ =
j!µ

�
' (1 + j)

r
!µ

2�
= (1 + j)

1

��s

� = ↵+ j� = j!
p
µ✏ ' (1 + j)

r
!µ�

2

�E � !✏cE

tan � =
!✏00 + �

!✏0
⇡ �

!✏0✏r

? Copper @ 100 MHz

33

impedance of 
the medium
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Surface	Impedance

Incident 
plane wave

Reflected
plane wave

Good conductor

The power that is transmitted into the conductor 
is dissipated as heat within a very short 
distance from the surface.

No transmitted 
field

Skin
depth

Goal: account for an imperfect conductor

S
� ! 1~JS = n̂⇥ ~H

���
S

when

Approximation
Replace the exponentially decaying volume 
current volume with a uniform current 
extending a distance of one skin depth 

Pt =
1

2�

Z

S

Z �S

0

| ~JS |2

�2S
dSdz =

1

2

1

��S

Z

S
| ~JS |2dS =

Rs

2

Z

S
|n̂⇥ ~H|2dS

Power loss

Surface resistance

computed as if the metal 
were a perfect conductor

Being

�s =
1

↵
=

r
2

!µ�
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Reflection	of	plane	waves	(a	first	boundary	value	problem)
Courtesy of 

M. Ferrario, INFN-LNF

x

z

𝒌

𝜽
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Reflection	of	plane	waves	(a	first	boundary	value	problem)
Courtesy of 

M. Ferrario, INFN-LNF

€ 

ζ = z cosθ − x sinθ

€ 

ζ' = z cosθ ' + x sinθ '

€ 

E x,z, t( ) = E+ xo,zo, to( )eiωt− ikζ + E− xo,zo, to( )eiωt− ikζ '

z

y

θ'θ

θ

ζ

ζ'

E+ E-

H+ H -

x

z

Plane wave reflected by a perfectly conducting plane

In the plane xz the field is given by the superposition of the incident and 
reflected wave:

€ 

σ =∞

And it has to fulfill the boundary conditions (no tangential E-field) 
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Reflection	of	plane	waves	(a	first	boundary	value	problem)

€ 

Ez x,z, t( ) = E+ sinθ( )eiωt− ik z cosθ −x sinθ( ) − E+ sinθ( )eiωt− ik z cosθ +x sinθ( )

= 2iE+ sinθ sin kx sinθ( )eiωt− ikz cosθ

Standing Wave 
pattern (along x) 

Guided wave 
pattern (along z)

Taking into account the boundary conditions the 
longitudinal component of the field becomes:

€ 

vφz =
ω
kz

=
ω

k cosθ
=

c
cosθ

> c

The phase velocity is given by

Courtesy of 
M. Ferrario, INFN-LNF

x

z

𝒌
𝜽
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From	reflections	to	waveguides

€ 

vφz =
ω
kz

=
ω

k cosθ
=

c
cosθ

> c

Courtesy of 
M. Ferrario, INFN-LNF

Put a metallic boundary where the 
field is zero at a given distance from 
the wall.x

z

𝒌

𝜽
Between the two walls there must 
be an integer number of half 
wavelengths (at least one).

For a given distance, there is a 
maximum wavelength, i.e. there is 
cut-off frequency.

It can not be used as it is 
for particle acceleration
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r · ~E = ⇢/✏

Maxwell	equations	and	boundary	value	problem

Maxwell equation with sources + boundary conditions  = boundary value problem

r⇥ ~E = �j!µ ~H r⇥ ~H = +j!✏ ~E + ~J

r · ~H = 0

Homogeneous medium Sources
~J, ⇢

39

Do you see asymmetries?
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r · ~H = ⇢m/µ

r⇥ ~E = �j!µ ~H � ~Jm

Maxwell	equations	and	boundary	value	problem

Maxwell equation with sources + boundary conditions  = boundary value problem

r⇥ ~H = +j!✏ ~E + ~J

Homogeneous medium Sources
~J, ⇢

~Jm, ⇢m

Actual or equivalent

equivalent

r · ~E = ⇢/✏

Vector Helmotz Equation

k2 = !2µ✏
r2 ~E + k2 ~E = r⇥ ~Jm + j!µ ~J +

1

✏
r⇢

r2 ~H + k2 ~H = �r⇥ ~J + j!✏ ~Jm +
1

µ
r⇢m

Step 1 Source free region

So
lu

tio
n Homogeneous problem~J = ~Jm = ⇢m = ⇢ = 0

Step 2 Solution =
X

k

Ck

⇣
~J, ~Jm, ⇢m, ⇢

⌘
Solution-Homogeneous-Problemk

40
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Method	of	solution	of	Helmotz	equations

