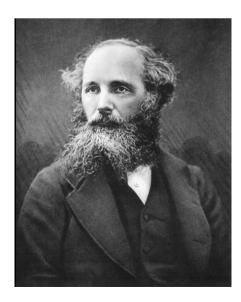


Introduction to RF

Andrea Mostacci University of Rome "La Sapienza" and INFN, Italy



Goal of the lecture

Show principles behind the practice discussed in the RF engineering module

Maxwell equations

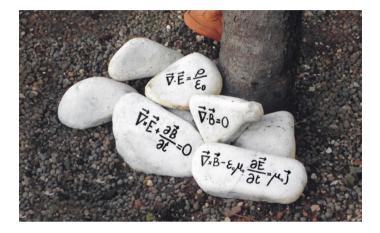
General review The lumped element limit RF fields and particle accelerators The wave equation Maxwell equations for time harmonic fields Fields in media and complex permittivity Boundary conditions and materials Plane waves

Boundary value problems for metallic waveguides

The concept of mode Maxwell equations and vector potentials Cylindrical waveguides: TM, TE and TEM modes Solving Maxwell Equations in metallic waveguides Rectangular waveguide (detailed example) Reading a simulation of a RF accelerating structure

Maxwell equations

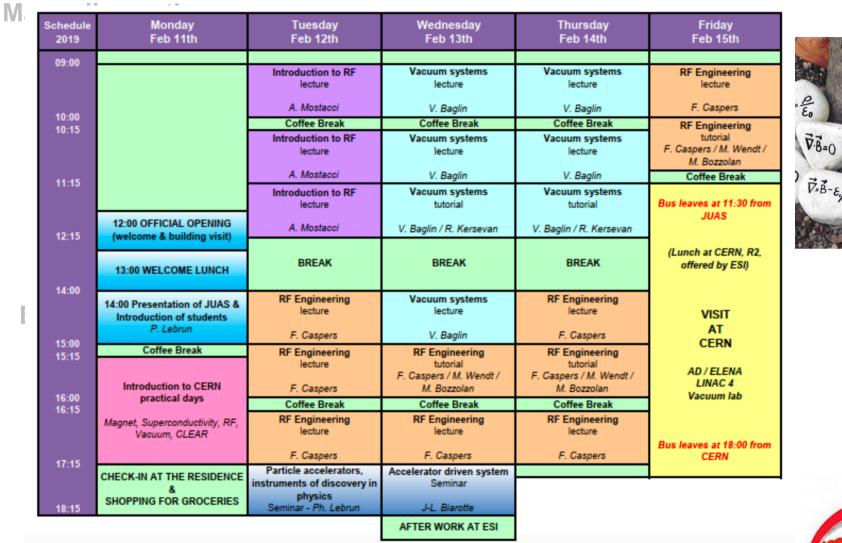
General review The lumped element limit RF fields and particle accelerators The wave equation Maxwell equations for time harmonic fields Fields in media and complex permittivity Boundary conditions and materials Plane waves



Boundary value problems for metallic waveguides

The concept of mode Maxwell equations and vector potentials Cylindrical waveguides: TM, TE and TEM modes Solving Maxwell Equations in metallic waveguides Rectangular waveguide (detailed example) Reading a simulation of a RF accelerating structure

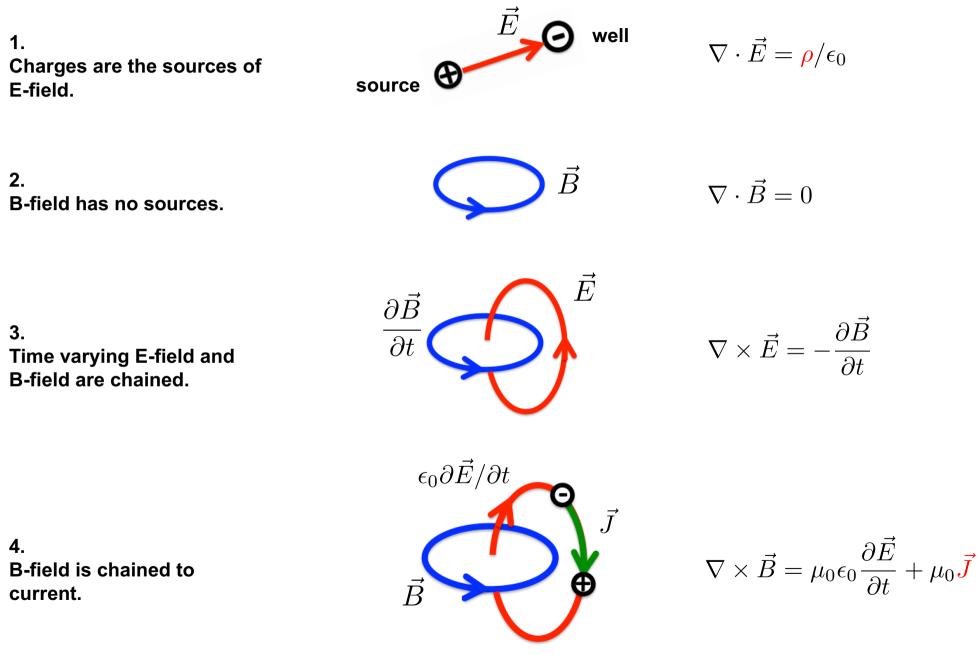
... The universe is written in the mathematical language and the letters are triangles, circles and other geometrical figures ...



Goal of the lecture

Show principles behind the practice discussed in the RF engineering module

Classical electromagnetic theory (Maxwell equations)



Maxwell equations in vacuum

 $\nabla \cdot \vec{E} = \rho / \epsilon_0$ $\nabla \cdot \vec{B} = 0$ $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ $\nabla \times \vec{B} = \mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t} + \mu_0 \vec{J}$

$$\mu_0 = 4\pi \ 10^{-7} \ (H/m)$$

Magnetic constant (permeability of free space)

- $ec{E}$ Electric Field
- \vec{B} Magnetic Flux Density
- ho Electric Charge Density $\left(C/m^3
 ight)$
- \vec{J} Electric Current Density (A/m^2)

$$\epsilon_0 = 1/c^2 \mu_0 = 8.8542 \ 10^{-12} \ (F/m)$$

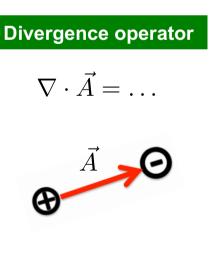
Electric constant (permittivity of free space) $c=1/\sqrt{\mu_0\epsilon_0}=299792458~(m/s)$ Speed of light

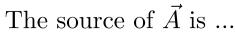
fields

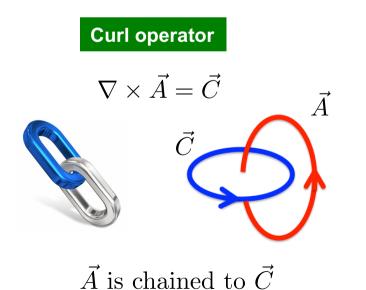
sources

(V/m)

 (Wb/m^2)





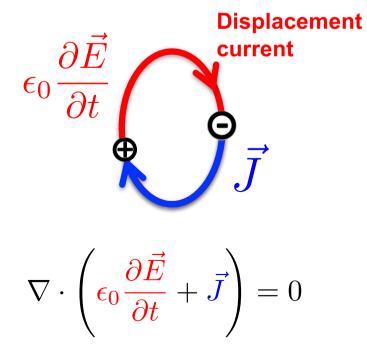


Some consequences of the IV equation

$$\nabla \times \vec{B} = \mu_0 \left(\epsilon_0 \frac{\partial \vec{E}}{\partial t} + \vec{J} \right) \qquad 0 = \nabla \cdot \nabla \times \vec{B} = \mu_0 \nabla \cdot \left(\epsilon_0 \frac{\partial \vec{E}}{\partial t} + \vec{J} \right) = 0$$
$$\nabla \cdot \vec{E} = \rho/\epsilon_0$$

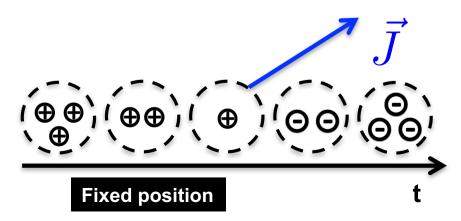
The current density has closed lines.

At a given position the source of J is the decrease of charge in time.



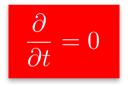
$$\nabla \cdot \vec{J} = -\frac{\partial \rho}{\partial t}$$

Continuity equation



$$\frac{\partial}{\partial t}\approx 0$$

The **lumped elements model** for electric networks is used also when the field variation is negligible over the size of the network.



 $\nabla\times\vec{E}=0$

The E field is conservative.

The energy gain of a charge in closed circuit is zero.

No static, circular accelerators (RF instead!).

$$Electrostatics \nabla \times \vec{E} = 0 \implies \vec{E} = -\nabla V \qquad \overleftarrow{\nabla \cdot \vec{E} = 0} \qquad \nabla^2 V = 0$$
free space

Particle interaction with time varying fields

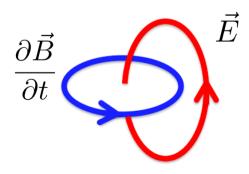
Beam manipulation

Particle acceleration, deflection ...

External sources acting on the beam through EM fields.

RF devices

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$



Parasitic effects

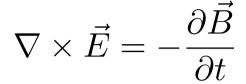
Wakefields and coupling impedance

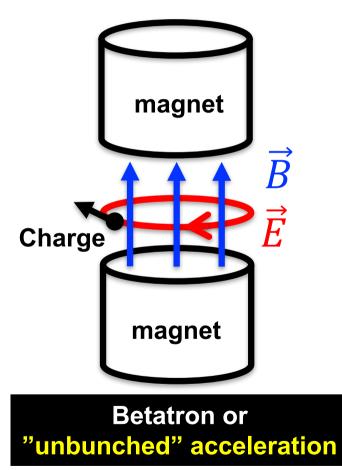
Extraction of beam energy

Beam Instabilities

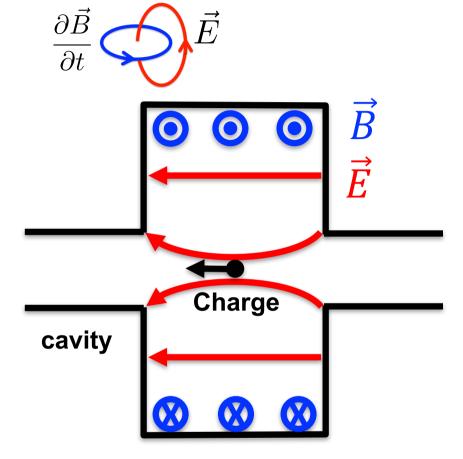
Diagnostics

$$\nabla \cdot \vec{E} = \rho/\epsilon_0$$
$$\nabla \times \vec{B} = \mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t} + \mu_0 \vec{J}$$
$$\vec{J} = \rho \vec{v} = \frac{Q}{2\pi r} \delta(r) \delta(z - vt) \vec{v}$$



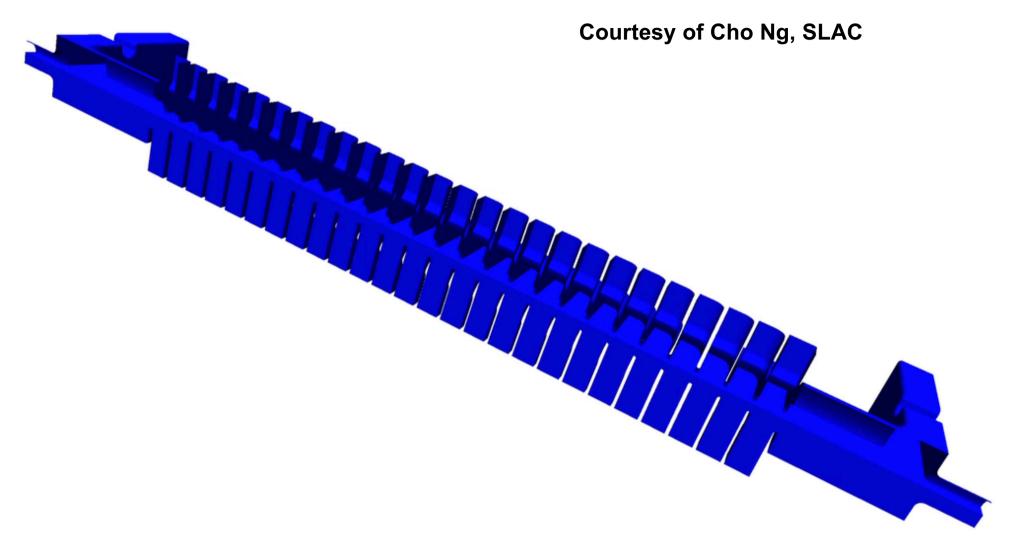


Courtesy of P. Bryant

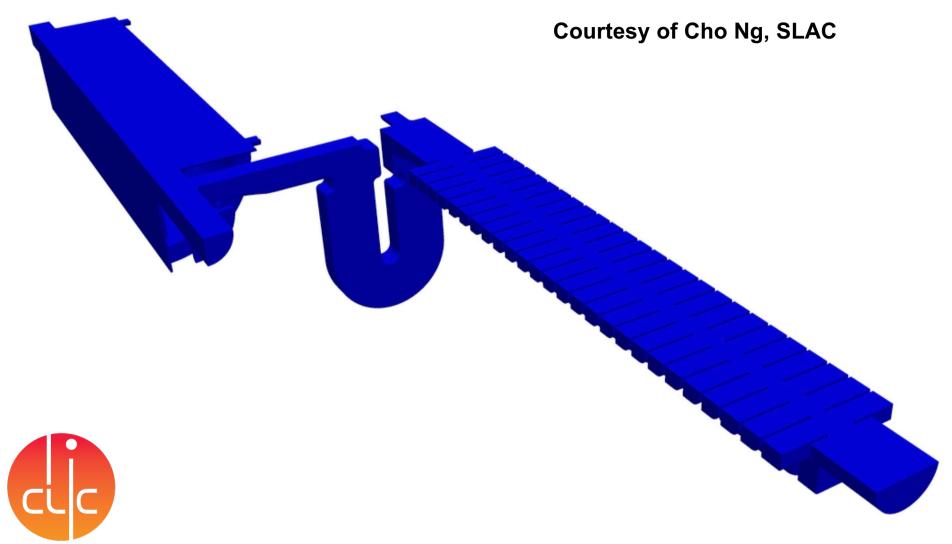


Resonant or "bunched" acceleration

Linear accelerator (LINAC) Cyclotron Synchrotron



Particle in accelerators are charged, thus they are sources of EM fields ...

