SAPIENZA

Introduction to RF

Andrea Mostacci
University of Rome "La Sapienza" and INFN, Italy

Goal of the lecture

Show principles behind the practice discussed in the RF engineering module

Maxwell equations

General review
The lumped element limit
RF fields and particle accelerators
The wave equation
Maxwell equations for time harmonic fields Fields in media and complex permittivity Boundary conditions and materials

Plane waves
Boundary value problems for metallic waveguides
The concept of mode
Maxwell equations and vector potentials
Cylindrical waveguides: TM, TE and TEM modes
Solving Maxwell Equations in metallic waveguides
Rectangular waveguide (detailed example)
Reading a simulation of a RF accelerating structure

Maxwell equations
General review
The lumped element limit
RF fields and particle accelerators
The wave equation
Maxwell equations for time harmonic fields Fields in media and complex permittivity Boundary conditions and materials
 Plane waves

Boundary value problems for metallic waveguides
The concept of mode
Maxwell equations and vector potentials
Cylindrical waveguides: TM, TE and TEM modes
Solving Maxwell Equations in metallic waveguides
Rectangular waveguide (detailed example)
Reading a simulation of a RF accelerating structure
... The universe is written in the mathematical language and the letters are triangles, circles and other geometrical figures ...

1.

Charges are the sources of E-field.
2.
B-field has no sources.
3.

Time varying E-field and B-field are chained.
4.
B-field is chained to current.

$$
\nabla \cdot \vec{B}=0
$$

$$
\nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}
$$

$$
\nabla \times \vec{B}=\mu_{0} \epsilon_{0} \frac{\partial \vec{E}}{\partial t}+\mu_{0} \vec{J}
$$

Maxwell equations in vacuum \quad ?

$\nabla \cdot \vec{E}=\rho / \epsilon_{0}$	\vec{E}	Electric Field	(V / m)	
$\nabla \cdot \vec{B}=0$	\vec{B}		$\left(W b / m^{2}\right)$	fields
$\nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}$	B	Magnetic Flux Density	(Wb/m ${ }^{\text {2 }}$	
	ρ	Electric Charge Density	$\left(C / m^{3}\right)$	sources
$\nabla \times \vec{B}=\mu_{0} \epsilon_{0} \frac{\partial E}{\partial t}+\mu_{0} \vec{J}$	\vec{J}	Electric Current Density	(A / m^{2})	
$\mu_{0}=4 \pi 10^{-7}(H / m)$	$\epsilon_{0}=1 / c^{2} \mu_{0}$	$8.854210^{-12}(F / m) \quad c=$	$\sqrt{\mu_{0} \epsilon_{0}}=299$	$458(\mathrm{~m} / \mathrm{s})$
Magnetic constant (permeability of free space)		ctric constant tivity of free space)	Speed of light	

Curl operator

$$
\nabla \cdot \vec{A}=\ldots
$$

The source of \vec{A} is ...

\vec{A} is chained to \vec{C}

Some consequences of the IV equation

$$
\begin{gathered}
\nabla \times \vec{B}=\mu_{0}\left(\epsilon_{0} \frac{\partial \vec{E}}{\partial t}+\vec{J}\right) \quad 0=\nabla \cdot \nabla \times \vec{B}=\mu_{0} \nabla \cdot\left(\epsilon_{0} \frac{\partial \vec{E}}{\partial t}+\vec{J}\right)=0 \\
\nabla \cdot \vec{E}=\rho / \epsilon_{0} \\
\begin{array}{l}
\text { The current density has } \\
\text { closed lines. }
\end{array} \\
\begin{array}{l}
\text { At a given position the source of } \mathrm{J} \\
\text { is the decrease of charge in time. }
\end{array}
\end{gathered}
$$

$$
\nabla \cdot \vec{J}=-\frac{\partial \rho}{\partial t} \quad \begin{aligned}
& \text { Continuity } \\
& \text { equation }
\end{aligned}
$$

Maxwell equations: the staticlimio

$$
\frac{\partial}{\partial t}=0 \quad \nabla \cdot \vec{J}=-\frac{\partial \rho}{\partial t}=0
$$

Ohm Law
Kirchhoff Laws

Lumped elements (electric networks)
$\frac{\partial}{\partial t} \approx 0 \quad$ The lumped elements model for electric networks is used also when the field variation is negligible over the size of the network.

$$
\frac{\partial}{\partial t}=0 \quad \nabla \times \vec{E}=0
$$

The E field is conservative.
The energy gain of a charge in closed circuit is zero.

No static, circular accelerators (RF instead!).

$$
\xrightarrow[\text { free space }]{\nabla \cdot \vec{E}=0} \quad \nabla^{2} V=0
$$

Particle interaction with time vanimg fiefas

Beam manipulation

Particle acceleration, deflection ...

External sources acting on the beam through EM fields.

RF devices

$$
\nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}
$$

Parasitic effects

Wakefields and coupling impedance

Extraction of beam energy

Beam Instabilities

Diagnostics

$$
\nabla \cdot \vec{E}=\rho / \epsilon_{0}
$$

$$
\nabla \times \vec{B}=\mu_{0} \epsilon_{0} \frac{\partial \vec{E}}{\partial t}+\mu_{0} \vec{J}
$$

$$
\vec{J}=\rho \vec{v}=\frac{Q}{2 \pi r} \delta(r) \delta(z-v t) \vec{v}
$$

Particle acce eration by time varying fiels

$$
\nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}
$$

Courtesy of P. Bryant

Resonant or
 "bunched" acceleration

Linear accelerator (LINAC) Cyclotron Synchrotron

Parasitic effects: the wakefield

Courtesy of Cho Ng, SLAC

Particle in accelerators are charged, thus they are sources of EM fields ...

Wakefieldsextract beamenergyto HM tero

Courtesy of Cho Ng, SLAC

The principle is used in general purpose RF sources (e.g. klystrons) as well as in accelerators (e.g. particle wakefield accelerators)

Maxwell equations in matter: the physice, appraach

The reality ...