Sources
~J, ~Jm

Radiated Fields
~E, ~H

Vector 
Potentials

~A, ~F

~⇧e, ~⇧h

Integration of 6 Helmotz equations

Solution of the 
homogeneous equation

Shape of 
radiated field MODES

41
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Solution	of	Helmotz	equations	using	potentials

Sources
~J, ~Jm

Radiated Fields
~E, ~H

Vector 
Potentials

~A, ~F

Integration of 6 Helmotz equations

Solution of the 
homogeneous equationsMODES

r2 ~A+ k2 ~A = �µ ~J

r2 ~F + k2 ~F = �µ ~Jm

if r · ~H = 0

if r · ~E = 0

~HA =
1

µ
r⇥ ~A

~EF = �1

✏
r⇥ ~F

~EA = �j! ~A� j

!µ✏
r

⇣
r · ~A

⌘

~HF = �j! ~F � j

!µ✏
r

⇣
r · ~F

⌘

~H = ~HA + ~HF

~E = ~EA + ~EF

r2 ~A+ k2 ~A = 0

r2 ~F + k2 ~F = 0

Why/when is 
it convenient?

k2 = !2µ✏

42
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Modes	of	cylindrical	waveguides:	propagating	field

Field propagating in the 
positive z direction

~

F = ẑ Fz(x, y) e
�j�z = ẑ F

~

A = ẑ Az(x, y) e
�j�z = ẑ A

r2
tAz +

�
k2 � �2

�
Az = 0

r2
tFz +

�
k2 � �2

�
Fz = 0

r2 = r2
t +

@2

@z2
2 Helmotz equations 

(transverse coordinates)

~HA =
1

µ
r⇥ (ẑA)

~EF = �1

✏
r⇥ (ẑF )

Only E field along z
E-mode 

Transverse Magnetic (TM)

Only H field along z
H-mode 

Transverse Electric (TE)

~EA = [~et + ẑ ez] e
�j�z

~HF =
h
~ht + ẑ hz

i
e�j�z

~HA = ~ht e
�j�z

~EF = ~et e
�j�z

~EA = �j!Aẑ � �

!µ✏
rA

~HF = �j!F ẑ � �

!µ✏
rF

43
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Modes	of	cylindrical	waveguides:	propagating	field

Field propagating in the 
positive z direction

~

F = ẑ Fz(x, y) e
�j�z = ẑ F

~

A = ẑ Az(x, y) e
�j�z = ẑ A

~HA =
1

µ
r⇥ (ẑA)

~EF = �1

✏
r⇥ (ẑF )

Only E field along z
E-mode 

Transverse Magnetic (TM)

Only H field along z
H-mode 

Transverse Electric (TE)

~EA = [~et + ẑ ez] e
�j�z

~HF =
h
~ht + ẑ hz

i
e�j�z

~HA = ~ht e
�j�z

~EF = ~et e
�j�z

~EA = �j!Aẑ � �

!µ✏
rA

~HF = �j!F ẑ � �

!µ✏
rF

~H = ~HA + ~HF
~E = ~EA + ~EF

TM
modes

TE
modes+

44
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Transverse	Electric	Magnetic	mode

Look for a Transverse Electric Magnetic mode

Hint 1 Ez = Hz = 0

Ez = Hz = 0

For a given 

Start from a TM mode (vector potential A) 

Example

r = rt + ẑ
@

@z
r · ~A = · · · = �j�Aze

�j�z

Hint 2 ~EA = · · · = �j!ẑAze
�j�z � j

!µ✏


rt + ẑ

@

@z

�
(�j�)Aze

�j�z =

= � j

!µ✏

⇥
!2µ✏� �

⇤
Aze

�j�z ẑ � �

!µ✏
rtAz e�j�z

if �2 = !2µ✏ = k2 =) ez = 0

Solution

~E, ~H, vp?