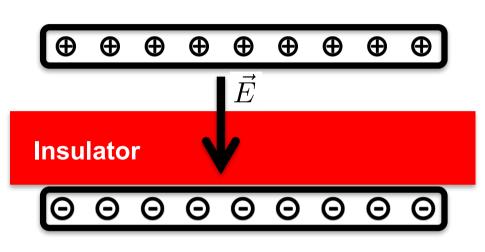


The principle is used in general purpose RF sources (e.g. klystrons) as well as in accelerators (e.g. particle wakefield accelerators)

 \vec{B}

The reality ...

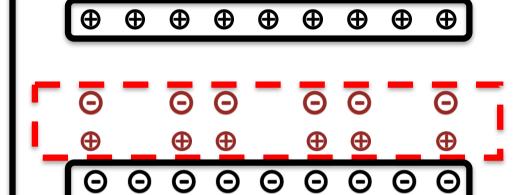
... the model



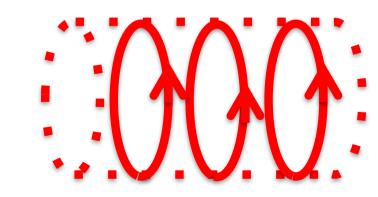
Magnetic medium:

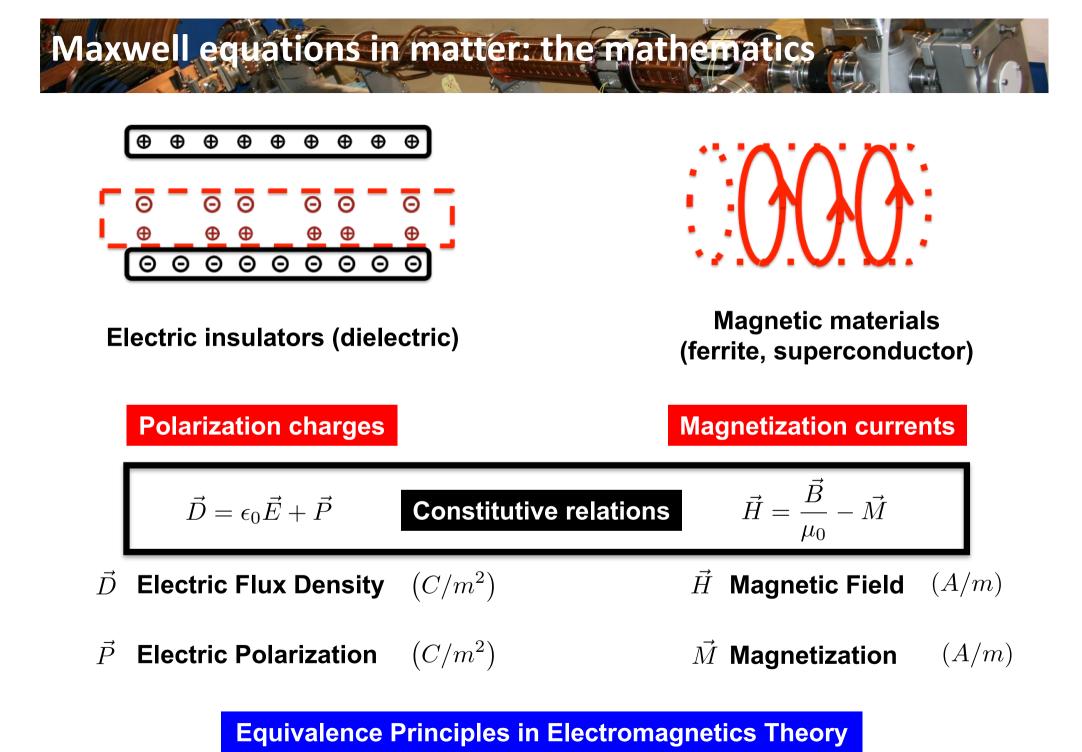
Superconductor,

Ferrite



charges and currents IN VACUUM





Maxwell equations: general expression and solution $\vec{H} = \frac{\vec{B}}{-}$ $\nabla \cdot \vec{D} = \rho$ (V/m)**Electric Field** Ė μ_0 (A/m)**Magnetic Field** fields in vacuum $\nabla \cdot \vec{B} = 0$ \vec{R} (Wb/m^2) **Magnetic Flux Density** (C/m^2) **Electric Flux Density** Ď $\nabla \times \vec{H} = \frac{\partial \vec{D}}{\partial t} + \vec{J}$ sources (C/m^3) **Electric Charge Density** ρ $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ $ec{J}$ **Electric Current Density** (A/m^2)

Maxwell Equations: free space, no sources

$$\nabla(\nabla \cdot \vec{E}) - \nabla^{2}\vec{E} = -\nabla^{2}\vec{E}$$

$$\parallel$$

$$\nabla \times \nabla \times \vec{E}$$

$$\parallel$$

$$-\mu_{0}\frac{\partial}{\partial t}(\nabla \times \vec{H}) = -\mu_{0}\epsilon_{0}\frac{\partial^{2}\vec{E}}{\partial t}$$

$$\nabla^{2}\vec{E} = \mu_{0}\epsilon_{0}\frac{\partial^{2}\vec{E}}{\partial t^{2}} \qquad \text{Wave}$$

$$\nabla^{2}\vec{H} = \mu_{0}\epsilon_{0}\frac{\partial^{2}\vec{H}}{\partial t^{2}} \qquad \text{equation}$$

$$1 \qquad 1 \qquad 1$$

$$\frac{1}{v^2} = \mu_0 \epsilon_0 \Longrightarrow v = \frac{1}{\sqrt{\mu_0 \epsilon_0}} = c$$

Assuming sinusoidal electric field (Fourier)

 $\begin{array}{ll} \text{Time dependence} & \longrightarrow & e^{j\omega t} = e^{j2\pi f \ t} & \longrightarrow & \frac{\partial}{\partial t} \cdots = j\omega \ldots \\ \\ \vec{E}(\vec{r},t) = Re\left\{ \vec{E}(\vec{r},\omega)e^{j\omega t} \right\} & \text{Phasors are complex vectors} \end{array}$

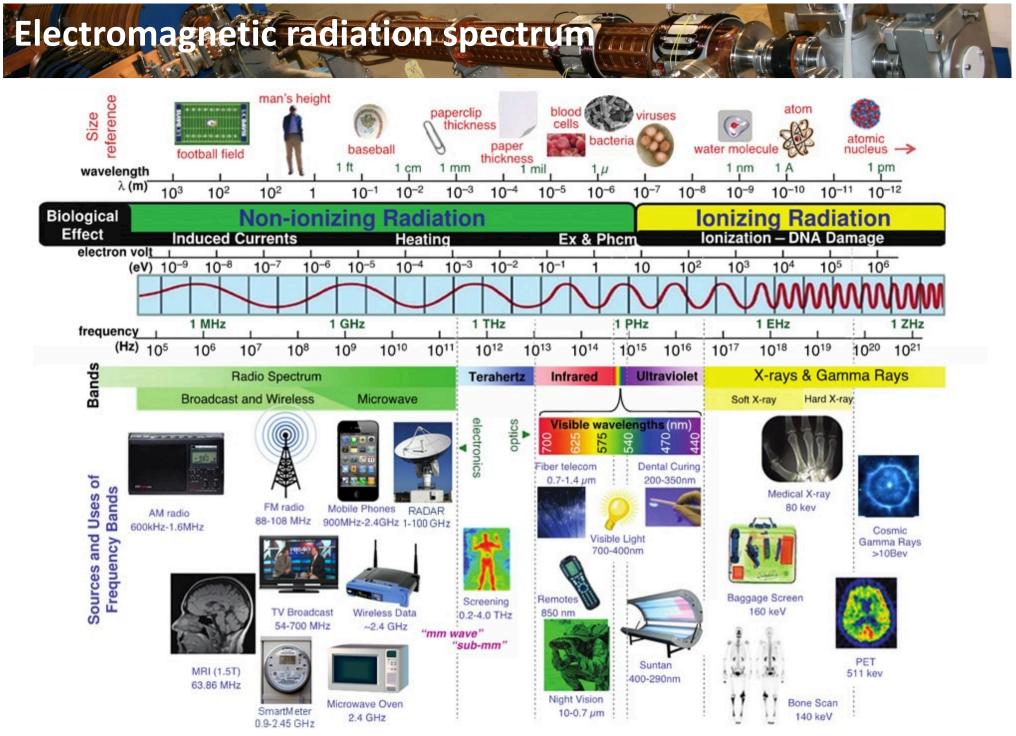
Power/Energy depend on time average of quadratic quantities

$$\vec{E}(\vec{r},t)\Big|_{average}^{2} = \frac{1}{T} \int_{0}^{T} \vec{E}(\vec{r},t) \cdot \vec{E}(\vec{r},t) dt = \cdots = \frac{1}{2} \vec{E}(\vec{r},\omega) \cdot \vec{E^{*}}(\vec{r},\omega) = \left|\vec{E}_{RMS}(\vec{r},\omega)\right|^{2} \left|\vec{E}_{RMS}\left|=\left|\vec{E}\right|/\sqrt{2}\right| \right|^{2}$$

In the following we will use the same symbol for

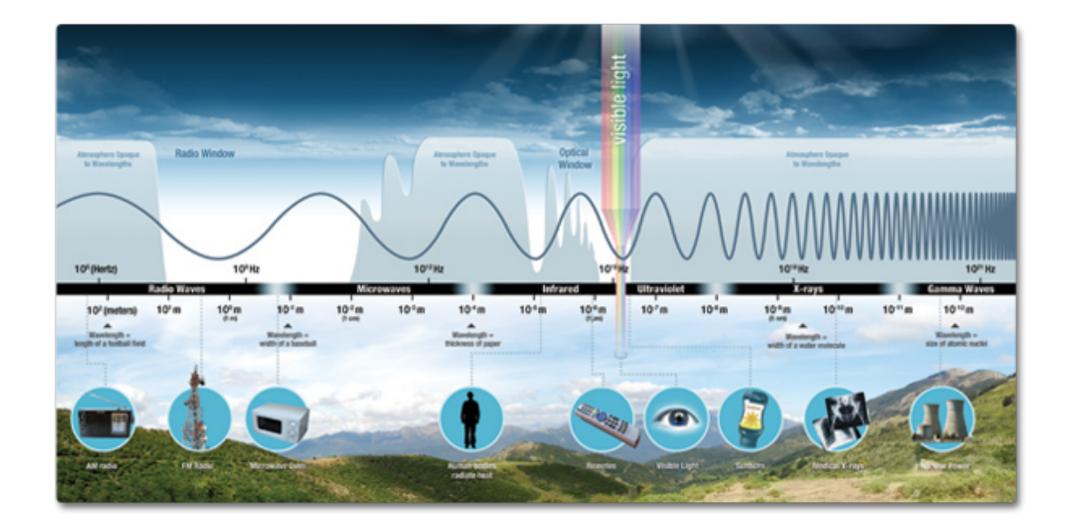
Real vectorsComplex vectors $\vec{E}(\vec{r},t), \vec{H}(\vec{r},t), \dots$ $\vec{E}(\vec{r},\omega), \vec{H}(\vec{r},\omega), \dots$

Note that, with phasors, a time animation is identical to phase rotation.

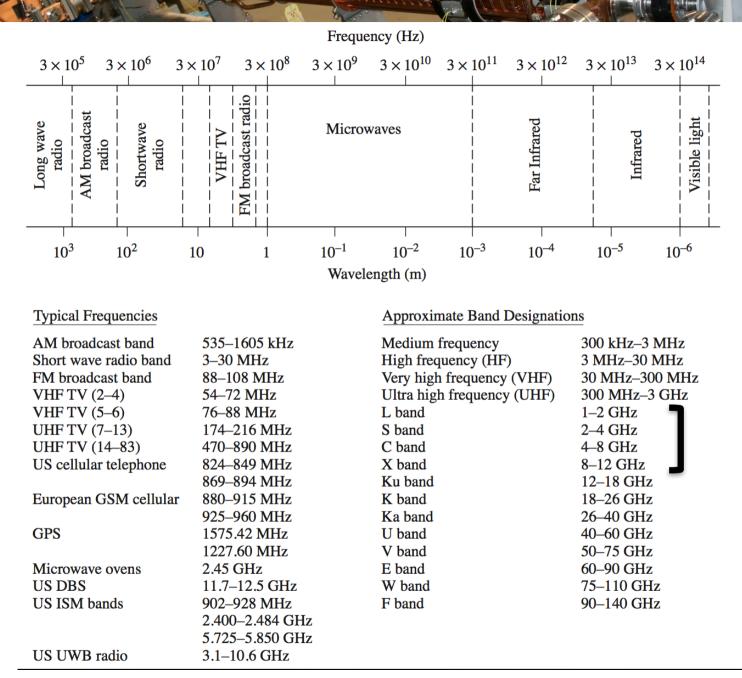


Source: Common knowledge (Wikipedia)

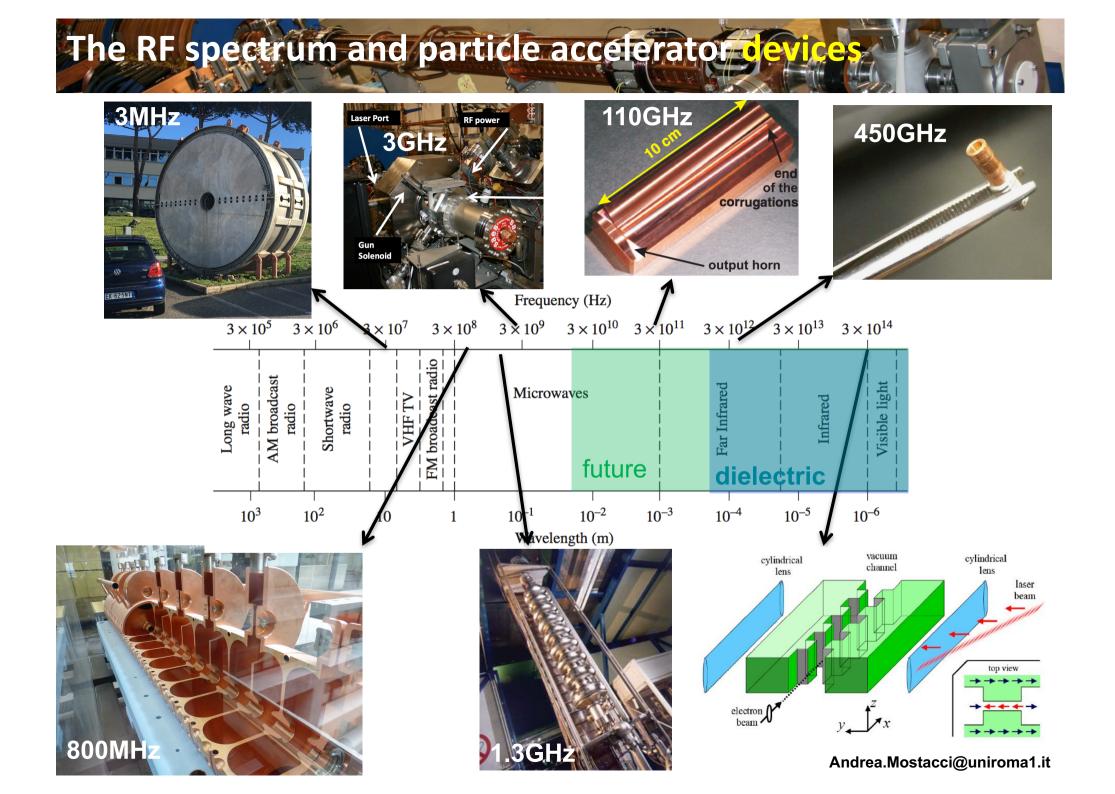
Electromagnetic radiation spectrum: users point of view

