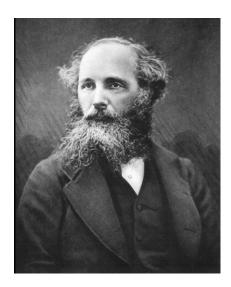


Introduction to RF

Andrea Mostacci University of Rome "La Sapienza" and INFN, Italy



1

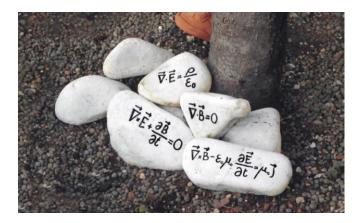
Outline

Goal of the lecture

Show principles behind the practice discussed in the RF engineering module

Maxwell equations

General review The lumped element limit RF fields and particle accelerators The wave equation Maxwell equations for time harmonic fields Fields in media and complex permittivity Boundary conditions and materials Plane waves



Boundary value problems for metallic waveguides

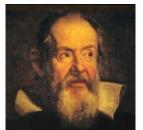
The concept of mode Maxwell equations and vector potentials Cylindrical waveguides: TM, TE and TEM modes Solving Maxwell Equations in metallic waveguides Rectangular waveguide (detailed example) Reading a simulation of a RF accelerating structure

Maxwell equations

General review The lumped element limit RF fields and particle accelerators The wave equation Maxwell equations for time harmonic fields Fields in media and complex permittivity Boundary conditions and materials Plane waves

Boundary value problems for metallic waveguides

The concept of mode Maxwell equations and vector potentials Cylindrical waveguides: TM, TE and TEM modes Solving Maxwell Equations in metallic waveguides Rectangular waveguide (detailed example) Reading a simulation of a RF accelerating structure



... The universe is written in the mathematical language and the letters are triangles, circles and other geometrical figures ...

Outline

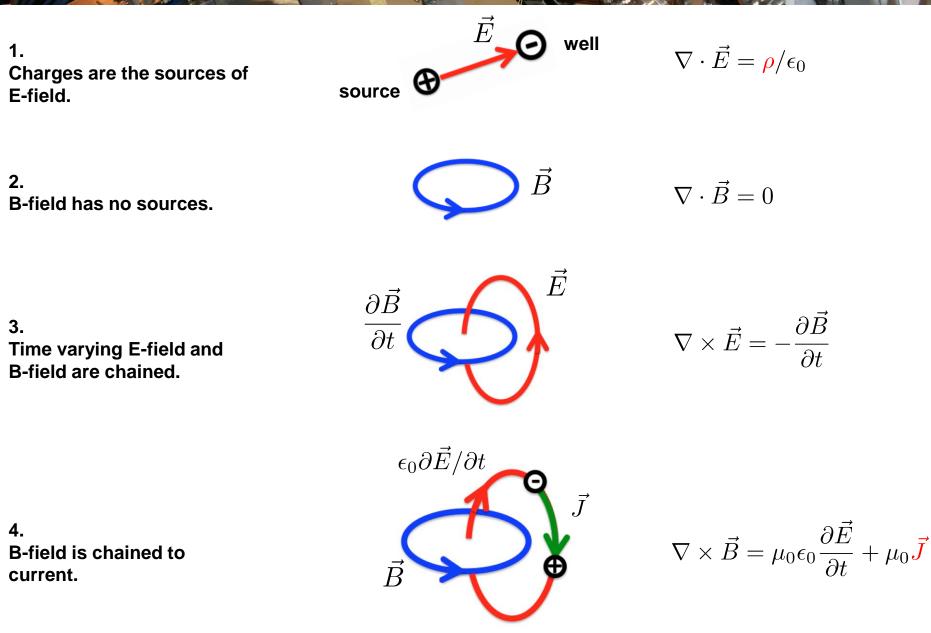
chedule Monday 2019 Feb 11th	Tuesday Feb 12th	Wednesday Feb 13th	Thursday Feb 14th	Friday Feb 15th	
09:00	Introduction to RF lecture	Vacuum systems lecture	Vacuum systems lecture	RF Engineering lecture	
10:00 10:15	A. Mostacci Coffee Break Introduction to RF	V. Baglin Coffee Break Vacuum systems	V. Baglin Coffee Break Vacuum systems	F. Caspers RF Engineering tutorial F. Caspers / M. Wendt /	₽ Eo VB=0
11:15	A. Mostacci	lecture V. Baglin Vacuum systems	lecture V. Baglin Vacuum systems	M. Bozzolan Coffee Break	·
12:00 OFFICIAL OPENING (welcome & building visit)	lecture A. Mostacci	tutorial V. Baglin / R. Kersevan	tutorial V. Baglin / R. Kersevan	Bus leaves at 11:30 from JUAS	V.B-E.M.
13:00 WELCOME LUNCH	BREAK	BREAK	BREAK	(Lunch at CERN, R2, offered by ESI)	
14:00 Presentation of JUAS & Introduction of students <i>P. Lebrun</i>	RF Engineering lecture F. Caspers	Vacuum systems lecture V. Baglin	RF Engineering lecture F. Caspers	VISIT AT	
15:00 15:15 Introduction to CERN	RF Engineering lecture F. Caspers	RF Engineering tutorial F. Caspers / M. Wendt / M. Bozzolan	RF Engineering tutorial F. Caspers / M. Wendt / M. Bozzolan	CERN AD / ELENA LINAC 4	
16:00 practical days 16:15 Magnet, Superconductivity, RF,	Coffee Break RF Engineering lecture	Coffee Break RF Engineering lecture	Coffee Break RF Engineering lecture	Vacuum lab	
Vacuum, CLEAR	F. Caspers Particle accelerators.	F. Caspers	F. Caspers	Bus leaves at 18:00 from CERN	
CHECK-IN AT THE RESIDENCE & SHOPPING FOR GROCERIES	Particle accelerators, instruments of discovery in physics Seminar - Ph. Lebrun	Accelerator driven system Seminar J-L. Biarotte			