~H =
1

µ
rt ⇥ (ẑAz) e

�j!
p
µ✏zAz

~E = � 1
p
µ✏

rtAz e�j!
p
µ✏z

45

The transverse E field is “electrostatic”1. r2
tAz = �

�
k2 � �2

�
Az = 0

2. As plane waves: . . . e�j!
p
µ✏z =) vp = 1/

p
µ✏

~ht =

r
✏

µ
ẑ ⇥ ~et =

1

ZTEM
ẑ ⇥ ~et

~

A = ẑ Az(x, y) e
�j�z = ẑ A
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Transverse	Electric	Magnetic	mode

Look for a Transverse Electric Magnetic mode

Hint 1 Ez = Hz = 0

Ez = Hz = 0

For a given 

Start from a TM mode (vector potential A) 

Example

r = rt + ẑ
@

@z

Hint 2 ~EA = · · · = �j!ẑAze
�j�z � j

!µ✏


rt + ẑ

@

@z

�
(�j�)Aze

�j�z =

= � j

!µ✏

⇥
!2µ✏� �

⇤
Aze

�j�z ẑ � �

!µ✏
rtAz e�j�z

if �2 = !2µ✏ = k2 =) ez = 0

Solution

~E, ~H, vp?

~H =
1

µ
rt ⇥ (ẑAz) e

�j!
p
µ✏zAz

~E = � 1
p
µ✏

rtAz e�j!
p
µ✏z

46

The transverse E field is “electrostatic”1. r2
tAz = �

�
k2 � �2

�
Az = 0

2. As plane waves: . . . e�j!
p
µ✏z =) vp = 1/

p
µ✏

~ht =

r
✏

µ
ẑ ⇥ ~et =

1

ZTEM
ẑ ⇥ ~et

r · ~A = · · · = �j�Aze
�j�z

~

A = ẑ Az(x, y) e
�j�z = ẑ A
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Transverse	Electric	Magnetic	mode	in	waveguides	

TEM waves are possible only if there are at least two conductors. 

For a given Solution ~H =
1

µ
rt ⇥ (ẑAz) e

�j!
p
µ✏zAz

3. 

4. The plane wave is a TEM wave of two infinitely large plates separated to infinity

~ht =

r
✏

µ
ẑ ⇥ ~et =

1

ZTEM
ẑ ⇥ ~et

~E = � 1
p
µ✏

rtAz e�j!
p
µ✏z

5. Electrostatic problem
with boundary conditions

~ht =
1

ZTEM
ẑ ⇥ ~et

~E = ~et e
�j!

p
µ✏z

~H = ~ht e
�j!

p
µ✏z

47

Example
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Common	TEM	waveguides

Animations by G. Castorina48



Andrea.Mostacci@uniroma1.it

General	solution	for	fields	in	cylindrical	waveguide

Write the Helmotz equations for potentials1. 

TM waves

TE waves r2
tFz + k2tFz = 0 k2t = k2 � �2 = !2µ✏� �2

r2
tAz + k2tAz = 0 k2t = k2 � �2 = !2µ✏� �2r2

tFz + k2tFz = 0 k2t = k2 � �2 = !2µ✏� �2

✏ = ✏r✏0 (1� j tan �)

Cartesian coordinates Cylindrical coordinates

r2
t =

@

2

@x

2
+

@

2

@y

2

2. Az(x, y) = X(x)Y (y)

r2
t =

@2

@⇢2
+

1

⇢

@

@⇢
+

1

⇢2
@2

@�2

Separation of variables

Az(⇢,�) = R(⇢)�(�)

49
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General	solution	for	fields	in	cylindrical	waveguide

Eigenvalue problem: Eigenvalues + Eigen-function 3. 

TM

TE r2
tFz + k2tFz = 0 k2t = k2 � �2 = !2µ✏� �2

r2
tAz + k2tAz = 0 k2t = k2 � �2 = !2µ✏� �2

Mode (m,n)

kt Az, Fz

Compute the fields and apply the boundary conditions4. 
~e = ~et + ẑ ez

~h = ~ht + ẑ hz

~em,n
~hm,n

�m,n =
q
!2µ✏� k2t (m,n)

5. 