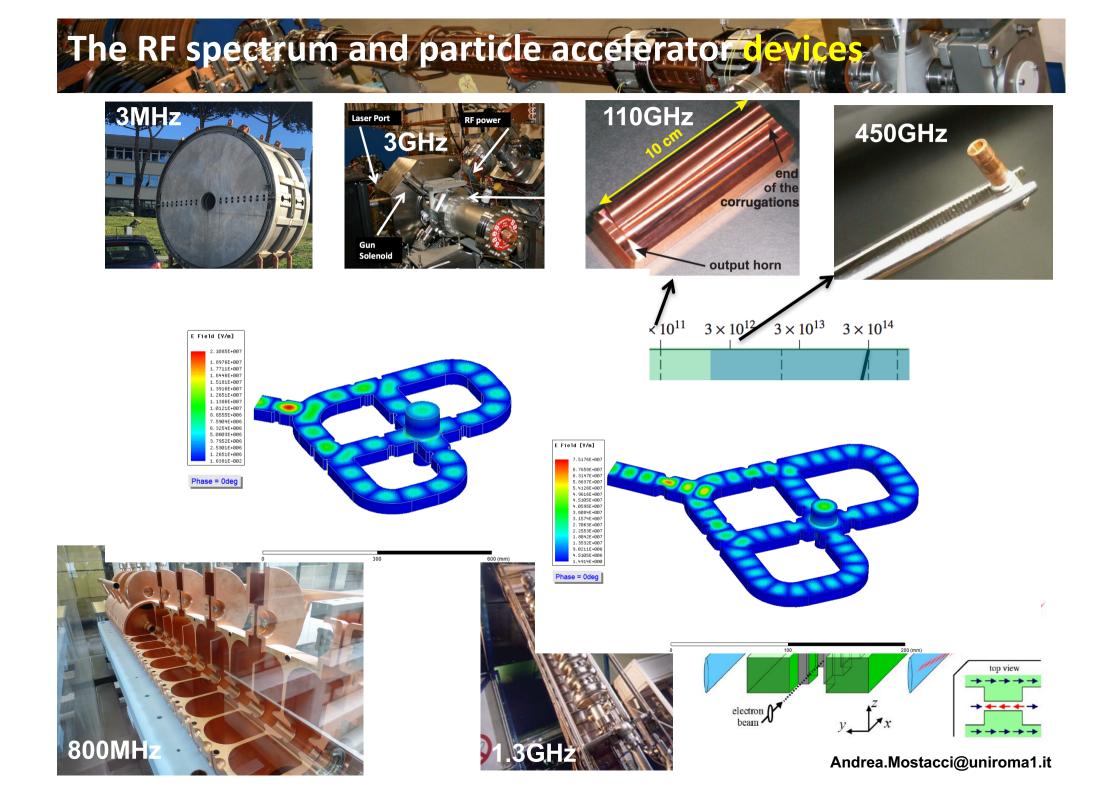


The electromagnetic spectrum for RF engineers



Source: Pozar, Microwave Engineering 4ed, 2012





A. Gallo Lecture @ CAS RF engineering (2010) 10¹³ 3×10^{11} 10⁷ 3×10^{14} $3 \times$ radio Visible light Microwaves ong way Sh 10³ 10⁻² 10⁻³ 10⁻⁶ 10² 10⁻⁵ 10⁻⁴ -1 Navelength (m)

Harmonic fields in media: constitutive relations

Hyp: Linear, Homogeneous, Isotropic and non Dispersive media

e to moving charges colliding with lattice

Material	Conductivity S/m (20°C)	Material	Conductivity S/m (20°C)
Aluminum	3.816×10^7	Nichrome	1.0×10^{6}
Brass	2.564×10^{7}	Nickel	1.449×10^{7}
Bronze	1.00×10^{7}	Platinum	9.52×10^{6}
Chromium	3.846×10^{7}	Sea water	3–5
Copper 🔶	5.813×10^{7}	Silicon	4.4×10^{-4}
Distilled water	2×10^{-4}	Silver	6.173×10^{7}
Germanium	2.2×10^{6}	Steel (silicon)	2×10^{6}
Gold 🔶	4.098×10^{7}	Steel (stainless)	1.1×10^{6}
Graphite	7.0×10^{4}	Solder	7.0×10^{6}
Iron	1.03×10^{7}	Tungsten	1.825×10^{7}
Mercury	1.04×10^{6}	Zinc	1.67×10^{7}
Lead	4.56×10^{6}		

Source: Pozar, Microwave Engineering 4ed, 2012

Harmonic fields in media: Maxwell Equations

Hyp: Linear, Homogeneous, Isotropic and non Dispersive media

$$\vec{D} = \epsilon_0 \vec{E} + \vec{P} \qquad \vec{D} = \epsilon_c \vec{E} \qquad \epsilon_c = \epsilon' - j\epsilon'' \qquad \text{complex permittivity}$$
Losses (heat) due to damping of vibrating dipoles
$$\vec{H} = \frac{\vec{B}}{\mu_0} - \vec{M} \qquad \vec{B} = \mu \vec{H} \qquad \mu = \mu' - j\mu'' \qquad \text{complex permeability}$$
Ohm Law
$$\vec{J_c} = \sigma \vec{E} \qquad \sigma \qquad \text{conductivity} \qquad (S/m) \qquad \begin{array}{c} \text{Losses (heat) due to} \\ \text{moving charges} \\ \text{colliding with lattice} \end{array}$$

$$\vdots \qquad \nabla \cdot \vec{D} = \rho \qquad \nabla \cdot \vec{B} = 0$$

$$\vdots \qquad \nabla \times \vec{E} = -j\omega\mu\vec{H}$$

$$\vdots \qquad \nabla \times \vec{E} = -j\omega\mu\vec{H}$$

$$\vdots \qquad \nabla \times \vec{H} = j\omega\vec{D} + \vec{J_c} + \vec{J} = \dots = j\omega\epsilon\vec{E} + \vec{J} \qquad \epsilon = \epsilon' - j\epsilon'' - j\frac{\sigma}{\omega}$$

$$\tan \delta = \frac{\omega\epsilon'' + \sigma}{\omega\epsilon'} = \frac{\text{Losses}}{\text{Displacement current}} \qquad \epsilon = \epsilon_r \epsilon_0 (1 - j \tan \delta)$$

$$\vec{E} = \epsilon_r \epsilon_0$$

Harmonic fields in media: Maxwell Equations

DIELECTRIC CONSTANTS AND LOSS TANGENTS FOR SOME MATERIALS

Material	Frequency	<i>e</i> _r	$\tan \delta (25^{\circ}C)$
Alumina (99.5%)	10 GHz	9.5–10.	0.0003
Barium tetratitanate	6 GHz	$37\pm5\%$	0.0005
Beeswax	10 GHz	2.35	0.005
Beryllia	10 GHz	6.4	0.0003
Ceramic (A-35)	3 GHz	5.60	0.0041
Fused quartz	10 GHz	3.78	0.0001
Gallium arsenide	10 GHz	13.0	0.006
Glass (pyrex)	3 GHz	4.82	0.0054
Glazed ceramic	10 GHz	7.2	0.008
Lucite	10 GHz	2.56	0.005
Nylon (610)	3 GHz	2.84	0.012
Parafin	10 GHz	2.24	0.0002
Plexiglass	3 GHz	2.60	0.0057
Polyethylene	10 GHz	2.25	0.0004
Polystyrene	10 GHz	2.54	0.00033
Porcelain (dry process)	100 MHz	5.04	0.0078
Rexolite (1422)	3 GHz	2.54	0.00048
Silicon	10 GHz	11.9	0.004
Styrofoam (103.7)	3 GHz	1.03	0.0001
Teflon	10 GHz	2.08	0.0004
Titania (D-100)	6 GHz	$96\pm5\%$	0.001
Vaseline	10 GHz	2.16	0.001
Water (distilled)	3 GHz	76.7	0.157

Source: Pozar, Microwave Engineering 4ed, 2012

A A A A K					
ו Dispersive media					
	complex permittivity				
ı″′	complex permeability				
ıctivity	(S/m)	Losses (heat) due to moving charges colliding with lattice			
$\vec{z} + \vec{J}$	$\epsilon = \epsilon'$ –	$-j\epsilon^{\prime\prime}-jrac{\sigma}{\omega}$			
		Loss tangent			
ϵ	$=\epsilon_r\epsilon_0 (1)$				
		actria constant			

Dielectric constant

Boundary Conditions

Medium 2: ϵ_2, μ_2 E_{t2} B_{n2} H_{t1} $\setminus B_{n1}$ Medium 1: ϵ_1, μ_1

 (C/m^2) ρ_s Surface Charge Density D_{n2} $\overline{J_s}$ ρ_s \vec{J}_{c} Surface Current Density (A/m) $\hat{n} \cdot \left(\vec{D}_2 - \vec{D}_1\right) = \rho_s \qquad \hat{n} \cdot \left(\vec{B}_2 - \vec{B}_1\right) = 0$ $\hat{n} \times \left(\vec{E}_2 - \vec{E}_1\right) = 0$ $\hat{n} \times \left(\vec{H}_2 - \vec{H}_1\right) = \vec{J}_s$

Fields at a lossless dielectric interface

$$\rho_s = 0 \qquad \hat{n} \cdot \vec{D}_1 = \hat{n} \cdot \vec{D}_2 \qquad \hat{n} \cdot \vec{B}_1 = \hat{n} \cdot \vec{B}_2$$
$$\vec{J}_s = 0 \qquad \hat{n} \times \vec{E}_1 = \hat{n} \times \vec{E}_2 \qquad \hat{n} \times \vec{H}_1 = \hat{n} \times \vec{H}_2$$

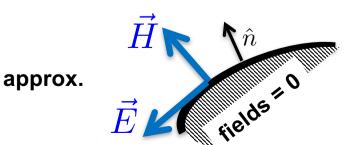
Perfect conductor (electric wall)

Magnetic Wall

(dual of the E-wall)

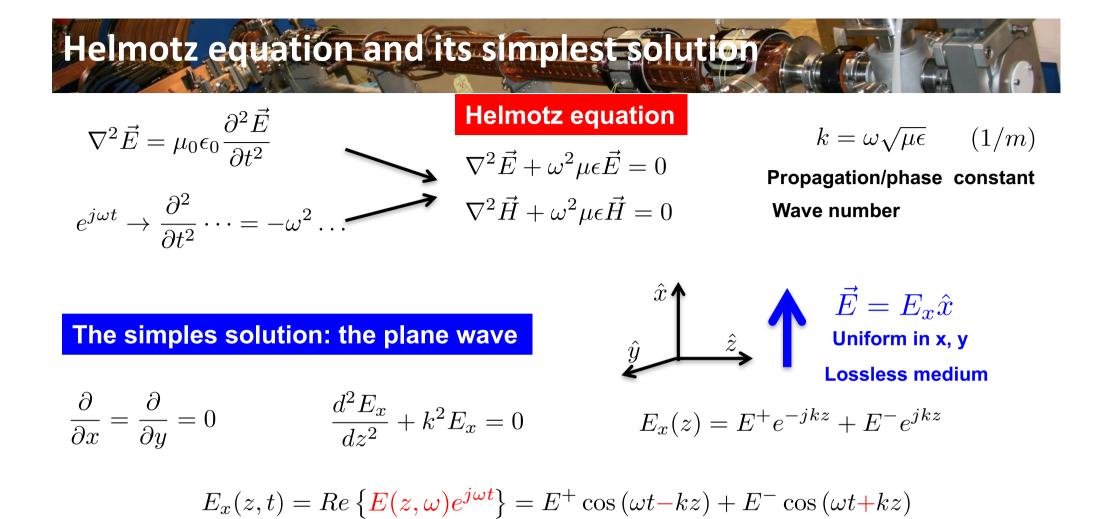
ields = 0 $\sigma
ightarrow \infty$

 D_{n1}



 $\hat{n} \cdot \vec{D} = \rho_s \qquad \hat{n} \cdot \vec{B} = 0$ $\hat{n} \times \vec{E} = 0$ $\hat{n} \times \vec{H} = \vec{J}_s$

 $\hat{n} \cdot \vec{D} = 0$ $\hat{n} \cdot \vec{B} = 0$ $\hat{n} \times \vec{H} = 0$ $\hat{n} \times \vec{E} \neq 0$



It is a wave, moving in the +z direction or -z direction

Phase velocity

Velocity at which a fixed phase point on the wave travels

$$\omega t \mp kz = \text{const}$$

$$v_p = \frac{dz}{dt} = \frac{d}{dt} \left(\frac{\omega t \mp \text{const}}{k} \right) = \frac{\omega}{k} = \frac{1}{\sqrt{\mu\epsilon}}$$
 Speed of light

Wave length Distance between two consecutive maxima (or minima or ...)

$$(\omega t - kz) - [\omega t - k(z + \lambda)] = 2\pi$$

$$\lambda = \frac{2\pi}{k} = \frac{2\pi v_p}{\omega} = \frac{v_p}{f}$$

 $\nabla\times\vec{E}=-j\omega\mu\vec{H}$

Compute H ...