math[®] inside

Goal of the lecture

Show principles behind the practice discussed in the RF engineering module

Classical electromagnetic theory (Maxwell equations)



Maxwell equations in vacuum

 $\nabla \cdot \vec{E} = \rho / \epsilon_0$ $\nabla \cdot \vec{B} = 0$ $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ $\nabla \times \vec{B} = \mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t} + \mu_0 \vec{J}$

$$ec{E}$$
 Electric Field (V/m)
 $ec{B}$ Magnetic Flux Density (Wb/m^2)

ho Electric Charge Density $\left(C/m^3
ight)$

 \vec{J} Electric Current Density (A/m^2)

$$\mu_0 = 4\pi \ 10^{-7} \ (H/m)$$

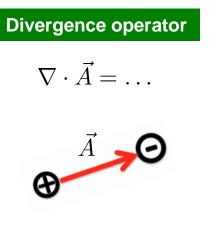
Magnetic constant (permeability of free space)

$$\epsilon_0 = 1/c^2 \mu_0 = 8.8542 \ 10^{-12} \ (F/m)$$

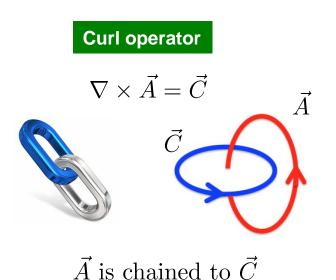
Electric constant (permittivity of free space) $c = 1/\sqrt{\mu_0\epsilon_0} = 299792458~(m/s)$ Speed of light

fields

sources



The source of \vec{A} is ...



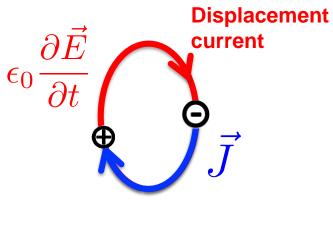
Some consequences of the IV equation

$$abla imes ec{B} = \mu_0 \left(\epsilon_0 \frac{\partial ec{E}}{\partial t} + ec{J}
ight)$$

$$0 = \nabla \cdot \nabla \times \vec{B} = \mu_0 \nabla \cdot \left(\epsilon_0 \frac{\partial \vec{E}}{\partial t} + \vec{J} \right) = 0$$
$$\nabla \cdot \vec{E} = \rho/\epsilon_0$$

The current density has closed lines.