$\Theta \Theta \Theta \Theta \Theta \Theta \Theta \Theta \Theta$
... the model

charges and currents IN VACUUM

Maxwell equations in mattier the mathematics

$\oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus$

Electric insulators (dielectric)

Magnetic materials (ferrite, superconductor)

Polarization charges

Magnetization currents

$$
\vec{D}=\epsilon_{0} \vec{E}+\vec{P} \quad \text { Constitutive relations } \quad \vec{H}=\frac{\vec{B}}{\mu_{0}}-\vec{M}
$$

$\vec{D} \quad$ Electric Flux Density $\quad\left(C / m^{2}\right)$
\vec{H} Magnetic Field (A / m)
\vec{P} Electric Polarization $\left(C / m^{2}\right) \quad \vec{M}$ Magnetization (A / m)

Equivalence Principles in Electromagnetics Theory

Maxwell equations: general expression end solution

$\nabla \cdot \vec{D}=\rho$
$\nabla \cdot \vec{B}=0$

\vec{E}	Electric Field	$(\mathrm{V} / \mathrm{m})$
\vec{H}	Magnetic Field	$(\mathrm{A} / \mathrm{m})$
\vec{B}	Magnetic Flux Density	$\left(\mathrm{Wb} / \mathrm{m}^{2}\right)$

$\nabla \times \vec{H}=\frac{\partial \vec{D}}{\partial t}+\vec{J}$
$\nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}$
\vec{D} Electric Flux Density $\left(C / m^{2}\right)$
$\vec{H}=\frac{\vec{B}}{\mu_{0}}$

Maxwell Equations: free space, no sources

$$
\begin{aligned}
& \nabla(\nabla \cdot \vec{E})-\nabla^{2} \vec{E}=-\nabla^{2} \vec{E} \\
& \quad \| \\
& \nabla \times \nabla \times \vec{E} \\
& \quad \| \\
& -\mu_{0} \frac{\partial}{\partial t}(\nabla \times \vec{H})=-\mu_{0} \epsilon_{0} \frac{\partial^{2} \vec{E}}{\partial t}
\end{aligned}
$$

Harmonic time dependencerand prasor

Assuming sinusoidal electric field (Fourier)
Time dependence $\longrightarrow e^{j \omega t}=e^{j 2 \pi f t} \longrightarrow \frac{\partial}{\partial t} \cdots=j \omega \ldots$

$$
\vec{E}(\vec{r}, t)=\operatorname{Re}\left\{\vec{E}(\vec{r}, \omega) e^{j \omega t}\right\} \quad \text { Phasors are complex vectors }
$$

Power/Energy depend on time average of quadratic quantities

$$
\begin{gathered}
|\vec{E}(\vec{r}, t)|_{\text {average }}^{2}=\frac{1}{T} \int_{0}^{T} \vec{E}(\vec{r}, t) \cdot \vec{E}(\vec{r}, t) d t=\cdots=\frac{1}{2} \vec{E}(\vec{r}, \omega) \cdot \vec{E}^{*}(\vec{r}, \omega)=\left|\vec{E}_{R M S}(\vec{r}, \omega)\right|^{2} \\
\left|\vec{E}_{R M S}\right|=|\vec{E}| / \sqrt{2}
\end{gathered}
$$

In the following we will use the same symbol for

$$
\begin{array}{cc}
\text { Real vectors } & \text { Complex vectors } \\
\vec{E}(\vec{r}, t), \vec{H}(\vec{r}, t), \ldots & \vec{E}(\vec{r}, \omega), \vec{H}(\vec{r}, \omega), \ldots
\end{array}
$$

Note that, with phasors, a time animation is identical to phase rotation.

Electromasnetic radiationspectrum

Source: Common knowledge (Wikipedia)

Electromaghetic raciationspectrump users potht of fiew

Frequency (Hz)

Typical Frequencies		Approximate Band Designations	
AM broadcast band	$535-1605 \mathrm{kHz}$		Medium frequency

The RF spectum and particle accectratof cyices

450 GHz
$\begin{gathered}3 \times 10^{5} \\ 1\end{gathered} 3 \times 10$
Frequency (Hz)

Andrea.Mostacci@uniroma1.it

A. Gallo Lecture @ CAS RF engineering (2010)

Harmonic fieles in mediapconstitfitive retations

Hyp: Linear, Homogeneous, Isotropic and non Dispersive media

Hyp: Linear, Homogeneous, Isotropic and non Dispersive media

$\vec{D}=\epsilon_{0} \vec{E}+\vec{P}$	$\vec{D}=\epsilon_{c} \vec{E}$	$\epsilon_{c}=\epsilon^{\prime}-j \epsilon^{\prime \prime}$
	Losses (heat) due to damping of vibrating dipoles	
$\vec{H}=\frac{\vec{B}}{\mu_{0}}-\vec{M}$	$\vec{B}=\mu \vec{H}$	$\mu=\mu^{\prime}-j \mu^{\prime \prime}$

complex permittivity
Losses (heat) due to damping of vibrating dipoles

complex permeability

$$
\text { Ohm Law } \quad \vec{J}_{c}=\sigma \vec{E} \quad \sigma \quad \text { conductivity } \quad(S / m) \quad \begin{aligned}
& \text { Losses (heat) due to } \\
& \begin{array}{l}
\text { moving charges } \\
\text { colliding with lattice }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \nabla \cdot \vec{D}=\rho \quad \nabla \cdot \vec{B}=0 \\
& \nabla \times \vec{E}=-j \omega \mu \vec{H} \\
& \text { - } \\
& \nabla \times \vec{H}=j \omega \vec{D}+\vec{J}_{c}+\vec{J}=\cdots=j \omega \epsilon \vec{E}+\vec{J} \\
& \epsilon=\epsilon^{\prime}-j \epsilon^{\prime \prime}-j \frac{\sigma}{\omega} \\
& \tan \delta=\frac{\omega \epsilon^{\prime \prime}+\sigma}{\omega \epsilon^{\prime}}=\frac{\text { Losses }}{\text { Displacement current }} \\
& \epsilon^{\prime}=\epsilon_{r} \epsilon_{0} \\
& \text { Loss tangent }
\end{aligned}
$$