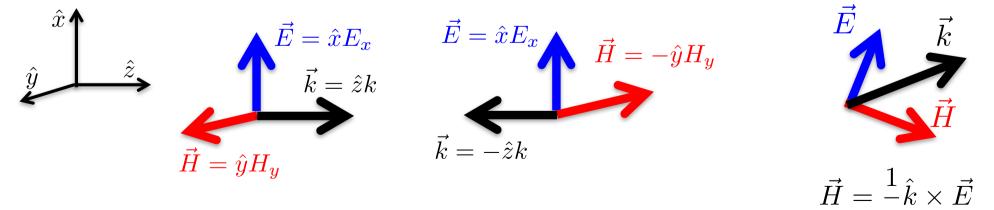
$$E_x(z) = E^+ e^{-jkz} + E^- e^{jkz}$$

Wave length Distance between two consecutive maxima (or minima or ...)

$$(\omega t - kz) - [\omega t - k(z + \lambda)] = 2\pi$$
 $\lambda = \frac{2\pi}{k} = \frac{2\pi v_p}{\omega} = \frac{v_p}{f}$

 $\nabla \times \vec{E} = -j\omega\mu\vec{H}$ $E_x(z) = E^+ e^{-jkz} + E^- e^{jkz}$ $H_x = H_z = 0$ $H_y = \frac{j}{\omega\mu} \frac{\partial E_x}{\partial z} = \frac{1}{\eta} \left(E^+ e^{-jkz} - E^- e^{jkz} \right)$ $\eta = \frac{\omega\mu}{k} = \sqrt{\frac{\mu}{\epsilon}}$ Intrinsic impedance of the medium (\Omega) $\eta_0 = \sqrt{\frac{\mu_0}{\epsilon_0}} = 377 \ \Omega$

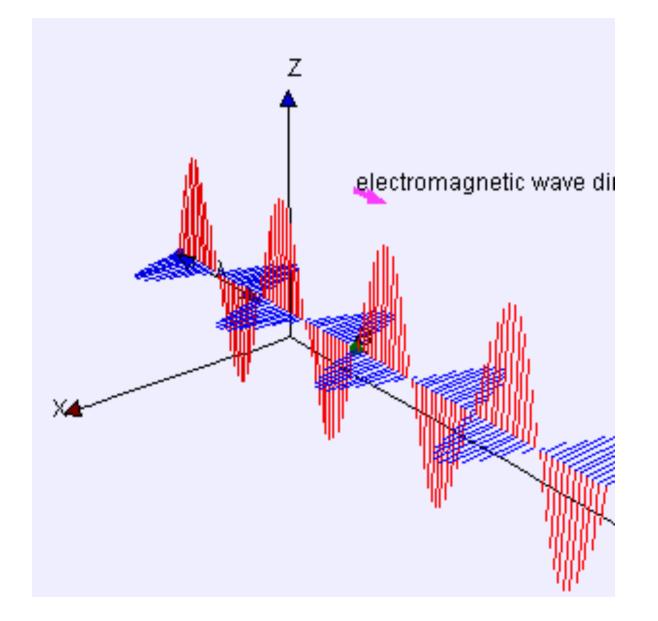
The ratio of E and H component is an impedance called wave impedance

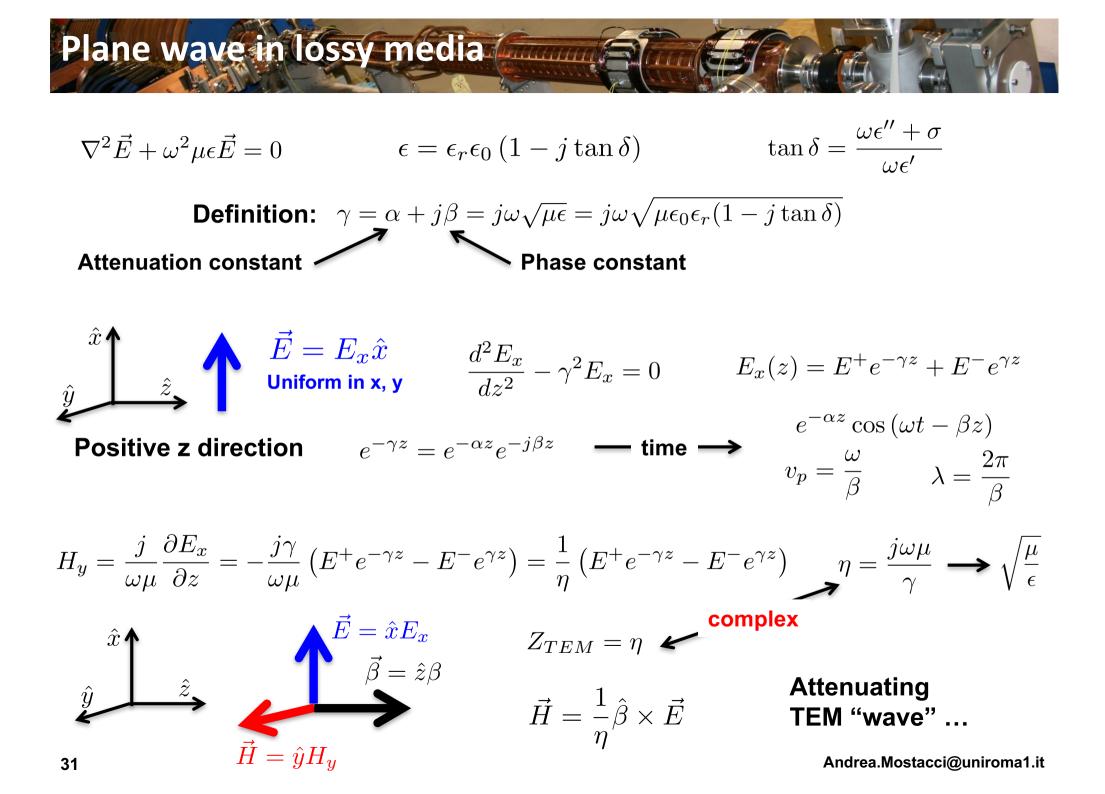


E and H field are transverse to the direction of propagation.

$$Z_{TEM} = \eta$$

Plane waves and Transverse Electro-Magnetic (TEM) waves





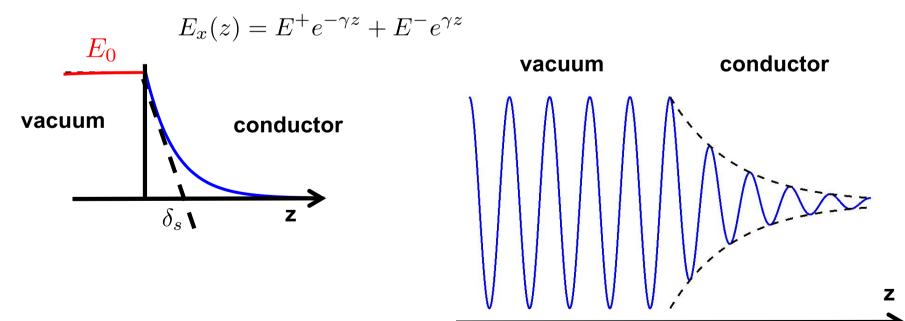
Good conductor

$$\tan \delta = \frac{\omega \epsilon'' + \sigma}{\omega \epsilon'} \approx \frac{\sigma}{\omega \epsilon_0 \epsilon_r}$$

$$\gamma = \alpha + j\beta = j\omega\sqrt{\mu\epsilon} \simeq (1+j)\sqrt{\frac{\omega\mu\sigma}{2}}$$

Characteristic depth of penetration: skin depth

 $\delta_s = \frac{1}{\alpha} = \sqrt{\frac{2}{\omega\mu\sigma}}$



7

Good conductor

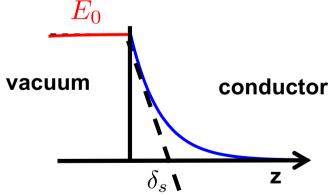
$$\tan \delta = \frac{\omega \epsilon'' + \sigma}{\omega \epsilon'} \approx \frac{\sigma}{\omega \epsilon_0 \epsilon_r}$$

$$\omega = \alpha + j\beta = j\omega\sqrt{\mu\epsilon} \simeq (1+j)\sqrt{\frac{\omega\mu\sigma}{2}}$$

Characteristic depth of penetration: skin depth

 $\eta = \frac{j\omega\mu}{\gamma} \simeq (1+j)\sqrt{\frac{\omega\mu}{2\sigma}} = (1+j)\frac{1}{\sigma\delta_{\gamma}}$

$$\delta_s = \frac{1}{\alpha} = \sqrt{\frac{2}{\omega\mu\sigma}}$$



Al
$$\delta_s = 8.14 \ 10^{-7} \ m$$

Cu $\delta_s = 6.60 \ 10^{-7} \ m$ Au $\delta_s = 7.86 \ 10^{-7} \ m$

@ 10 GHz

Ag
$$\delta_s = 6.40 \ 10^{-7} \ m$$

? Copper @ 100 MHz

Andrea.Mostacci@uniroma1.it

 E_0

impedance of

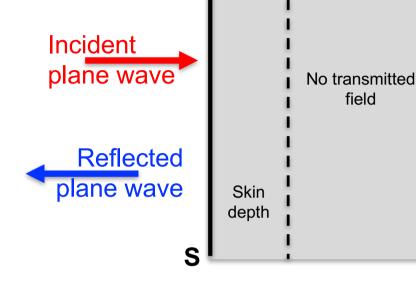
the medium

Surface Impedance

Good conductor

field

Goal: account for an imperfect conductor



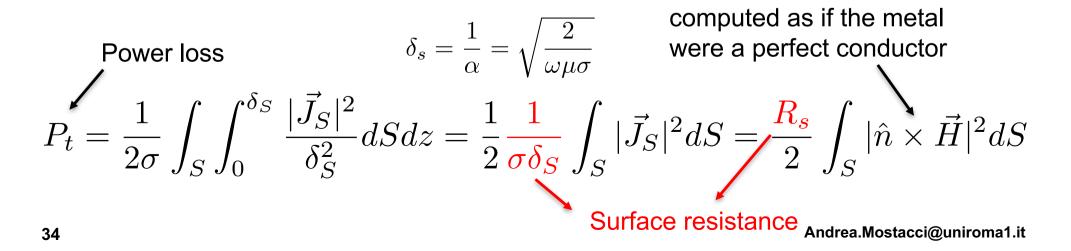
The power that is transmitted into the conductor is dissipated as heat within a very short **distance** from the surface.

Being
$$\left. ec{J_S} = \hat{n} imes ec{H}
ight|_S$$
 when $\left. \sigma
ightarrow \infty
ight.$

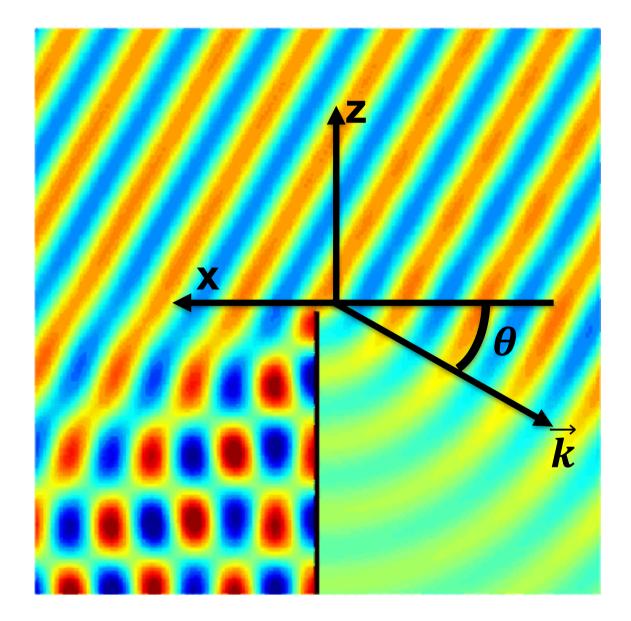
Approximation

Replace the exponentially decaying volume current volume with a uniform current extending a distance of one skin depth

 $\bar{J}_t = \begin{cases} \bar{J}_s / \delta_s & \text{for } 0 < z < \delta_s \\ 0 & \text{for } z > \delta_s. \end{cases}$



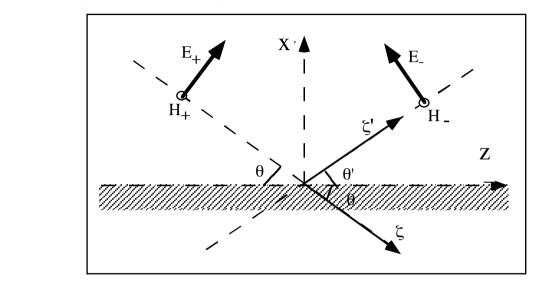
Courtesy of M. Ferrario, INFN-LNF



Plane wave reflected by a perfectly conducting plane

 $\sigma = \infty$

Courtesy of M. Ferrario, INFN-LNF



In the plane xz the field is given by the superposition of the incident and reflected wave:

$$E(x,z,t) = E_{+}(x_{o},z_{o},t_{o})e^{i\omega t - ik\xi} + E_{-}(x_{o},z_{o},t_{o})e^{i\omega t - ik\xi'}$$
$$\xi = z\cos\theta - x\sin\theta \qquad \xi' = z\cos\theta' + x\sin\theta'$$

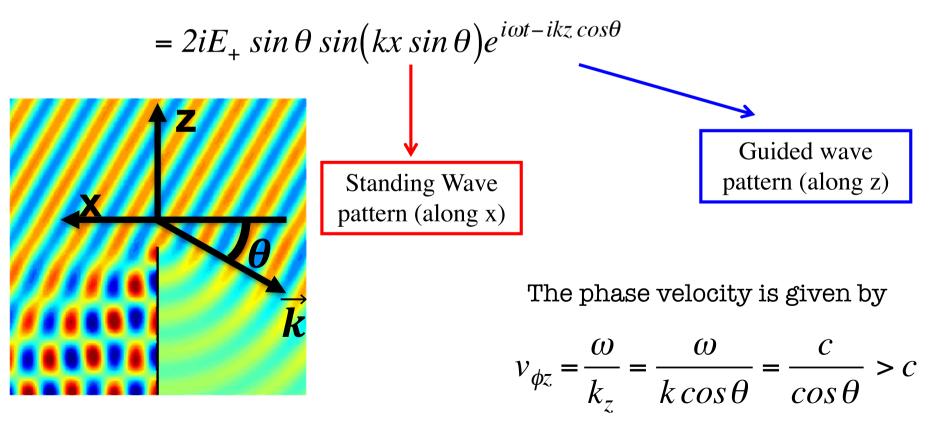
And it has to fulfill the boundary conditions (no tangential E-field)

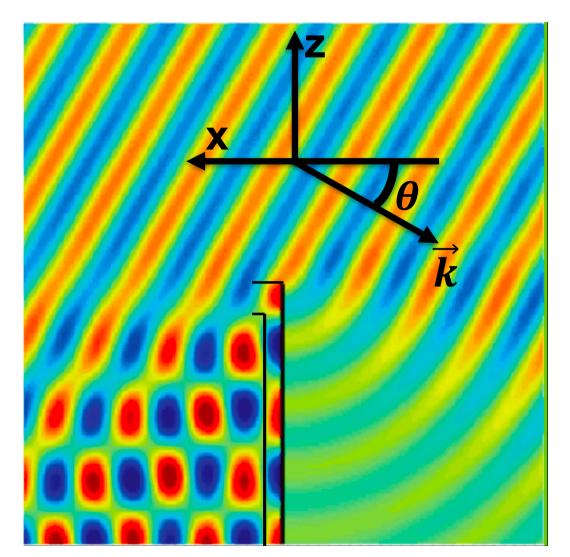
Taking into account the boundary conditions the longitudinal component of the field becomes:

Courtesy of M. Ferrario, INFN-LNF

$$E_{z}(x,z,t) = (E_{+}\sin\theta)e^{i\omega t - ik(z\cos\theta - x\sin\theta)} - (E_{+}\sin\theta)e^{i\omega t - ik(z\cos\theta + x\sin\theta)}$$

Reflection of plane waves (a first boundary value problem)





Courtesy of M. Ferrario, INFN-LNF

Put a metallic boundary where the field is zero at a given distance from the wall.