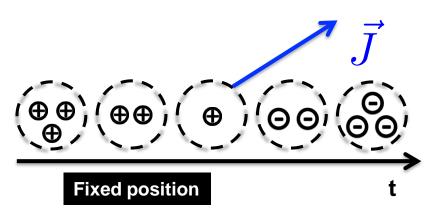
At a given position the source of J is the decrease of charge in time.

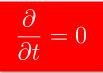


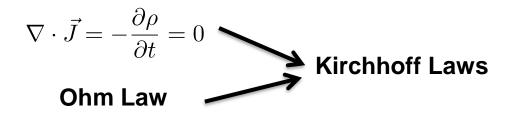
$$\nabla \cdot \left(\epsilon_0 \frac{\partial \vec{E}}{\partial t} + \vec{J} \right) = 0$$

$$\nabla \cdot \vec{J} = -\frac{\partial \rho}{\partial t}$$

Continuity equation

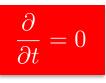






Lumped elements (electric networks)

The lumped elements model for electric networks is used also when the field variation is negligible over the size of the network.



 $\nabla \times \vec{E} = 0$

The E field is conservative.

The energy gain of a charge in closed circuit is zero.

No static, circular accelerators (RF instead!).

Electrostatics

$$\nabla \times \vec{E} = 0 \longrightarrow \vec{E} = -\nabla V$$
 $\overrightarrow{\nabla \cdot \vec{E}} = 0$
 $free space$
 $\nabla^2 V = 0$
Laplace equation
Andrea.Mostacci@uniroma1.it

Particle interaction with time varying fields

Beam manipulation

Particle acceleration, deflection ...

External sources acting on the beam through EM fields.

RF devices

Parasitic effects

Wakefields and coupling impedance

Extraction of beam energy

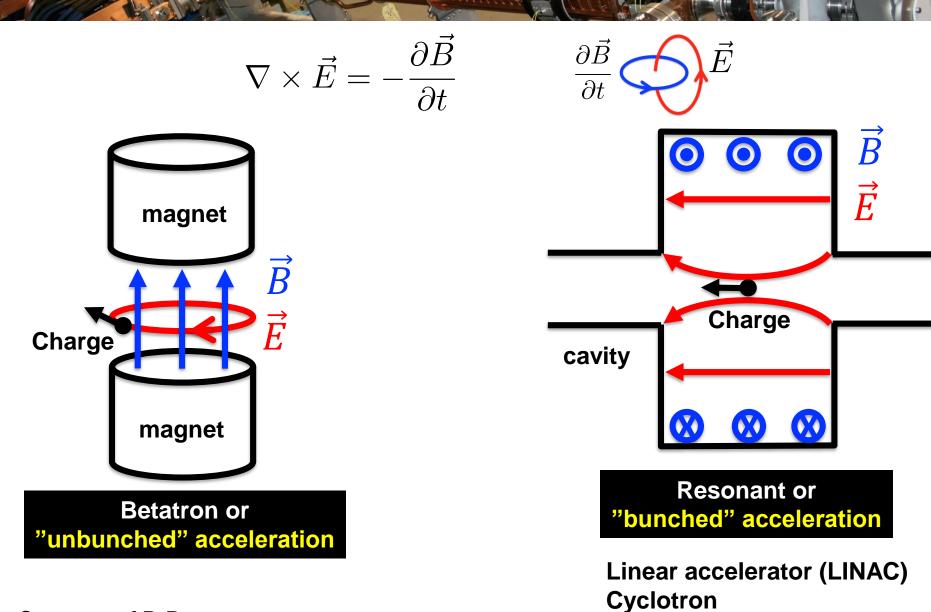
Beam Instabilities

Diagnostics

$$abla \cdot \vec{E} = \mathbf{\rho}/\epsilon_0$$

$$\nabla \times \vec{B} = \mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t} + \mu_0 \vec{J}$$
$$\vec{J} = \rho \vec{v} = \frac{Q}{2\pi r} \delta(r) \delta(z - vt) \vec{v}$$