DIELECTRIC CONSTANTS AND LOSS TANGENTS FOR

 SOME MATERIALS

Source: Pozar, Microwave Engineering 4ed, 2012

ו Dispersive media

" complex permittivity

```
\(\overrightarrow{\mathbf{j}}+\vec{J}\)
```

$\epsilon=\epsilon^{\prime}-j \epsilon^{\prime \prime}-j \frac{\sigma}{\omega}$
Loss tangent

Andrea.Mostacci@uniroma1.it

$$
\begin{array}{lc}
\hat{n} \cdot\left(\vec{D}_{2}-\vec{D}_{1}\right)=\rho_{s} & \hat{n} \cdot\left(\vec{B}_{2}-\vec{B}_{1}\right)=0 \\
\hat{n} \times\left(\vec{E}_{2}-\vec{E}_{1}\right)=0 & \hat{n} \times\left(\vec{H}_{2}-\vec{H}_{1}\right)=\vec{J}_{s}
\end{array}
$$

Fields at a lossless dielectric interface

$$
\begin{array}{llc}
\rho_{s}=0 & \hat{n} \cdot \vec{D}_{1}=\hat{n} \cdot \vec{D}_{2} & \hat{n} \cdot \vec{B}_{1}=\hat{n} \cdot \vec{B}_{2} \\
\vec{J}_{s}=0 & \hat{n} \times \vec{E}_{1}=\hat{n} \times \vec{E}_{2} & \hat{n} \times \vec{H}_{1}=\hat{n} \times \vec{H}_{2}
\end{array}
$$

Helmotz equation and itsimplestsolution

$$
\nabla^{2} \vec{E}=\mu_{0} \epsilon_{0} \frac{\partial^{2} \vec{E}}{\partial t^{2}} \quad \longrightarrow \quad \begin{aligned}
& \text { HeImotz equation } \\
& \nabla^{2} \vec{E}+\omega^{2} \mu \epsilon \vec{E}=0
\end{aligned}
$$

$$
\begin{equation*}
k=\omega \sqrt{\mu \epsilon} \tag{1/m}
\end{equation*}
$$

Propagation/phase constant Wave number

The simples solution: the plane wave

$\vec{E}=E_{x} \hat{x}$
Uniform in x, y
Lossless medium

$$
\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0 \quad \frac{d^{2} E_{x}}{d z^{2}}+k^{2} E_{x}=0
$$

$$
E_{x}(z, t)=\operatorname{Re}\left\{E(z, \omega) e^{j \omega t}\right\}=E^{+} \cos (\omega t-k z)+E^{-} \cos (\omega t+k z)
$$

It is a wave, moving in the $+\mathbf{z}$ direction or $-z$ direction

Phase velocity Velocity at which a fixed phase point on the wave travels

$$
\omega t \mp k z=\text { const } \quad v_{p}=\frac{d z}{d t}=\frac{d}{d t}\left(\frac{\omega t \mp \text { const }}{k}\right)=\frac{\omega}{k}=\frac{1}{\sqrt{\mu \epsilon}} \quad \text { Speed of light }
$$

Plane wavesand ransverse ElectroxMaghetic (TVM) waves

Wave length Distance between two consecutive maxima (or minima or ...)
$(\omega t-k z)-[\omega t-k(z+\lambda)]=2 \pi$
$\lambda=\frac{2 \pi}{k}=\frac{2 \pi v_{p}}{\omega}=\frac{v_{p}}{f}$
$\nabla \times \vec{E}=-j \omega \mu \vec{H}$

Compute H ...

$$
E_{x}(z)=E^{+} e^{-j k z}+E^{-} e^{j k z}
$$

Plane wavesand ransverse Electro4Magugtic (IFM) waves

Wave length Distance between two consecutive maxima (or minima or ...)

$$
\begin{aligned}
& (\omega t-k z)-[\omega t- \\
& \nabla \times \vec{E}=-j \omega \mu \vec{H}
\end{aligned}
$$

$$
\lambda=\frac{2 \pi}{k}=\frac{2 \pi v_{p}}{\omega}=\frac{v_{p}}{f}
$$

$$
E_{x}(z)=E^{+} e^{-j k z}+E^{-} e^{j k z}
$$

$$
H_{x}=H_{z}=0 \quad H_{y}=\frac{j}{\omega \mu} \frac{\partial E_{x}}{\partial z}=\frac{1}{\eta}\left(E^{+} e^{-j k z}-E^{-} e^{j k z}\right)
$$

$$
\eta=\frac{\omega \mu}{k}=\sqrt{\frac{\mu}{\epsilon}} \quad \text { Intrinsic impedance of the medium }(\Omega) \quad \eta_{0}=\sqrt{\frac{\mu_{0}}{\epsilon_{0}}}=377 \Omega
$$

The ratio of E and H component is an impedance called wave impedance

TEM wave

E and H field are transverse to the direction of propagation.

$$
\vec{H}=\frac{1}{\eta} \hat{k} \times \vec{E}
$$

$Z_{T E M}=\eta$

$$
\nabla^{2} \vec{E}+\omega^{2} \mu \epsilon \vec{E}=0 \quad \epsilon=\epsilon_{r} \epsilon_{0}(1-j \tan \delta) \quad \tan \delta=\frac{\omega \epsilon^{\prime \prime}+\sigma}{\omega \epsilon^{\prime}}
$$

$H_{y}=\frac{j}{\omega \mu} \frac{\partial E_{x}}{\partial z}=-\frac{j \gamma}{\omega \mu}\left(E^{+} e^{-\gamma z}-E^{-} e^{\gamma z}\right)=\frac{1}{\eta}\left(E^{+} e^{-\gamma z}-E^{-} e^{\gamma z}\right) \longrightarrow \eta=\frac{j \omega \mu}{\gamma} \rightarrow \sqrt{\frac{\mu}{\epsilon}}$

Attenuating
$\vec{H}=\frac{1}{\eta} \hat{\beta} \times \vec{E}$
TEM "wave" ...