Between the two walls there must be an integer number of half wavelengths (at least one).

For a given distance, there is a maximum wavelength, i.e. there is **cut-off frequency**.

$$v_{\phi z} = \frac{\omega}{k_z} = \frac{\omega}{k \cos \theta} = \frac{c}{\cos \theta} > c$$

It can not be used as it is for particle acceleration

Maxwell equation with sources + boundary conditions = boundary value problem

Sources

 \vec{J}, ρ

Homogeneous medium

 $\nabla \cdot \vec{E} = \rho / \epsilon \qquad \qquad \nabla \cdot \vec{H} = 0$

 $\nabla\times\vec{E}=-j\omega\mu\vec{H}$

$$\nabla \times \vec{H} = +j\omega\epsilon\vec{E} + \vec{J}$$

Do you see asymmetries?

Maxwell equation with sources + boundary conditions = boundary value problem

Homogeneous medium

 $abla \cdot \vec{E} =
ho/\epsilon \qquad \qquad
abla \cdot \vec{H} =
ho_m/\mu \qquad \qquad \vec{J}, \
ho \qquad \mu$

Actual or equivalent

Sources

 $abla imes \vec{E} = -j\omega\mu\vec{H} - \vec{J_m} \qquad \nabla \times \vec{H} = +j\omega\epsilon\vec{E} + \vec{J} \qquad \vec{J_m}, \ \rho_m \qquad \text{equivalent}$

Vector Helmotz Equation

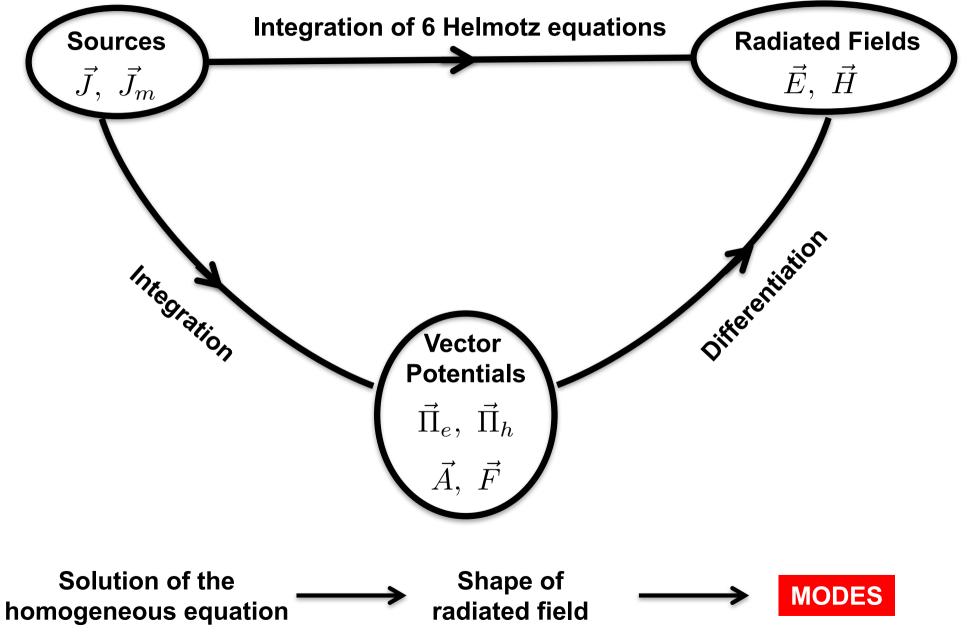
$$\nabla^{2}\vec{E} + k^{2}\vec{E} = \nabla \times \vec{J}_{m} + j\omega\mu\vec{J} + \frac{1}{\epsilon}\nabla\rho$$

$$\nabla^{2}\vec{H} + k^{2}\vec{H} = -\nabla \times \vec{J} + j\omega\epsilon\vec{J}_{m} + \frac{1}{\mu}\nabla\rho_{m}$$

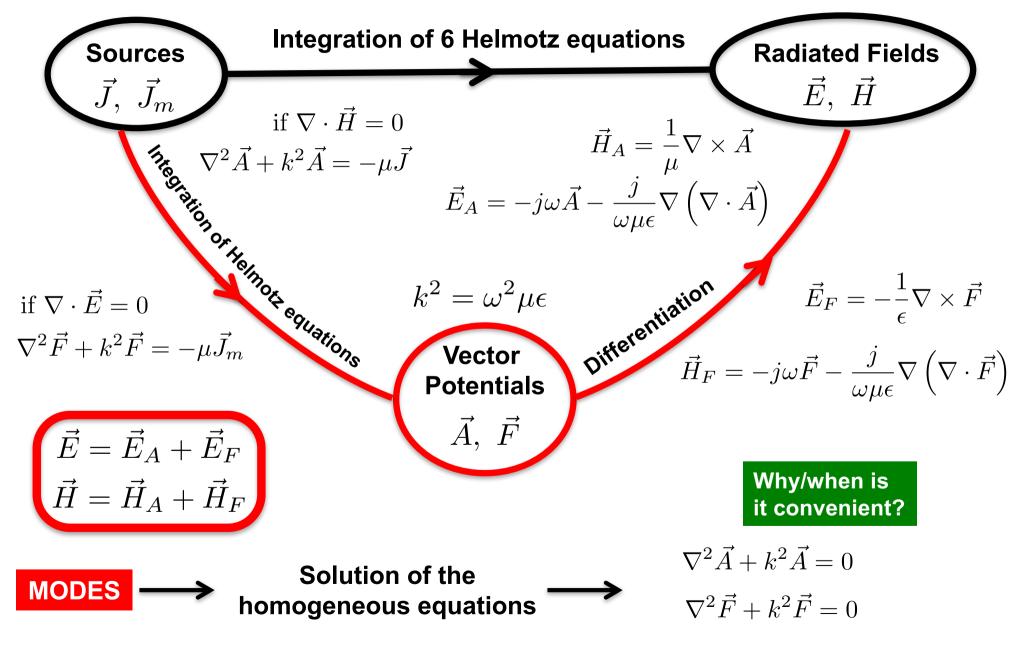
$$k^{2} = \omega^{2}\mu\epsilon$$

Step 1 Source free region $\vec{J} = \vec{J}_m = \rho_m = \rho = 0$ Homogeneous problem Step 2 Solution $= \sum_k C_k \left(\vec{J}, \vec{J}_m, \rho_m, \rho \right)$ Solution-Homogeneous-Problem_k

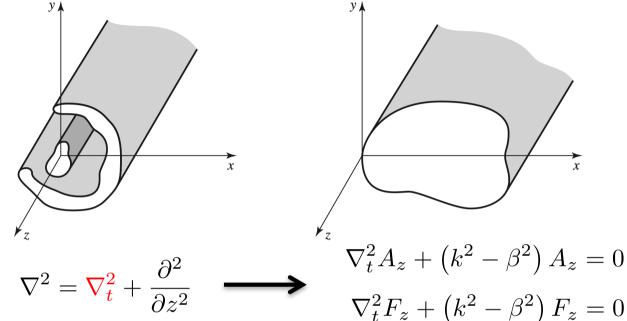
Method of solution of Helmotz equations



Solution of Helmotz equations using potentials



Modes of cylindrical waveguides: propagating field



У▲ x $\nabla_t^2 A_z + \left(k^2 - \beta^2\right) A_z = 0$

Field propagating in the positive z direction

 $\vec{A} = \hat{z} A_z(x, y) e^{-j\beta z} = \hat{z} A$

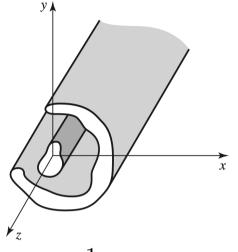
$$\vec{F} = \hat{z} \ F_z(x,y) \ e^{-j\beta z} = \hat{z} \ F$$

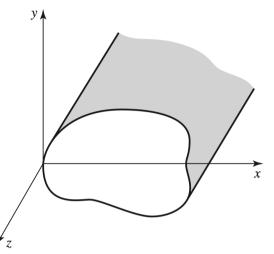
2 Helmotz equations (transverse coordinates)

$$\vec{H}_{A} = \frac{1}{\mu} \nabla \times (\hat{z}A) \longrightarrow \vec{H}_{A} = \vec{h}_{t} \ e^{-j\beta z} \qquad \begin{array}{c} \text{Only E field along z} \\ \text{E-mode} \\ \vec{E}_{A} = -j\omega A \hat{z} - \frac{\beta}{\omega\mu\epsilon} \nabla A \longrightarrow \vec{E}_{A} = [\vec{e}_{t} + \hat{z} \ e_{z}] \ e^{-j\beta z} \end{array} \qquad \begin{array}{c} \text{Only E field along z} \\ \text{E-mode} \\ \text{Transverse Magnetic (TM)} \end{array}$$

$$\vec{E}_{F} = -\frac{1}{\epsilon} \nabla \times (\hat{z}F) \longrightarrow \vec{E}_{F} = \vec{e}_{t} \ e^{-j\beta z} \qquad \begin{array}{c} \text{Only H field along z} \\ \text{H-mode} \\ \text{H-mode} \\ \vec{H}_{F} = -j\omega F \hat{z} - \frac{\beta}{\omega\mu\epsilon} \nabla F \longrightarrow \vec{H}_{F} = \left[\vec{h}_{t} + \hat{z} \ h_{z}\right] e^{-j\beta z} \qquad \begin{array}{c} \text{Transverse Electric (TE)} \\ \text{Andrea.Mostacci@uniroma1.it} \end{array}$$

Modes of cylindrical waveguides: propagating field

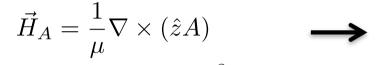


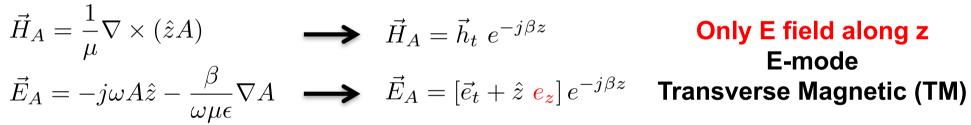


Field propagating in the positive z direction

$$\vec{A} = \hat{z} A_z(x, y) e^{-j\beta z} = \hat{z} A$$

$$\vec{F} = \hat{z} \ F_z(x, y) \ e^{-j\beta z} = \hat{z} \ F$$





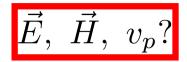
$$\vec{E}_{F} = -\frac{1}{\epsilon} \nabla \times (\hat{z}F) \longrightarrow \vec{E}_{F} = \vec{e}_{t} \ e^{-j\beta z} \qquad \begin{array}{c} \text{Only H field along z} \\ \text{H-mode} \\ \text{H-mode} \\ \vec{H}_{F} = -j\omega F \hat{z} - \frac{\beta}{\omega\mu\epsilon} \nabla F \longrightarrow \vec{H}_{F} = \begin{bmatrix} \vec{h}_{t} + \hat{z} \ h_{z} \end{bmatrix} e^{-j\beta z} \quad \begin{array}{c} \text{Transverse Electric (TE)} \\ \end{array}$$

TM $\vec{E} = \vec{E}_A + \vec{E}_F$ $\vec{H} = \vec{H}_A + \vec{H}_F$ modes

TE

modes

Look for a Transverse Electric Magnetic mode $E_z = H_z = 0$



Hint 1 Start from a TM mode (vector potential A) $H_z = 0$

$$\nabla = \nabla_t + \hat{z} \frac{\partial}{\partial z} \qquad \vec{A} = \hat{z} \ A_z(x, y) \ e^{-j\beta z} = \hat{z} \ A \qquad \nabla \cdot \vec{A} = \cdots$$

Hint 2
$$\vec{E}_A = \cdots$$

0

Solution

Transverse Electric Magnetic mode

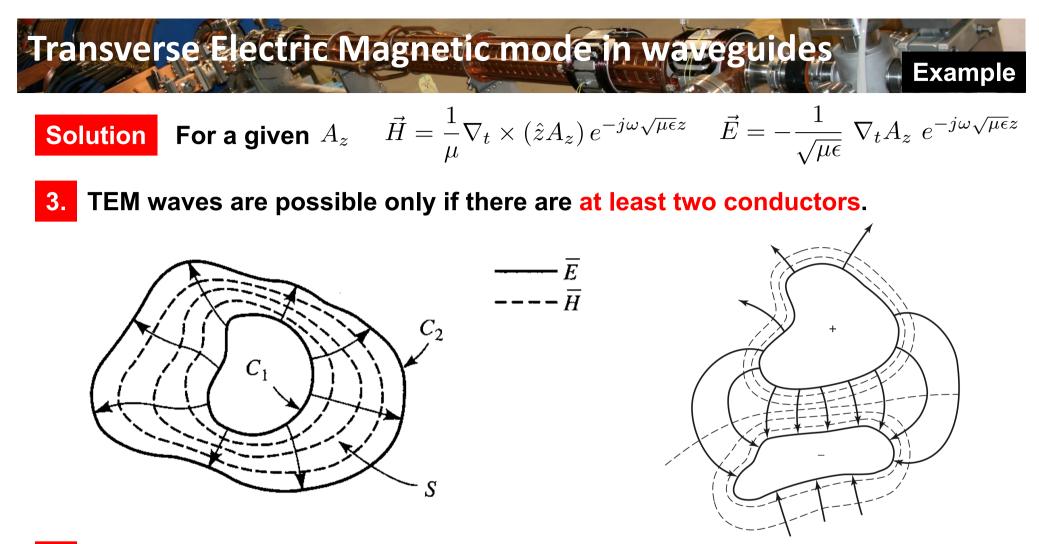
Look for a Transverse Electric Magnetic mode $E_z = H_z = 0$ $\vec{E}, \ \vec{H}, \ v_p?$ Hint 1 Start from a TM mode (vector potential A) $H_{z}=0$ $\nabla = \nabla_t + \hat{z} \frac{\partial}{\partial z} \qquad \vec{A} = \hat{z} \ A_z(x, y) \ e^{-j\beta z} = \hat{z} \ A \qquad \nabla \cdot \vec{A} = \dots = -j\beta A_z e^{-j\beta z}$ **Hint 2** $\vec{E}_A = \dots = -j\omega\hat{z}A_z e^{-j\beta z} - \frac{j}{\omega\mu\epsilon} \left| \nabla_t + \hat{z}\frac{\partial}{\partial z} \right| (-j\beta)A_z e^{-j\beta z} =$ $= -\frac{j}{\omega \mu \epsilon} \left[\omega^2 \mu \epsilon - \beta \right] A_z e^{-j\beta z} \hat{z} - \frac{\beta}{\omega \mu \epsilon} \nabla_t A_z \ e^{-j\beta z}$ if $\beta^2 = \omega^2 \mu \epsilon = k^2 \implies e_z = 0$ **Solution** For a given A_z $\vec{H} = \frac{1}{\mu} \nabla_t \times (\hat{z}A_z) e^{-j\omega\sqrt{\mu\epsilon}z}$ $\vec{E} = -\frac{1}{\sqrt{\mu\epsilon}} \nabla_t A_z e^{-j\omega\sqrt{\mu\epsilon}z}$