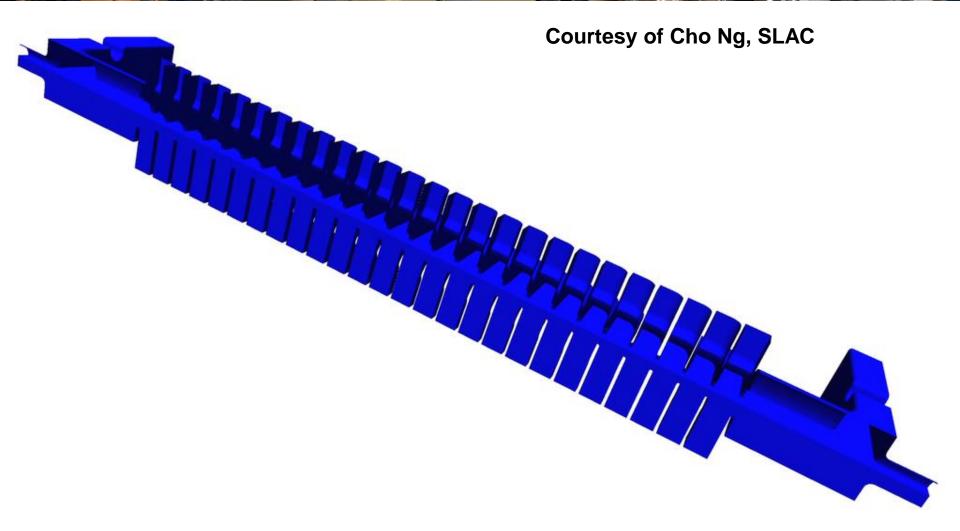
Particle acceleration by time varying fields



Courtesy of P. Bryant

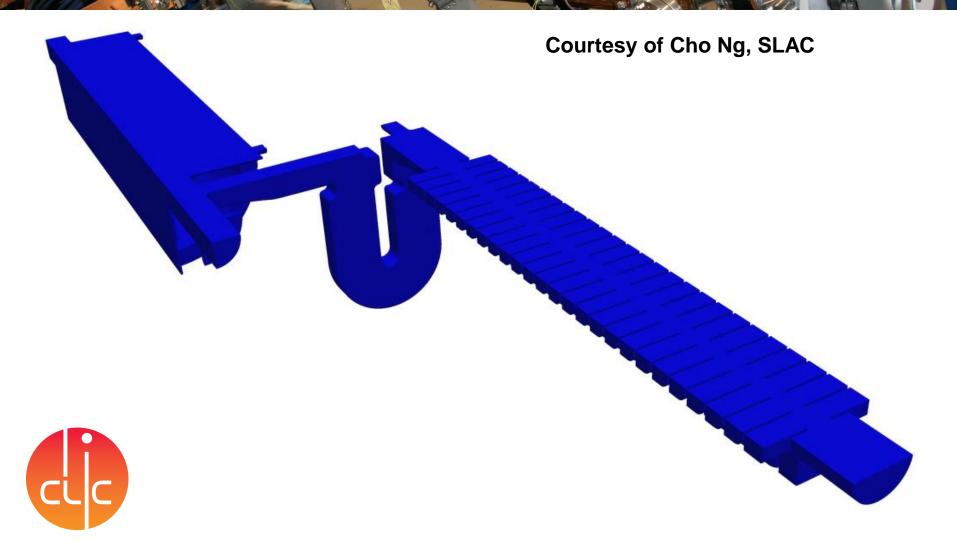
Andrea.Mostacci@uniroma1.it

Synchrotron



Particle in accelerators are charged, thus they are sources of EM fields ...

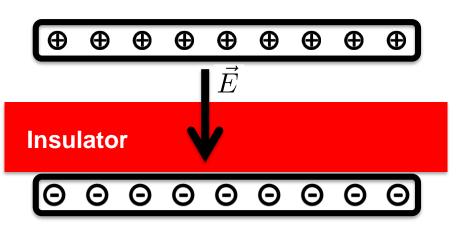
Wakefields extract beam energy to EM field

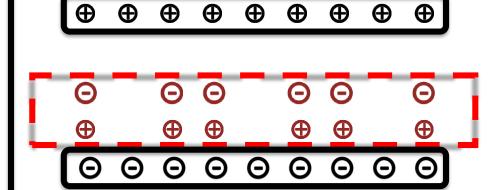


The principle is used in general purpose RF sources (e.g. klystrons) as well as in accelerators (e.g. particle wakefield accelerators)

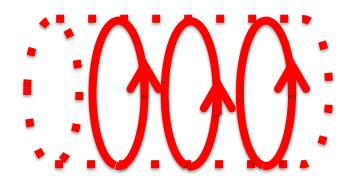
Maxwell equations in matter: the physical approach

The reality ...