Good conductor

Conduction current >> displacement current
σE
\gg
$\omega \epsilon_{c} E$

$$
\tan \delta=\frac{\omega \epsilon^{\prime \prime}+\sigma}{\omega \epsilon^{\prime}} \approx \frac{\sigma}{\omega \epsilon_{0} \epsilon_{r}}
$$

$$
\gamma=\alpha+j \beta=j \omega \sqrt{\mu \epsilon} \simeq(1+j) \sqrt{\frac{\omega \mu \sigma}{2}}
$$

Characteristic depth of penetration: skin depth

$$
\delta_{s}=\frac{1}{\alpha}=\sqrt{\frac{2}{\omega \mu \sigma}}
$$

Conduction current \gg displacement current
σE
$\omega \epsilon_{c} E$
$\tan \delta=\frac{\omega \epsilon^{\prime \prime}+\sigma}{\omega \epsilon^{\prime}} \approx \frac{\sigma}{\omega \epsilon_{0} \epsilon_{r}}$

$$
\gamma=\alpha+j \beta=j \omega \sqrt{\mu \epsilon} \simeq(1+j) \sqrt{\frac{\omega \mu \sigma}{2}}
$$

Characteristic depth of penetration: skin depth

$$
\delta_{s}=\frac{1}{\alpha}=\sqrt{\frac{2}{\omega \mu \sigma}}
$$

$$
\begin{array}{ll}
\mathbf{A l} & \delta_{s}=8.1410^{-7} \mathrm{~m} \\
\mathbf{C u} & \delta_{s}=6.6010^{-7} \mathrm{~m} \\
\mathbf{A u} & \delta_{s}=7.8610^{-7} \mathrm{~m} \\
\mathbf{A g} & \delta_{s}=6.4010 \mathbf{~ G H z}
\end{array}
$$

impedance of $\quad \eta=\frac{j \omega \mu}{\gamma} \simeq(1+j) \sqrt{\frac{\omega \mu}{2 \sigma}}=(1+j) \frac{1}{\sigma \delta_{s}}$
the medium
? Copper @ 100 MHz

Surface Impedance

Good conductor

Goal: account for an imperfect conductor

The power that is transmitted into the conductor is dissipated as heat within a very short distance from the surface.

$$
\text { Being } \quad \vec{J}_{S}=\hat{n} \times\left.\vec{H}\right|_{S} \text { when } \sigma \rightarrow \infty
$$

Replace the exponentially decaying volume

Approximation

 current volume with a uniform current extending a distance of one skin depth$$
\bar{J}_{t}= \begin{cases}\bar{J}_{s} / \delta_{s} & \text { for } 0<z<\delta_{s} \\ 0 & \text { for } z>\delta_{s},\end{cases}
$$

$$
P_{t}=\frac{1}{2 \sigma} \int_{S} \int_{0}^{\delta_{s}} \frac{\delta^{\prime}}{} \frac{\left|\vec{J}_{S}\right|^{2}}{\delta_{S}^{2}} d S d z=\sqrt{\frac{2}{\omega \mu \sigma}} \quad \begin{aligned}
& \text { Power loss } \\
& \text { computed as if the metal } \\
& \text { were a perfect conductor }
\end{aligned}
$$

Reflection o plane waves (afirst found eny valuep oblem)

Courtesy of
M. Ferrario, INFN-LNF

Reflection of plane waves (afirst tound enr value p oblem)

Plane wave reflected by a perfectly conducting plane

$$
\sigma=\infty
$$

In the plane xz the field is given by the superposition of the incident and reflected wave:

$$
E(x, z, t)=E_{+}\left(x_{o}, z_{o}, t_{o}\right) e^{i \omega t-i k \zeta}+E_{-}\left(x_{o}, z_{o}, t_{o}\right) e^{i \omega t-i k \zeta^{\prime}}
$$

$$
\zeta=z \cos \theta-x \sin \theta \quad \zeta^{\prime}=z \cos \theta^{\prime}+x \sin \theta^{\prime}
$$

And it has to fulfill the boundary conditions (no tangential E-field)

Reflection of plane waves (afirst found eny valuep oblem)

Taking into account the boundary conditions the

Courtesy of
M. Ferrario, INFN-LNF longitudinal component of the field becomes:

$$
E_{z}(x, z, t)=\left(E_{+} \sin \theta\right) e^{i \omega t-i k(z \cos \theta-x \sin \theta)}-\left(E_{+} \sin \theta\right) e^{i \omega t-i k(z \cos \theta+x \sin \theta)}
$$

$$
=2 i E_{+} \sin \theta \sin (k x \sin \theta) e^{i \omega t-i k z \cos \theta}
$$

The phase velocity is given by

$$
v_{\phi z}=\frac{\omega}{k_{z}}=\frac{\omega}{k \cos \theta}=\frac{c}{\cos \theta}>c
$$

From reflect ons to waveguides:

M. Ferrario, INFN-LNF

Put a metallic boundary where the field is zero at a given distance from the wall.

Between the two walls there must be an integer number of half wavelengths (at least one).