1. $\nabla_t^2 A_z = -(k^2 - \beta^2) A_z = 0$ The transverse E field is "electrostatic"

2. As plane waves: $\dots e^{-j\omega\sqrt{\mu\epsilon}z} \implies v_p = 1/\sqrt{\mu\epsilon}$ $\vec{h}_t = \sqrt{\frac{\epsilon}{\mu}} \hat{z} \times \vec{e}_t = \frac{1}{Z_{TEM}} \hat{z} \times \vec{e}_t$

Andrea.Mostacci@uniroma1.it

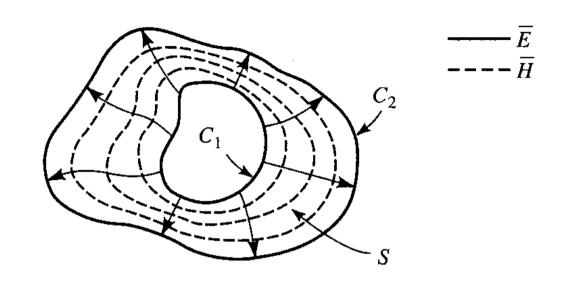
Example

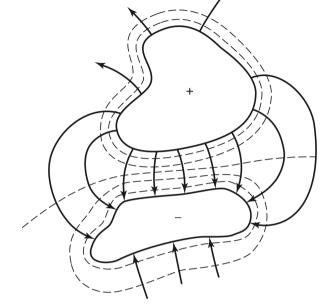


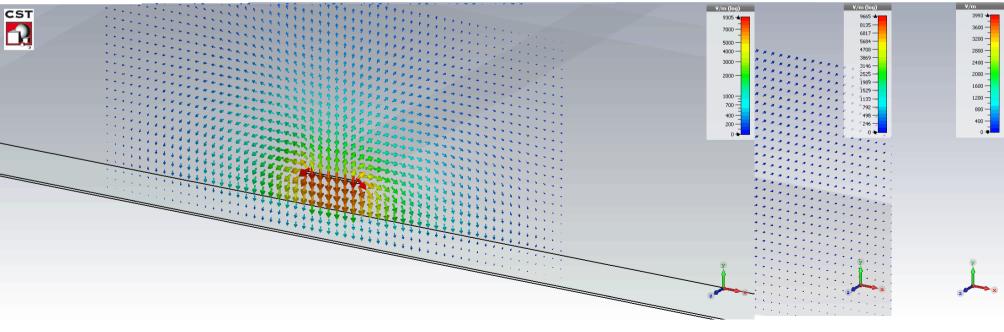
4.

The plane wave is a TEM wave of two infinitely large plates separated to infinity

5. Electrostatic problem with boundary conditions $\vec{e}_t \longrightarrow \vec{h}_t = \frac{1}{Z_{TEM}} \hat{z} \times \vec{e}_t \longrightarrow \vec{H} = \vec{h}_t \ e^{-j\omega\sqrt{\mu\epsilon z}}$







Animations by G. Castorina

General solution for fields in cylindrical waveguide

1.

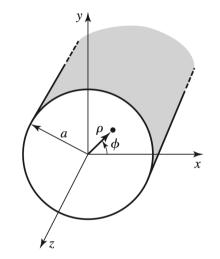
Write the Helmotz equations for potentials

TM waves $\nabla_t^2 A_z + k_t^2 A_z = 0$ TE waves $\nabla_t^2 F_z + k_t^2 F_z = 0$

Cartesian coordinates

$$\nabla_t^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

$$k_t^2 = k^2 - \beta^2 = \omega^2 \mu \epsilon - \beta^2$$
$$\epsilon = \epsilon_r \epsilon_0 \left(1 - j \tan \delta\right)$$



Cylindrical coordinates

$$\nabla_t^2 = \frac{\partial^2}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial}{\partial \rho} + \frac{1}{\rho^2} \frac{\partial^2}{\partial \phi^2}$$

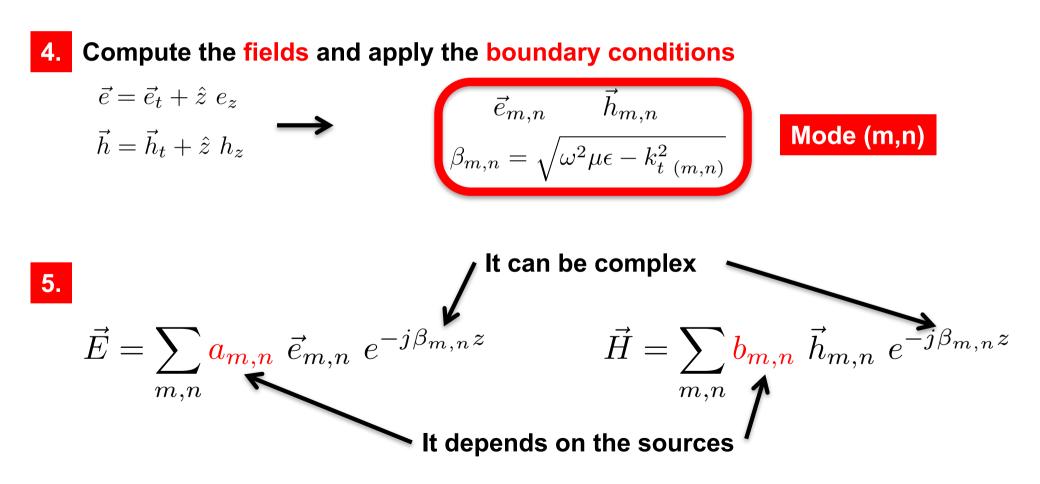
 $A_z(x,y) = X(x)Y(y)$

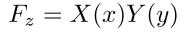
 $A_z(\rho,\phi) = R(\rho)\Phi(\phi)$

Separation of variables

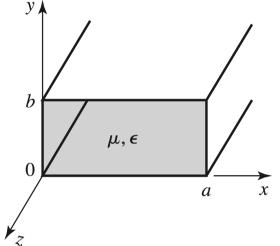
General solution for fields in cylindrical waveguide

- 3. Eigenvalue problem: Eigenvalues + Eigen-function
- $\mathbf{TM} \quad \nabla_t^2 A_z + k_t^2 A_z = 0 \qquad \qquad k_t \qquad \qquad A_z, \ F_z$
- $\mathbf{TE} \quad \nabla_t^2 F_z + k_t^2 F_z = 0$



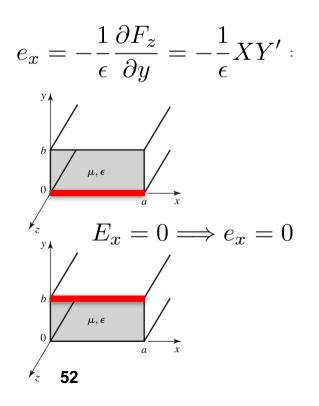


Write the Helmotz equation



$$X(x) =$$

$$Y(y) =$$



Rectangular waveguides: TE mode Example $F_{z} = X(x)Y(y) \qquad \nabla_{t}^{2}F_{z} + k_{t}^{2}F_{z} = YX'' + XY'' + k_{t}^{2}XY = 0$ constraint $\frac{X''}{V} + \frac{Y''}{V} + k_t^2 = 0 \qquad -k_x^2 - k_y^2 + k_t^2 = 0 \qquad \frac{\text{constrain}}{\text{condition}}$ b μ, ϵ $\frac{X''}{\mathbf{v}} = -k_x^2 \quad \longrightarrow \quad X(x) = C_1 \cos\left(k_x x\right) + D_1 \sin\left(k_x x\right)$ x $\frac{Y''}{V} = -k_y^2 \quad \longrightarrow \quad Y(y) = C_2 \cos\left(k_y y\right) + D_2 \sin\left(k_y y\right)$ $e_x = -\frac{1}{\epsilon} \frac{\partial F_z}{\partial y} = -\frac{1}{\epsilon} XY' = -\frac{k_y}{\epsilon} \left[C_1 \cos\left(k_x x\right) + D_1 \sin\left(k_x x\right) \right] \left[-C_2 \sin\left(k_y y\right) + D_2 \cos\left(k_y y\right) \right]$ $e_x(0 \le x \le a, y = 0) = \dots [-C_2 \cdot 0 + D_2 \cdot 1] = 0 \quad \iff \quad D_2 = 0$ $E_x = 0 \Longrightarrow e_x = 0$ $e_x(0 \le x \le a, y = b) = \dots \left[-C_2 \sin\left(k_y b\right)\right] = 0 \quad \Longleftrightarrow \quad \frac{k_y b = n\pi}{n = 0, 1, 2, \dots}$

 μ, ϵ

53

Eigenvalues and cut-off frequencies (TE mode, rect. WG) $k_t^2 = k_x^2 + k_y^2 = \left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2 = \omega^2 \mu \epsilon - \beta^2$ constraint condition

$$\vec{H} = \sum_{m,n} b_{m,n} \ \vec{h}_{m,n} \ e^{-j\beta_{m,n}z}$$

$$\beta_{m,n} = \sqrt{\omega^2 \mu \epsilon - \left(\frac{m\pi}{a}\right)^2 - \left(\frac{n\pi}{b}\right)^2}$$

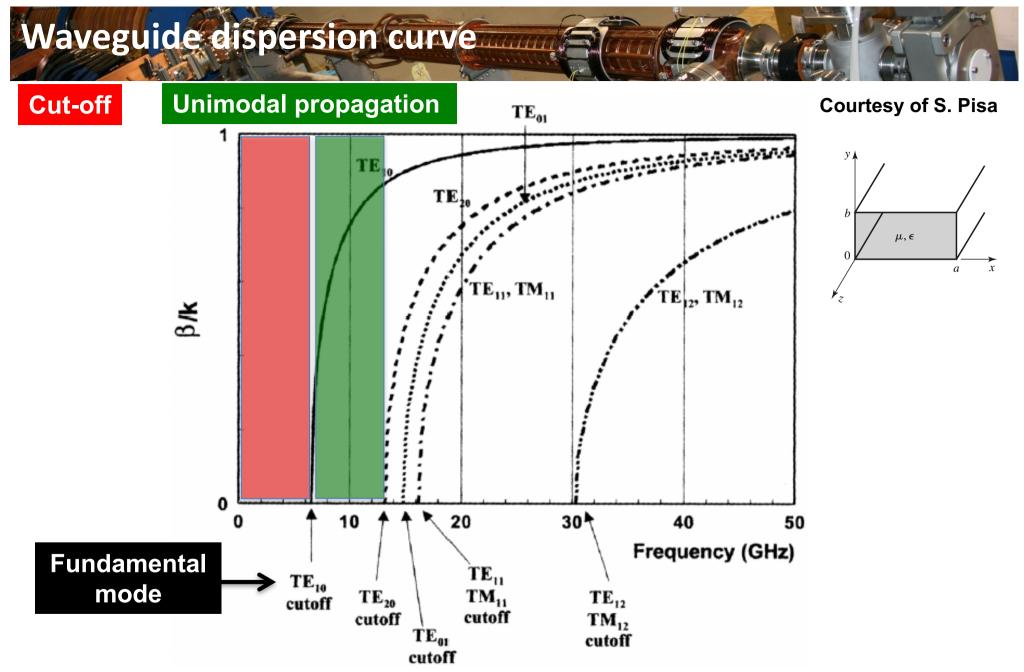
$$\vec{E} = \sum_{m,n} a_{m,n} \ \vec{e}_{m,n} \ e^{-j\beta_{m,n}z}$$

Cut-off frequencies $\mathbf{f_c}$ such that $~\beta_{m,n}=0$

$$(f_c)_{\boldsymbol{m},\boldsymbol{n}} = \frac{1}{2\pi\sqrt{\mu\epsilon}}\sqrt{\left(\frac{\boldsymbol{m}\pi}{a}\right)^2 + \left(\frac{\boldsymbol{n}\pi}{b}\right)^2} \qquad \begin{array}{l} m, \ n = 0, 1, 2, \dots\\ m = n \neq 0 \end{array}$$

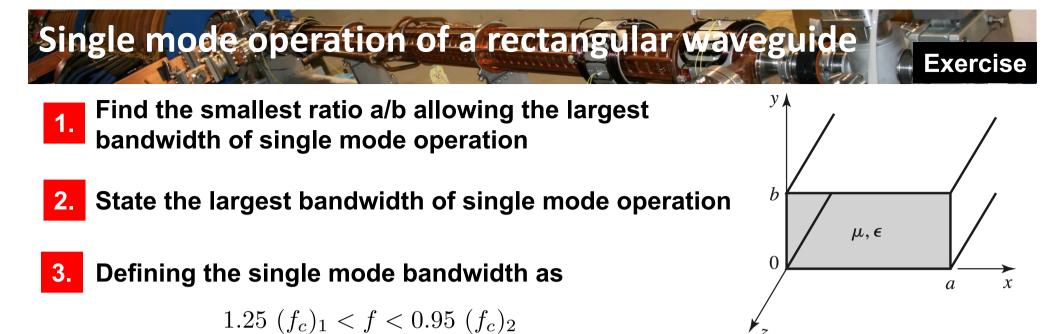
 $f < (f_c)_{m,n}$ mode m, n is attenuated exponentially (evanescent mode)

 $f > (f_c)_{m,n}$ mode m, n is propagating with no attenuation



Same curve for TE and TM mode, but n=0 or m=0 is possible only for TE modes.