~E =
X

m,n

am,n ~em,n e�j�m,nz ~H =
X

m,n

bm,n
~hm,n e�j�m,nz

It can be complex 

It depends on the sources

50
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Rectangular	waveguides

51
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Rectangular	waveguides:	TE	mode
Example

Fz = X(x)Y (y) r2
tFz + k2tFz = Y X 00 +XY 00 + k2tXY = 0

X 00

X
+

Y 00

Y
+ k2t = 0

X 00

X
= �k2

x

Y 00

Y
= �k2y

X(x) = C1 cos (kxx) +D1 sin (kxx)

Y (y) = C2 cos (kyy) +D2 sin (kyy)

e

x

= �1

✏

@F

z

@y

= �1

✏

XY

0
= �k

y

✏

[C1 cos (kxx) +D1 sin (kxx)] [�C2 sin (kyy) +D2 cos (kyy)]

E
x

= 0 =) e
x

= 0

e

x

(0  x  a, y = 0) = . . . [�C2 · 0 +D2 · 1] = 0 () D2 = 0

e

x

(0  x  a, y = b) = . . . [�C2 sin (kyb)] = 0 () k

y

b = n⇡ n = 0, 1, 2, . . .
e

x

(0  x  a, y = b) = . . . [�C2 sin (kyb)] = 0 () k

y

b = n⇡ n = 0, 1, 2, . . .
e

x

(0  x  a, y = b) = . . . [�C2 sin (kyb)] = 0 () k

y

b = n⇡ n = 0, 1, 2, . . .

Write	the	Helmotz	equation	

52
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X(x) = C1 cos (kxx) +D1 sin (kxx)

Y (y) = C2 cos (kyy) +D2 sin (kyy)

e

x

= �1

✏

@F

z

@y

= �1

✏

XY

0
= �k

y

✏

[C1 cos (kxx) +D1 sin (kxx)] [�C2 sin (kyy) +D2 cos (kyy)]

Rectangular	waveguides:	TE	mode
Example

Fz = X(x)Y (y) r2
tFz + k2tFz = Y X 00 +XY 00 + k2tXY = 0

X 00

X
+

Y 00

Y
+ k2t = 0 �k2

x

� k2
y

+ k2
t

= 0
constraint 
condition

X 00

X
= �k2

x

Y 00

Y
= �k2y

X(x) = C1 cos (kxx) +D1 sin (kxx)

Y (y) = C2 cos (kyy) +D2 sin (kyy)

e

x

= �1

✏

@F

z

@y

= �1

✏

XY

0
= �k

y

✏

[C1 cos (kxx) +D1 sin (kxx)] [�C2 sin (kyy) +D2 cos (kyy)]

e

x

(0  x  a, y = 0) = . . . [�C2 · 0 +D2 · 1] = 0 () D2 = 0

e

x

(0  x  a, y = b) = . . . [�C2 sin (kyb)] = 0 () k

y

b = n⇡ n = 0, 1, 2, . . .
e

x

(0  x  a, y = b) = . . . [�C2 sin (kyb)] = 0 () k

y

b = n⇡ n = 0, 1, 2, . . .
e

x

(0  x  a, y = b) = . . . [�C2 sin (kyb)] = 0 () k

y

b = n⇡ n = 0, 1, 2, . . .

53

E
x

= 0 =) e
x

= 0

53
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Eigenvalues	and	cut-off	frequencies	(TE	mode,	rect.	WG)

constraint 
conditionk2

t

= k2
x

+ k2
y

=
⇣m⇡

a

⌘2
+

⇣n⇡
b

⌘2
= !2µ✏� �2

~H =
X

m,n

bm,n
~hm,n e�j�m,nz

~E =
X

m,n

am,n ~em,n e�j�m,nz

�m,n =

r
!2µ✏�

⇣m⇡

a

⌘2
�

⇣n⇡
b

⌘2

Cut-off frequencies fc such that �m,n = 0

(fc)m,n =
1

2⇡
p
µ✏

r⇣m⇡

a

⌘2
+
⇣n⇡

b

⌘2

m, n = 0, 1, 2, . . . m = n 6= 0

m, n = 0, 1, 2, . . . m = n 6= 0

f < (fc)m,n

f > (fc)m,n

mode m, n is attenuated exponentially (evanescent mode)

mode m, n is propagating with no attenuation
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Waveguide	dispersion	curve

Courtesy of S. PisaCut-off Unimodal propagation

Same curve for TE and TM mode, but n=0 or m=0 is possible only for TE modes.
In any metallic waveguide the fundamental mode is TE.