For a given distance, there is a maximum wavelength, i.e. there is cut-off frequency.

$$
v_{\phi z}=\frac{\omega}{k_{z}}=\frac{\omega}{k \cos \theta}=\frac{c}{\cos \theta}>c
$$

It can not be used as it is for particle acceleration

Maxwell equation with sources + boundary conditions = boundary value problem
Homogeneous medium
Sources

$$
\begin{array}{ll}
\nabla \cdot \vec{E}=\rho / \epsilon & \nabla \cdot \vec{H}=0 \\
\nabla \times \vec{E}=-j \omega \mu \vec{H} & \nabla \times \vec{H}=+j \omega \epsilon \vec{E}+\vec{J}
\end{array}
$$

$$
\vec{J}, \rho
$$

Do you see asymmetries?

Maxwell equations and bounidary evalue rioblem

Maxwell equation with sources + boundary conditions = boundary value problem

Homogeneous medium
$\nabla \cdot \vec{E}=\rho / \epsilon$

$$
\nabla \cdot \vec{H}=\rho_{m} / \mu
$$

$$
\nabla \times \vec{H}=+j \omega \epsilon \vec{E}+\vec{J}
$$

Sources
\vec{J}, ρ
Actual or equivalent
$\overrightarrow{J_{m}}, \rho_{m}$
equivalent

Vector Helmotz Equation

$$
\begin{aligned}
\nabla^{2} \vec{E}+k^{2} \vec{E} & =\nabla \times \vec{J}_{m}+j \omega \mu \vec{J}+\frac{1}{\epsilon} \nabla \rho \\
\nabla^{2} \vec{H}+k^{2} \vec{H} & =-\nabla \times \vec{J}+j \omega \epsilon \vec{J}_{m}+\frac{1}{\mu} \nabla \rho_{m}
\end{aligned} \quad k^{2}=\omega^{2} \mu \epsilon
$$

등
을
ㅇ
o
Step 1 Source free region $\vec{J}=\vec{J}_{m}=\rho_{m}=\rho=0 \quad$ Homogeneous problem

Step 2 Solution $=\sum_{k} C_{k}\left(\vec{J}, \vec{J}_{m}, \rho_{m}, \rho\right)$ Solution-Homogeneous-Problem ${ }_{k}$

Solution of the

homogeneous equation \longrightarrow| Shape of |
| :---: |
| radiated field |\longrightarrow MODES

Solution of Helmotz equationsusins potentals

Modes of cy hidrical waveguides: propateting field

$\nabla^{2}=\nabla_{t}^{2}+\frac{\partial^{2}}{\partial z^{2}} \longrightarrow \begin{aligned} & \nabla_{t}^{2} A_{z}+\left(k^{2}-\beta^{2}\right) A_{z}=0 \\ & \nabla_{t}^{2} F_{z}+\left(k^{2}-\beta^{2}\right) F_{z}=0\end{aligned}$
Field propagating in the positive z direction
$\vec{A}=\hat{z} A_{z}(x, y) e^{-j \beta z}=\hat{z} A$
$\vec{F}=\hat{z} F_{z}(x, y) e^{-j \beta z}=\hat{z} F$

2 Helmotz equations (transverse coordinates)

Only E field along z E-mode Transverse Magnetic (TM)
$\vec{E}_{F}=-\frac{1}{\epsilon} \nabla \times(\hat{z} F) \quad \longrightarrow \vec{E}_{F}=\vec{e}_{t} e^{-j \beta z}$

$$
\vec{H}_{F}=-j \omega F \hat{z}-\frac{\beta}{\omega \mu \epsilon} \nabla F \longrightarrow \vec{H}_{F}=\left[\vec{h}_{t}+\hat{z} h_{z}\right] e^{-j \beta z}
$$

Modes of cy hidrical waveguides: propateting field

$$
\vec{F}=\hat{z} F_{z}(x, y) e^{-j \beta z}=\hat{z} F
$$

$\vec{H}_{A}=\frac{1}{\mu} \nabla \times(\hat{z} A)$
$\vec{E}_{A}=-j \omega A \hat{z}-\frac{\beta}{\omega \mu \epsilon} \nabla A \longrightarrow \vec{E}_{A}=\left[\vec{e}_{t}+\hat{z} e_{z}\right] e^{-j \beta z}$

$$
\begin{aligned}
& \vec{E}_{F}=-\frac{1}{\epsilon} \nabla \times(\hat{z} F) \quad \longrightarrow \vec{E}_{F}=\vec{e}_{t} e^{-j \beta z} \\
& \vec{H}_{F}=-j \omega F \hat{z}-\frac{\beta}{\omega \mu \epsilon} \nabla F \longrightarrow \vec{H}_{F}=\left[\vec{h}_{t}+\hat{z} h_{z}\right] e^{-j \beta z}
\end{aligned}
$$

Field propagating in the positive z direction

$$
\vec{A}=\hat{z} A_{z}(x, y) e^{-j \beta z}=\hat{z} A
$$

Only E field along z E-mode Transverse Magnetic (TM)

Only H field along z H -mode Transverse Electric (TE)

$$
\vec{E}=\vec{E}_{A}+\vec{E}_{F} \quad \vec{H}=\vec{H}_{A}+\vec{H}_{F}
$$

Look for a Transverse Electric Magnetic mode $\quad E_{z}=H_{z}=0$

Hint 1 Start from a TM mode (vector potential A) $\quad H_{z}=0$

$$
\nabla=\nabla_{t}+\hat{z} \frac{\partial}{\partial z} \quad \vec{A}=\hat{z} A_{z}(x, y) e^{-j \beta z}=\hat{z} A \quad \nabla \cdot \vec{A}=\cdots
$$

Hint $2 \quad \vec{E}_{A}=\ldots$

Solution

Transverse Electric Mágneticmodes

Look for a Transverse Electric Magnetic mode $\quad E_{z}=H_{z}=0$
Hint 1 Start from a TM mode (vector potential A) $\quad H_{z}=0$

$$
\nabla=\nabla_{t}+\hat{z} \frac{\partial}{\partial z} \quad \vec{A}=\hat{z} A_{z}(x, y) e^{-j \beta z}=\hat{z} A \quad \nabla \cdot \vec{A}=\cdots=-j \beta A_{z} e^{-j \beta z}
$$