In any metallic waveguide the fundamental mode is TE.



Find the single mode BW for WR-90 waveguide (a=22.86mm and b=10.16 mm)

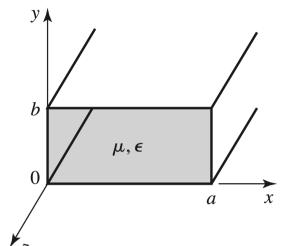
Hint:
$$(f_c)_{m,n} = \frac{1}{2\pi\sqrt{\mu\epsilon}}\sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2} \qquad m, \ n = 0, 1, 2, \dots \\ m = n \neq 0$$

Single mode operation of a rectangular waveguide

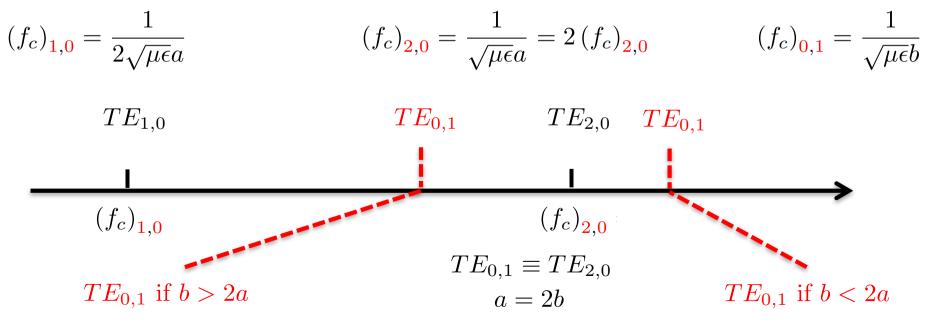
Find the smallest ratio a/b allowing the largest bandwidth of single mode operation

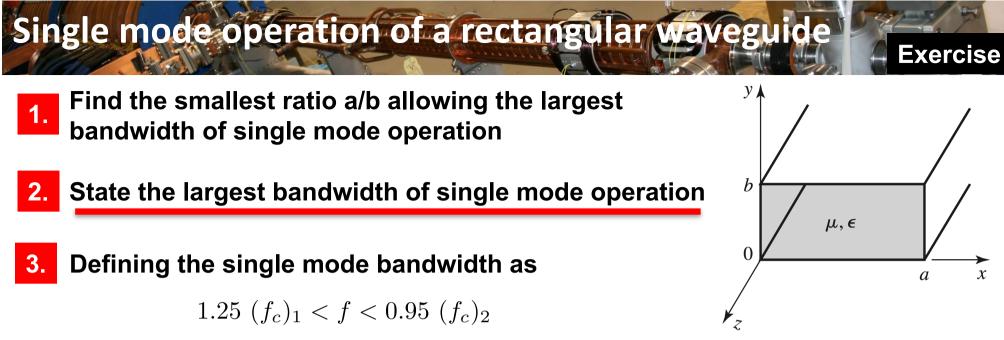
- 2. State the largest bandwidth of single mode operation
- 3. Defining the single mode bandwidth as

 $1.25 \ (f_c)_1 < f < 0.95 \ (f_c)_2$



Find the single mode BW for WR-90 waveguide (a=22.86mm and b=10.16 mm)





Find the single mode BW for WR-90 waveguide (a=22.86mm and b=10.16 mm)

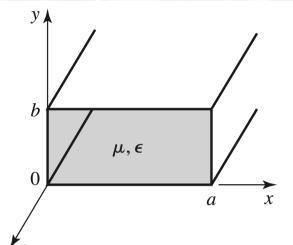
Single mode operation of a rectangular waveguide

Find the smallest ratio a/b allowing the largest bandwidth of single mode operation

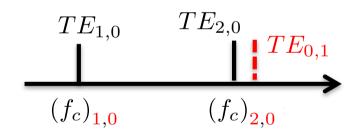
- 2. State the largest bandwidth of single mode operation
- 3. Defining the single mode bandwidth as

a=0.9 inches b=0.4 inches

 $1.25 \ (f_c)_1 < f < 0.95 \ (f_c)_2$



Find the single mode BW for WR-90 waveguide (a=22.86mm and b=10.16 mm)



$$(f_c)_{1,0} = c/2a = 3 \ 10^8/(2 \ 22.86 \ 10^{-3}) = 6.56 \ \text{GHz}$$

$$(f_c)_{2,0} = c/a = 3 \ 10^8/(22.86 \ 10^{-3}) = 13.12 \ \text{GHz}$$

 $6.56 \ 1.25 = 8.2 \ \text{GHz} < f < 12.4 \ \text{GHz} = 13.12 \ 0.95$

Single mode BW

Eigenfunctions and mode pattern [TE mode, rect. WG]

$$E_x^{+,(m,n)} = a_{m,n} \frac{k_y}{\epsilon} \cos(k_x x) \sin(k_y y) e^{-j\beta z}$$

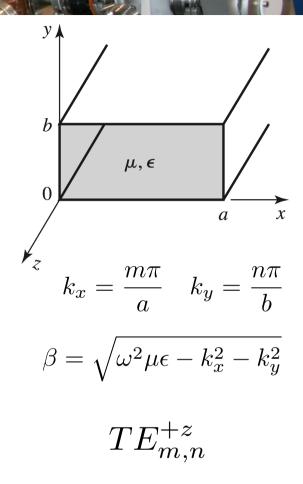
$$E_y^{+,(m,n)} = -a_{m,n} \frac{k_x}{\epsilon} \sin(k_x x) \cos(k_y y) e^{-j\beta z}$$

 $E_z^{+,(m,n)} = 0$

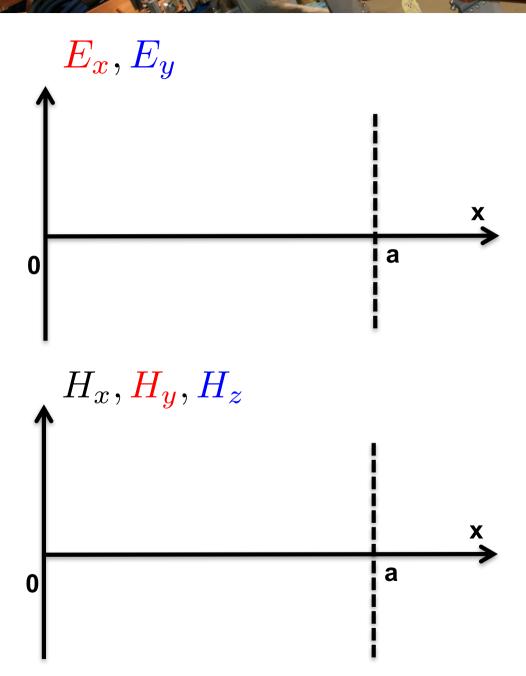
$$H_x^{+,(m,n)} = a_{m,n} \frac{k_x \beta}{\omega \mu \epsilon} \sin(k_x x) \cos(k_y y) e^{-j\beta z}$$

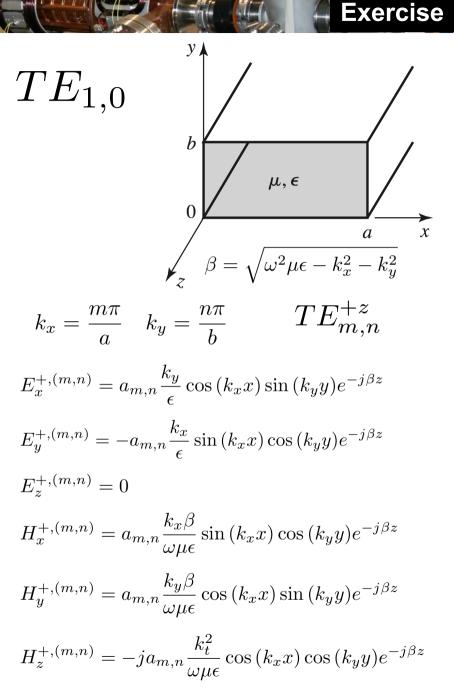
$$H_y^{+,(m,n)} = a_{m,n} \frac{k_y \beta}{\omega \mu \epsilon} \cos\left(k_x x\right) \sin\left(k_y y\right) e^{-j\beta z}$$

$$H_z^{+,(m,n)} = -ja_{m,n}\frac{k_t^2}{\omega\mu\epsilon}\cos\left(k_x x\right)\cos\left(k_y y\right)e^{-j\beta z}$$



Let's draw





Eigenfunctions and mode pattern (TE mode, rect. WG)

$$E_x^{+,(m,n)} = a_{m,n} \frac{k_y}{\epsilon} \cos(k_x x) \sin(k_y y) e^{-j\beta z}$$

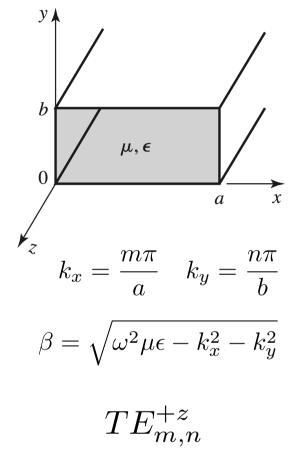
$$E_y^{+,(m,n)} = -a_{m,n} \frac{k_x}{\epsilon} \sin(k_x x) \cos(k_y y) e^{-j\beta z}$$

 $E_z^{+,(m,n)} = 0$

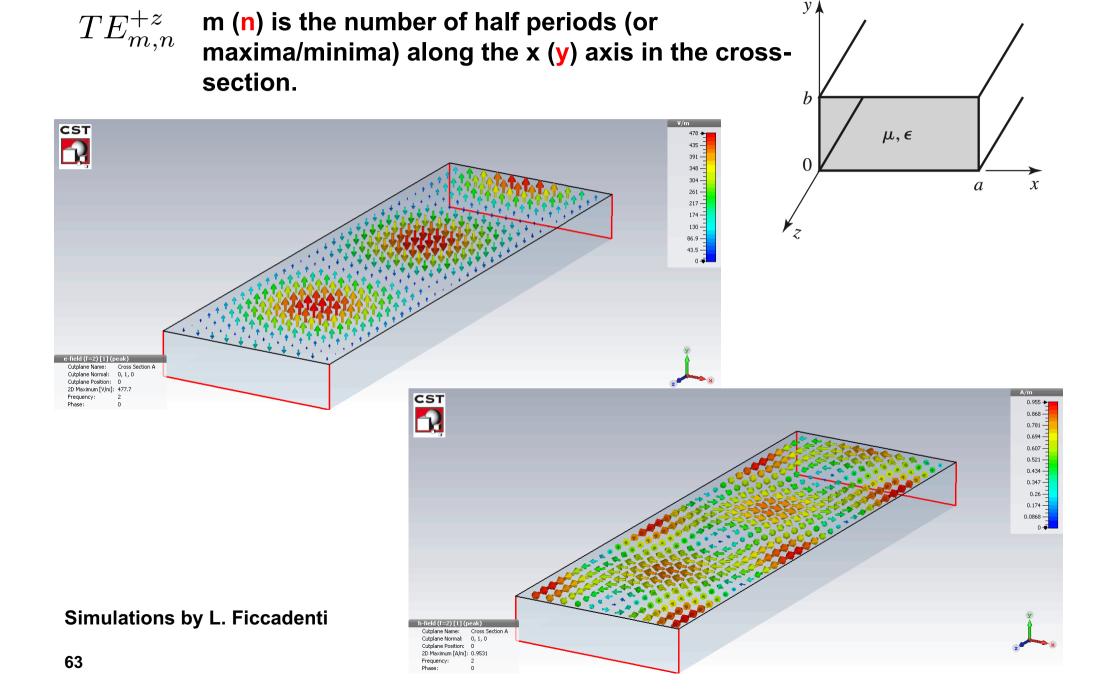
$$H_x^{+,(m,n)} = a_{m,n} \frac{k_x \beta}{\omega \mu \epsilon} \sin(k_x x) \cos(k_y y) e^{-j\beta z}$$

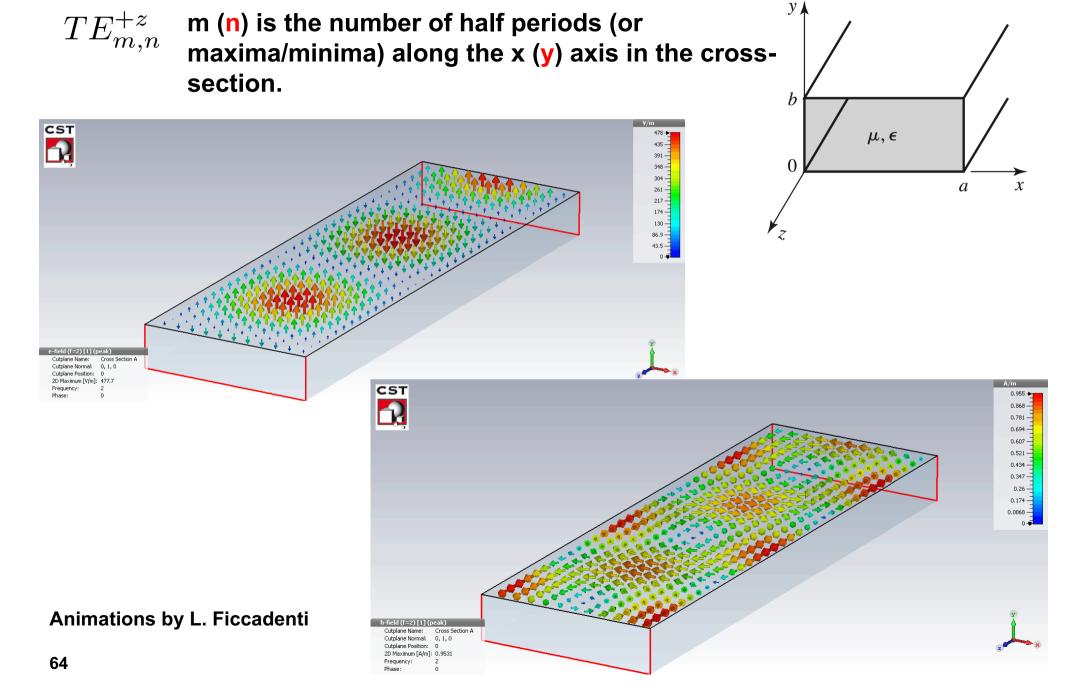
$$H_y^{+,(m,n)} = a_{m,n} \frac{k_y \beta}{\omega \mu \epsilon} \cos\left(k_x x\right) \sin\left(k_y y\right) e^{-j\beta z}$$

$$H_z^{+,(m,n)} = -ja_{m,n}\frac{k_t^2}{\omega\mu\epsilon}\cos\left(k_x x\right)\cos\left(k_y y\right)e^{-j\beta z}$$

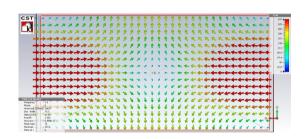


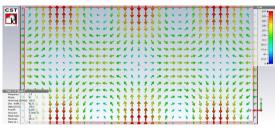
Draw the field patter in the xz plane for TE10 E field H field Field pattern (TE10 mode, rect. WG)



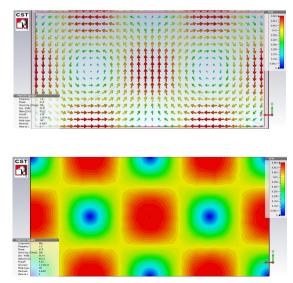


 $TE_{m,n}^{+z}$ m (n) is the number of half periods (or maxima/minima) along the x (y) axis in the crosssection. **TE**??