Fundamental 
mode

55
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Single	mode	operation	of	a	rectangular	waveguide

Find the smallest ratio a/b allowing the largest 
bandwidth of single mode operation

Exercise

1. 

2. State the largest bandwidth of single mode operation

3. Defining the single mode bandwidth as

1.25 (fc)1 < f < 0.95 (fc)2

Find the single mode BW for WR-90 waveguide (a=22.86mm and b=10.16 mm)

(fc)1,0 =
1

2
p
µ✏a

(fc)2,0 =
1

p
µ✏a

= 2 (fc)2,0 (fc)0,1 =
1

p
µ✏b

(fc)1,0 =
1

2
p
µ✏a

I

TE1,0

I

TE2,0

(fc)2,0 =
1

p
µ✏a

= 2 (fc)2,0

TE0,1 TE0,1

TE0,1 ⌘ TE2,0

a = 2bTE0,1 if b > 2a TE0,1 if b < 2a

56

Hint:
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Single	mode	operation	of	a	rectangular	waveguide

Find the smallest ratio a/b allowing the largest 
bandwidth of single mode operation

Exercise

1. 

2. State the largest bandwidth of single mode operation

3. Defining the single mode bandwidth as

1.25 (fc)1 < f < 0.95 (fc)2

Find the single mode BW for WR-90 waveguide (a=22.86mm and b=10.16 mm)

(fc)1,0 =
1

2
p
µ✏a

(fc)2,0 =
1

p
µ✏a

= 2 (fc)2,0 (fc)0,1 =
1

p
µ✏b

(fc)1,0 =
1

2
p
µ✏a

I

TE1,0

I

TE2,0

(fc)2,0 =
1

p
µ✏a

= 2 (fc)2,0

TE0,1 TE0,1

TE0,1 ⌘ TE2,0

a = 2bTE0,1 if b > 2a TE0,1 if b < 2a

57
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Single	mode	operation	of	a	rectangular	waveguide

Find the smallest ratio a/b allowing the largest 
bandwidth of single mode operation

Exercise

1. 

2. State the largest bandwidth of single mode operation

3. Defining the single mode bandwidth as

1.25 (fc)1 < f < 0.95 (fc)2

Find the single mode BW for WR-90 waveguide (a=22.86mm and b=10.16 mm)

(fc)1,0 =
1

2
p
µ✏a

(fc)2,0 =
1

p
µ✏a

= 2 (fc)2,0 (fc)0,1 =
1

p
µ✏b

(fc)1,0 =
1

2
p
µ✏a

I

TE1,0

I

TE2,0

(fc)2,0 =
1

p
µ✏a

= 2 (fc)2,0

TE0,1 TE0,1

TE0,1 ⌘ TE2,0

a = 2bTE0,1 if b > 2a TE0,1 if b < 2a

58

a=0.9 inches b=0.4 inches

(fc)1,0 = c/2a = 3 108/(2 22.86 10�3) = 6.56 GHz

(fc)2,0 = c/a = 3 108/(22.86 10�3) = 13.12 GHz

Single mode BW 6.56 1.25 = 8.2 GHz < f < 12.4 GHz = 13.12 0.95

(fc)1,0 =
1

2
p
µ✏a

TE1,0 TE2,0

(fc)2,0 =
1

p
µ✏a

= 2 (fc)2,0

TE0,1
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Single	mode	operation	of	a	rectangular	waveguide

Find the smallest ratio a/b allowing the largest 
bandwidth of single mode operation

Exercise

1. 

2. State the largest bandwidth of single mode operation

3. Defining the single mode bandwidth as

1.25 (fc)1 < f < 0.95 (fc)2

Find the single mode BW for WR-90 waveguide (a=22.86mm and b=10.16 mm)