Hint 2

$$
\begin{aligned}
\vec{E}_{A}=\cdots= & -j \omega \hat{z} A_{z} e^{-j \beta z}-\frac{j}{\omega \mu \epsilon}\left[\nabla_{t}+\hat{z} \frac{\partial}{\partial z}\right](-j \beta) A_{z} e^{-j \beta z}= \\
= & -\frac{j}{\omega \mu \epsilon}\left[\omega^{2} \mu \epsilon-\beta\right] A_{z} e^{-j \beta z} \hat{z}-\frac{\beta}{\omega \mu \epsilon} \nabla_{t} A_{z} e^{-j \beta z} \\
& \text { if } \beta^{2}=\omega^{2} \mu \epsilon=k^{2} \Longrightarrow e_{z}=0
\end{aligned}
$$

Solution For a given $A_{z} \quad \vec{H}=\frac{1}{\mu} \nabla_{t} \times\left(\hat{z} A_{z}\right) e^{-j \omega \sqrt{\mu \epsilon} z} \quad \vec{E}=-\frac{1}{\sqrt{\mu \epsilon}} \nabla_{t} A_{z} e^{-j \omega \sqrt{\mu \epsilon} z}$

1. $\nabla_{t}^{2} A_{z}=-\left(k^{2}-\beta^{2}\right) A_{z}=0 \quad$ The transverse \mathbf{E} field is "electrostatic"
2. As plane waves: $\ldots e^{-j \omega \sqrt{\mu \epsilon} z} \quad \Longrightarrow \quad v_{p}=1 / \sqrt{\mu \epsilon}$

$$
\vec{h}_{t}=\sqrt{\frac{\epsilon}{\mu}} \hat{z} \times \vec{e}_{t}=\frac{1}{Z_{T E M}} \hat{z} \times \vec{e}_{t}
$$

Example
Solution For a given $A_{z} \quad \vec{H}=\frac{1}{\mu} \nabla_{t} \times\left(\hat{z} A_{z}\right) e^{-j \omega \sqrt{\mu \epsilon} z} \quad \vec{E}=-\frac{1}{\sqrt{\mu \epsilon}} \nabla_{t} A_{z} e^{-j \omega \sqrt{\mu \epsilon} z}$
3. TEM waves are possible only if there are at least two conductors.

4. The plane wave is a TEM wave of two infinitely large plates separated to infinity
5. Electrostatic problem with boundary conditions

$$
\begin{aligned}
& \text { dary conditions } \\
& \vec{e}_{t}
\end{aligned} \longrightarrow \vec{h}_{t}=\frac{1}{Z_{T E M}} \hat{z} \times \vec{e}_{t}
$$

$$
\vec{E}=\vec{e}_{t} e^{-j \omega \sqrt{\mu \epsilon} z}
$$

General solution for fieds in cylincuical ugreguide

1. Write the Helmotz equations for potentials

TM waves $\quad \nabla_{t}^{2} A_{z}+k_{t}^{2} A_{z}=0$
TE waves $\quad \nabla_{t}^{2} F_{z}+k_{t}^{2} F_{z}=0$

Cartesian coordinates

$$
\nabla_{t}^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}
$$

2. $A_{z}(x, y)=X(x) Y(y)$

$$
\begin{aligned}
& k_{t}^{2}=k^{2}-\beta^{2}=\omega^{2} \mu \epsilon-\beta^{2} \\
& \epsilon=\epsilon_{r} \epsilon_{0}(1-j \tan \delta)
\end{aligned}
$$

Cylindrical coordinates

$$
\nabla_{t}^{2}=\frac{\partial^{2}}{\partial \rho^{2}}+\frac{1}{\rho} \frac{\partial}{\partial \rho}+\frac{1}{\rho^{2}} \frac{\partial^{2}}{\partial \phi^{2}}
$$

General solution for fieds incylinonica uaveguide

3. Eigenvalue problem: Eigenvalues + Eigen-function

TM $\nabla_{t}^{2} A_{z}+k_{t}^{2} A_{z}=0 \quad k_{t} \quad A_{z}, F_{z}$
TE $\quad \nabla_{t}^{2} F_{z}+k_{t}^{2} F_{z}=0$
4. Compute the fields and apply the boundary conditions

$$
\begin{aligned}
& \vec{e}=\vec{e}_{t}+\hat{z} e_{z} \\
& \vec{h}=\vec{h}_{t}+\hat{z} h_{z}
\end{aligned} \quad \longrightarrow \quad \vec{e}_{m, n} \quad \vec{h}_{m, n} \quad \begin{aligned}
& \text { Mode (m,n) }
\end{aligned}
$$

5.

$F_{z}=X(x) Y(y)$
Write the Helmotz equation

$$
\begin{aligned}
& X(x)= \\
& Y(y)=
\end{aligned}
$$

$e_{x}=-\frac{1}{\epsilon} \frac{\partial F_{z}}{\partial y}=-\frac{1}{\epsilon} X Y^{\prime}$

$$
\begin{aligned}
& F_{z}=X(x) Y(y) \quad \nabla_{t}^{2} F_{z}+k_{t}^{2} F_{z}=Y X^{\prime \prime}+X Y^{\prime \prime}+k_{t}^{2} X Y=0 \\
& \frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}+k_{t}^{2}=0 \quad \begin{array}{c}
\\
\text { constraint } \\
\text { condition }
\end{array} \\
& \frac{X_{x}^{\prime \prime}}{X}=-k_{y}^{2}+k_{t}^{2}=0 \quad X(x)=C_{1} \cos \left(k_{x} x\right)+D_{1} \sin \left(k_{x} x\right) \\
& \frac{Y^{\prime \prime}}{Y}=-k_{y}^{2} \longrightarrow \quad Y(y)=C_{2} \cos \left(k_{y} y\right)+D_{2} \sin \left(k_{y} y\right) \\
& e_{x}=-\frac{1}{\epsilon} \frac{\partial F_{z}}{\partial y}=-\frac{1}{\epsilon} X Y^{\prime}=-\frac{k_{y}}{\epsilon}\left[C_{1} \cos \left(k_{x} x\right)+D_{1} \sin \left(k_{x} x\right)\right]\left[-C_{2} \sin \left(k_{y} y\right)+D_{2} \cos \left(k_{y} y\right)\right] \\
& e_{x}(0 \leq x \leq a, y=0)=\ldots\left[-C_{2} \cdot 0+D_{2} \cdot 1\right]=0 \quad \Longleftrightarrow \quad D_{2}=0
\end{aligned}
$$