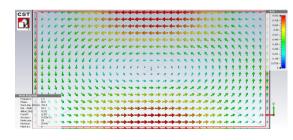


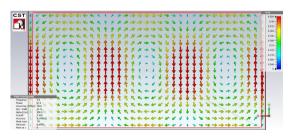


TM??



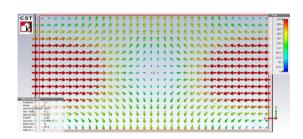
TM??

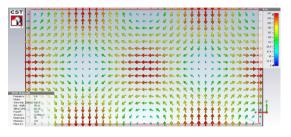


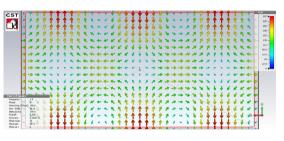


Simulations by L. Ficcadenti

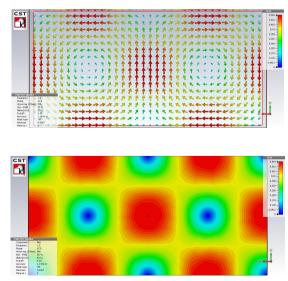
 $TE_{m,n}^{+z}$ m (n) is the number of half periods (or maxima/minima) along the x (y) axis in the crosssection. **TE11**



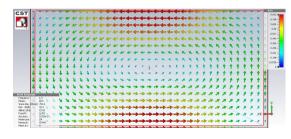


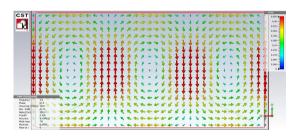


TM21

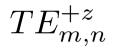


TM11

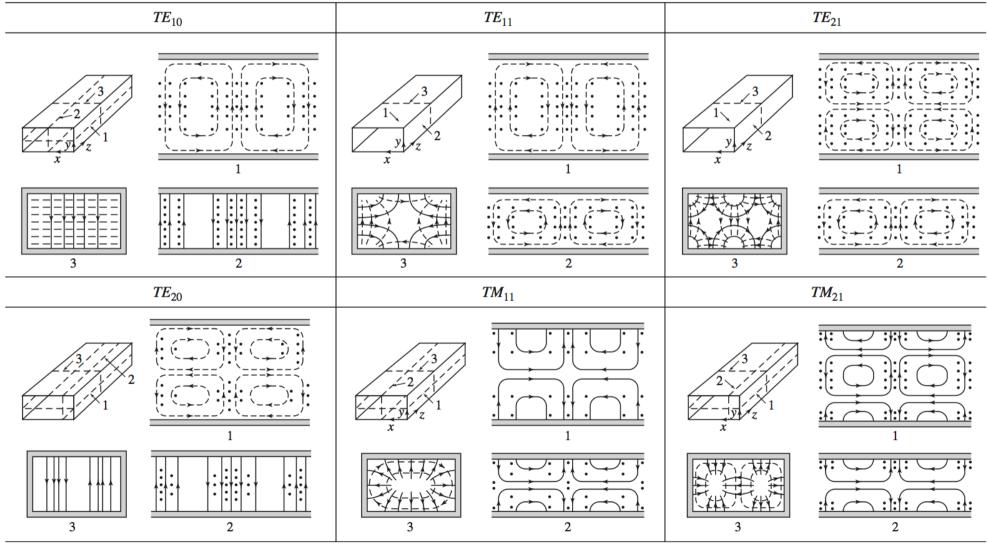




Simulations by L. Ficcadenti

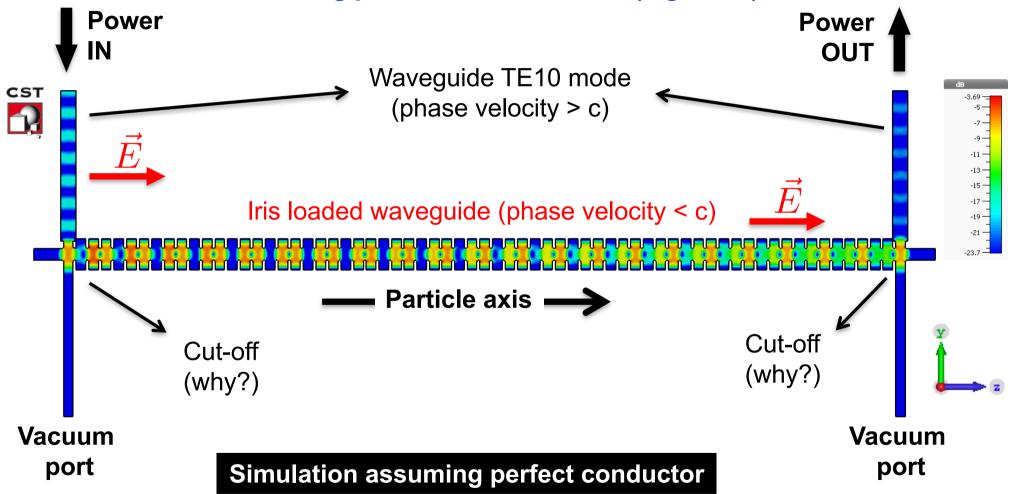


m (n) is the number of half periods (or maxima/minima) along the x (y) axis in the cross-section.



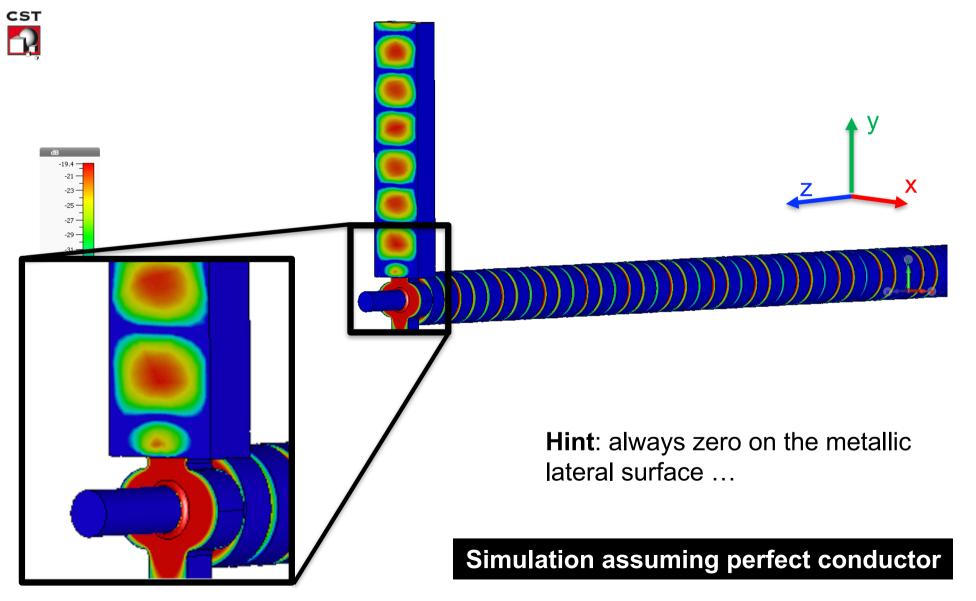
X-band (12GHz) accelerating structure for high brightness LINAC

E-field along particle axis, i.e. z-axis (log-scale)



With phasors, a time animation is identical to phase rotation.

Which field is this one? E or H field?



Full EM simulation of a RF accelerating structure

-29 = -30 = -31 = -32 = -33 = -34 = -35 = -36 = -37 =

Which field?

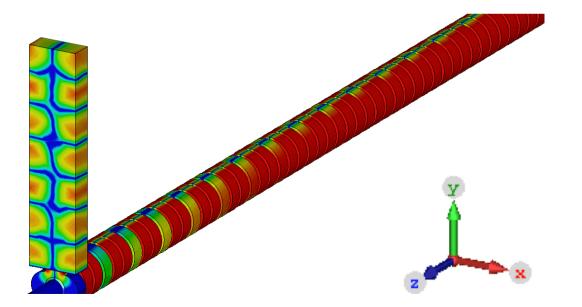
Which component?

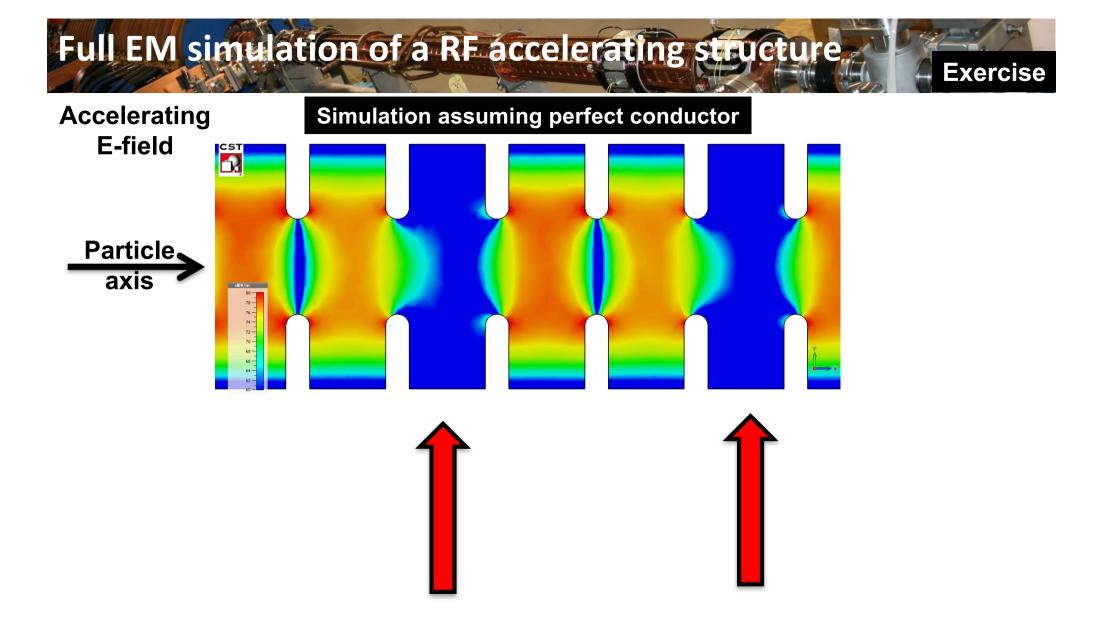
Simulation assuming perfect conductor

dB -23.8

> -28 ---30 ---32 ---34 ---36 ---38 ---40 ---42 ---44 ---46 ---48 --

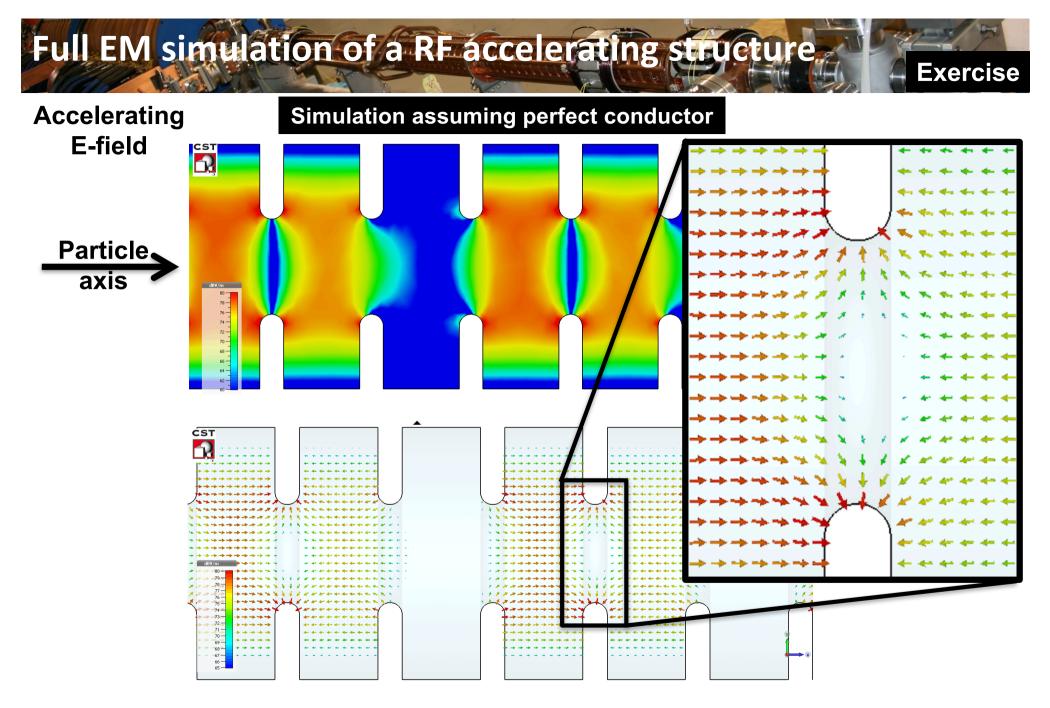
-50.7 ----





3 cell periodicity

 $2\pi/3$ phase advance



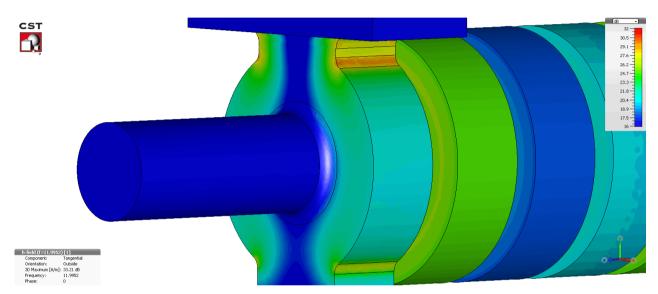
3 cell periodicity

 $2\pi/3$ phase advance

Full EM simulation of a RF accelerating structure

Temperature breakdown: seek for maximum power loss

$$P_t = \frac{R_s}{2} \int_S |\hat{\boldsymbol{n}} \times \vec{\boldsymbol{H}}|^2 dS$$



Simulation with perfect conductor