(fc)1,0 =
1

2
p
µ✏a

(fc)2,0 =
1

p
µ✏a

= 2 (fc)2,0 (fc)0,1 =
1

p
µ✏b

(fc)1,0 =
1

2
p
µ✏a

I

TE1,0

I

TE2,0

(fc)2,0 =
1

p
µ✏a

= 2 (fc)2,0

TE0,1 TE0,1

TE0,1 ⌘ TE2,0

a = 2bTE0,1 if b > 2a TE0,1 if b < 2a

59

a=0.9 inches b=0.4 inches

(fc)1,0 = c/2a = 3 108/(2 22.86 10�3) = 6.56 GHz

(fc)2,0 = c/a = 3 108/(22.86 10�3) = 13.12 GHz

Single mode BW 6.56 1.25 = 8.2 GHz < f < 12.4 GHz = 13.12 0.95

(fc)1,0 =
1

2
p
µ✏a

TE1,0 TE2,0

(fc)2,0 =
1

p
µ✏a

= 2 (fc)2,0

TE0,1
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Eigenfunctions	and	mode	pattern	(TE	mode,	rect.	WG)

k
x

=
m⇡

a
k
y

=
n⇡

b

� =
q
!2µ✏� k2

x

� k2
y

TE+z
m,n

E

+,(m,n)
x

= a

m,n

k

y

✏

cos (k

x

x) sin (k

y

y)e

�j�z

E+,(m,n)
z = 0

H+,(m,n)
x

= a
m,n

k
x

�

!µ✏
sin (k

x

x) cos (k
y

y)e�j�z

H+,(m,n)
y

= a
m,n

k
y

�

!µ✏
cos (k

x

x) sin (k
y

y)e�j�z

H+,(m,n)
z

= �ja
m,n

k2
t

!µ✏
cos (k

x

x) cos (k
y

y)e�j�z
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Let’s	draw	…
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Eigenfunctions	and	mode	pattern	(TE	mode,	rect.	WG)
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Draw the field patter in 
the xz plane for TE10

E field
H field
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Field	pattern	(TE10	mode,	rect.	WG)

TE+z
m,n

m (n) is the number of half periods (or 
maxima/minima) along the x (y) axis in the cross-
section.

Simulations by L. Ficcadenti
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Field	pattern	(TE10	mode,	rect.	WG)

TE+z
m,n

m (n) is the number of half periods (or 
maxima/minima) along the x (y) axis in the cross-
section.

Animations by L. Ficcadenti
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Field	pattern	at	the	cross	section

TE+z
m,n

m (n) is the number of half periods (or 
maxima/minima) along the x (y) axis in the cross-
section.

TE?? TE?? TE??

TM??
TM?? TM??
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Simulations by L. Ficcadenti
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Field	pattern	at	the	cross	section

TE+z
m,n

m (n) is the number of half periods (or 
maxima/minima) along the x (y) axis in the cross-
section.

TE11 TE21 TE31

TM21
TM11 TM31
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Simulations by L. Ficcadenti
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Field	pattern	(TE	mode,	rect.	WG)

TE+z
m,n

m (n) is the number of half periods (or 
maxima/minima) along the x (y) axis in the cross-
section.
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Full	EM	simulation	of	a	RF	accelerating	structure
Exercise

With phasors, a time animation is identical to phase rotation.

X-band (12GHz) accelerating structure for high brightness LINAC 

Power 
IN

Power
OUT

Particle axis

Vacuum 
port

Vacuum 
port

Iris loaded waveguide (phase velocity < c)

E-field along particle axis, i.e. z-axis (log-scale) 

Cut-off
(why?)

Cut-off
(why?)

Waveguide TE10 mode 
(phase velocity > c)

~E
~E

Simulation assuming perfect conductor
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Exercise
Full	EM	simulation	of	a	RF	accelerating	structure

Which field is this one? E or H field?

Hint: always zero on the metallic 
lateral surface …

z x

y

Simulation assuming perfect conductor
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Exercise
Full	EM	simulation	of	a	RF	accelerating	structure

z x

y

Which field?

Which component?

Simulation assuming perfect conductor
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Exercise

3 cell periodicity 2p/3 phase advance

Full	EM	simulation	of	a	RF	accelerating	structure
Simulation assuming perfect conductor

Particle 
axis

Accelerating 
E-field
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Exercise

3 cell periodicity 2p/3 phase advance

Full	EM	simulation	of	a	RF	accelerating	structure
Simulation assuming perfect conductor

Particle 
axis

Accelerating 
E-field
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Exercise
Full	EM	simulation	of	a	RF	accelerating	structure

Temperature breakdown: seek 
for maximum power loss Pt =

Rs

2

Z

S
|n̂⇥ ~H|2dS

Simulation with 
perfect conductor
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Conclusions
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Conclusions
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