Eigenvalues and cut-of frequenciest E Ende, rect WG)

$$
\begin{aligned}
& k_{t}^{2}=k_{x}^{2}+k_{y}^{2}=\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}=\omega^{2} \mu \epsilon-\beta^{2} \quad \begin{array}{c}
\text { constraint } \\
\text { condition }
\end{array} \\
& \vec{H}=\sum_{m, n} b_{m, n} \vec{h}_{m, n} e^{-j \beta_{m, n} z} \\
& \quad \beta_{m, n}=\sqrt{\omega^{2} \mu \epsilon-\left(\frac{m \pi}{a}\right)^{2}-\left(\frac{n \pi}{b}\right)^{2}} \\
& \vec{E}=\sum_{m, n} a_{m, n} \vec{e}_{m, n} e^{-j \beta_{m, n} z}
\end{aligned}
$$

Cut-off frequencies $\mathbf{f}_{\mathbf{c}}$ such that $\beta_{m, n}=0$

$$
\left(f_{c}\right)_{m, n}=\frac{1}{2 \pi \sqrt{\mu \epsilon}} \sqrt{\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}} \quad \begin{gathered}
m, n=0,1,2, \ldots \\
m=n \neq 0
\end{gathered}
$$

$f<\left(f_{c}\right)_{m, n}$
$f>\left(f_{c}\right)_{m, n}$
mode \mathbf{m}, \mathbf{n} is attenuated exponentially (evanescent mode)
mode m, n is propagating with no attenuation

Same curve for TE and TM mode, but $\mathrm{n}=0$ or $\mathrm{m}=0$ is possible only for TE modes.
In any metallic waveguide the fundamental mode is TE.

1.

Find the smallest ratio a / b allowing the largest bandwidth of single mode operation
2. State the largest bandwidth of single mode operation
3. Defining the single mode bandwidth as

$$
1.25\left(f_{c}\right)_{1}<f<0.95\left(f_{c}\right)_{2}
$$

Find the single mode BW for WR-90 waveguide ($a=22.86 \mathrm{~mm}$ and $\mathrm{b}=10.16 \mathrm{~mm}$)

Hint: $\quad\left(f_{c}\right)_{m, n}=\frac{1}{2 \pi \sqrt{\mu \epsilon}} \sqrt{\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}} \quad \begin{gathered}m, n=0,1,2, \ldots \\ m=n \neq 0\end{gathered}$

1.

Find the smallest ratio a / b allowing the largest bandwidth of single mode operation
2. State the largest bandwidth of single mode operation
3. Defining the single mode bandwidth as

$$
1.25\left(f_{c}\right)_{1}<f<0.95\left(f_{c}\right)_{2}
$$

Find the single mode BW for WR-90 waveguide ($a=22.86 \mathrm{~mm}$ and $\mathrm{b}=10.16 \mathrm{~mm}$)
$\left(f_{c}\right)_{1,0}=\frac{1}{2 \sqrt{\mu \epsilon} a}$
$\left(f_{c}\right)_{2,0}=\frac{1}{\sqrt{\mu \epsilon} a}=2\left(f_{c}\right)_{2,0}$

$$
\left(f_{c}\right)_{0,1}=\frac{1}{\sqrt{\mu \epsilon} b}
$$

1.

Find the smallest ratio a / b allowing the largest bandwidth of single mode operation
2. State the largest bandwidth of single mode operation
3. Defining the single mode bandwidth as

$$
1.25\left(f_{c}\right)_{1}<f<0.95\left(f_{c}\right)_{2}
$$

Find the single mode BW for WR-90 waveguide ($a=22.86 \mathrm{~mm}$ and $\mathrm{b}=10.16 \mathrm{~mm}$)

1.

Find the smallest ratio a / b allowing the largest bandwidth of single mode operation
2. State the largest bandwidth of single mode operation
3. Defining the single mode bandwidth as

$$
1.25\left(f_{c}\right)_{1}<f<0.95\left(f_{c}\right)_{2}
$$

Find the single mode BW for WR-90 waveguide ($a=22.86 \mathrm{~mm}$ and $\mathrm{b}=10.16 \mathrm{~mm}$)

$$
a=0.9 \text { inches } b=0.4 \text { inches }
$$

$$
\begin{aligned}
& \left(f_{c}\right)_{1,0}=c / 2 a=310^{8} /\left(222.8610^{-3}\right)=6.56 \mathrm{GHz} \\
& \left(f_{c}\right)_{2,0}=c / a=310^{8} /\left(22.8610^{-3}\right)=13.12 \mathrm{GHz}
\end{aligned}
$$

Single mode BW

$$
6.561 .25=8.2 \mathrm{GHz}<f<12.4 \mathrm{GHz}=13.120 .95
$$

Eigenfunctiens and moderpattern की meve, rect $W G$

$$
\begin{aligned}
& E_{x}^{+,(m, n)}=a_{m, n} \frac{k_{y}}{\epsilon} \cos \left(k_{x} x\right) \sin \left(k_{y} y\right) e^{-j \beta z} \\
& E_{y}^{+,(m, n)}=-a_{m, n} \frac{k_{x}}{\epsilon} \sin \left(k_{x} x\right) \cos \left(k_{y} y\right) e^{-j \beta z} \\
& E_{z}^{+,(m, n)}=0 \\
& H_{x}^{+,(m, n)}=a_{m, n} \frac{k_{x} \beta}{\omega \mu \epsilon} \sin \left(k_{x} x\right) \cos \left(k_{y} y\right) e^{-j \beta z} \\
& H_{y}^{+,(m, n)}=a_{m, n} \frac{k_{y} \beta}{\omega \mu \epsilon} \cos \left(k_{x} x\right) \sin \left(k_{y} y\right) e^{-j \beta z} \\
& H_{z}^{+,(m, n)}=-j a_{m, n} \frac{k_{t}^{2}}{\omega \mu \epsilon} \cos \left(k_{x} x\right) \cos \left(k_{y} y\right) e^{-j \beta z}
\end{aligned}
$$

E_{x}, E_{y}

$T E_{1,0}$

$$
k_{x}=\frac{m \pi}{a} \quad k_{y}=\frac{n \pi}{b} \quad T E_{m, n}^{+z}
$$

$E_{x}^{+,(m, n)}=a_{m, n} \frac{k_{y}}{\epsilon} \cos \left(k_{x} x\right) \sin \left(k_{y} y\right) e^{-j \beta z}$
$E_{y}^{+,(m, n)}=-a_{m, n} \frac{k_{x}}{\epsilon} \sin \left(k_{x} x\right) \cos \left(k_{y} y\right) e^{-j \beta z}$
$E_{z}^{+,(m, n)}=0$
$H_{x}^{+,(m, n)}=a_{m, n} \frac{k_{x} \beta}{\omega \mu \epsilon} \sin \left(k_{x} x\right) \cos \left(k_{y} y\right) e^{-j \beta z}$
$H_{y}^{+,(m, n)}=a_{m, n} \frac{k_{y} \beta}{\omega \mu \epsilon} \cos \left(k_{x} x\right) \sin \left(k_{y} y\right) e^{-j \beta z}$
$H_{z}^{+,(m, n)}=-j a_{m, n} \frac{k_{t}^{2}}{\omega \mu \epsilon} \cos \left(k_{x} x\right) \cos \left(k_{y} y\right) e^{-j \beta z}$

Eigenfunctions ano modepattern for meger rect Wh Exercise

$$
E_{x}^{+,(m, n)}=a_{m, n} \frac{k_{y}}{\epsilon} \cos \left(k_{x} x\right) \sin \left(k_{y} y\right) e^{-j \beta z}
$$

$$
E_{y}^{+,(m, n)}=-a_{m, n} \frac{k_{x}}{\epsilon} \sin \left(k_{x} x\right) \cos \left(k_{y} y\right) e^{-j \beta z}
$$

$$
E_{z}^{+,(m, n)}=0
$$

$$
H_{x}^{+,(m, n)}=a_{m, n} \frac{k_{x} \beta}{\omega \mu \epsilon} \sin \left(k_{x} x\right) \cos \left(k_{y} y\right) e^{-j \beta z}
$$

$$
H_{y}^{+,(m, n)}=a_{m, n} \frac{k_{y} \beta}{\omega \mu \epsilon} \cos \left(k_{x} x\right) \sin \left(k_{y} y\right) e^{-j \beta z}
$$

$$
H_{z}^{+,(m, n)}=-j a_{m, n} \frac{k_{t}^{2}}{\omega \mu \epsilon} \cos \left(k_{x} x\right) \cos \left(k_{y} y\right) e^{-j \beta z}
$$

$$
\beta=\sqrt{\omega^{2} \mu \epsilon-k_{x}^{2}-k_{y}^{2}}
$$

$$
T E_{m, n}^{+z}
$$

Draw the field patter in the XZ plane for TE10

E field
H field

Field pattera (JE10 mode, rect wh 3 $-1,2)^{2}$

$T E_{m, n}^{+z} \quad \mathbf{m}(\mathbf{n})$ is the number of half periods (or maxima/minima) along the $x(y)$ axis in the crosssection.

Field pattera (JE10 mode, rect wh 3 $=12=4$

$T E_{m, n}^{+z} \quad \mathbf{m}(\mathbf{n})$ is the number of half periods (or maxima/minima) along the $x(y)$ axis in the crosssection.

Animations by L. Ficcadenti
$T E_{m, n}^{+z} \quad \mathbf{m}(\mathbf{n})$ is the number of half periods (or maxima/minima) along the $x(y)$ axis in the crosssection.
TE??

TM??

TM??

TE??

TM??

Simulations by L. Ficcadenti
$T E_{m, n}^{+z} \quad \mathbf{m}(\mathbf{n})$ is the number of half periods (or maxima/minima) along the $x(y)$ axis in the crosssection.

TE11

TM21

TM11

TE31

TM31

Simulations by L. Ficcadenti

Field pattern (JE mode, rect. W/G)

$T E_{m, n}^{+z} \quad \mathbf{m}(\mathrm{n})$ is the number of half periods (or maxima/minima) along the $x(y)$ axis in the crosssection.

X-band (12GHz) accelerating structure for high brightness LINAC
E-field along particle axis, i.e. z-axis (log-scale)

With phasors, a time animation is identical to phase rotation.

Which field is this one? E or H field?
CST
\square

Hint: always zero on the metallic lateral surface ...

Simulation assuming perfect conductor

Which field?

Which component?

Simulation assuming perfect conductor

3 cell periodicity
$2 \pi / 3$ phase advance

Temperature breakdown: seek for maximum power loss

$$
P_{t}=\frac{R_{s}}{2} \int_{S}|\hat{n} \times \vec{H}|^{2} d S
$$

Simulation with perfect conductor

$-\bar{E}$