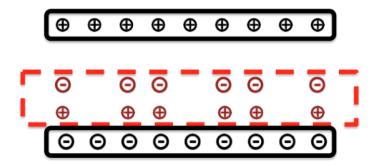




charges and currents IN VACUUM

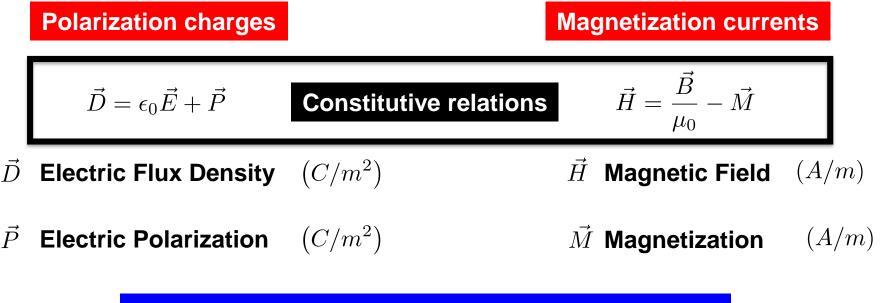


Maxwell equations in matter: the mathematics



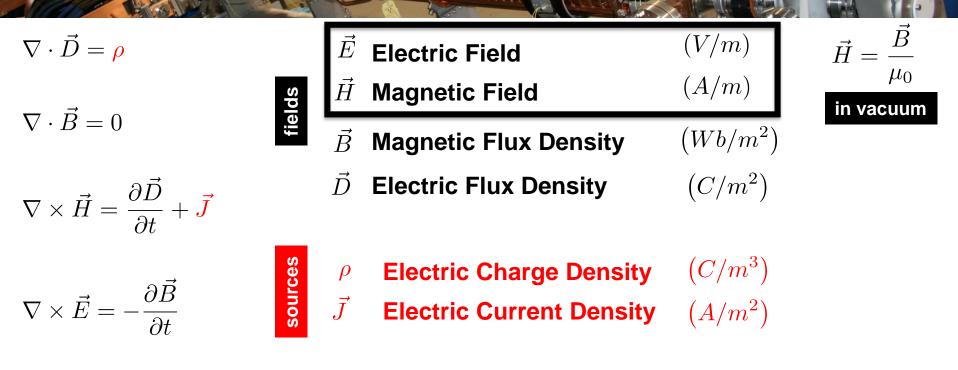
Electric insulators (dielectric)

Magnetic materials (ferrite, superconductor)



Equivalence Principles in Electromagnetics Theory

Maxwell equations: general expression and solution



Maxwell Equations: free space, no sources

$$\begin{array}{c} \nabla(\nabla \cdot \vec{E}) - \nabla^2 \vec{E} = -\nabla^2 \vec{E} \\ || \\ \nabla \times \nabla \times \vec{E} \\ || \\ -\mu_0 \frac{\partial}{\partial t} (\nabla \times \vec{H}) = -\mu_0 \epsilon_0 \frac{\partial^2 \vec{E}}{\partial t} \end{array} \right\}$$

$$abla^2 ec{E} = \mu_0 \epsilon_0 rac{\partial^2 ec{E}}{\partial t^2}$$
 Wa $abla^2 ec{H} = \mu_0 \epsilon_0 rac{\partial^2 ec{H}}{\partial t^2}$ equa

Wave equation

 $\frac{1}{v^2} = \mu_0 \epsilon_0 \Longrightarrow v = \frac{1}{\sqrt{\mu_0 \epsilon_0}} = c$

Harmonic time dependence and phasors

Assuming sinusoidal electric field (Fourier)

Time dependence $\longrightarrow e^{j\omega t} = e^{j2\pi f t} \longrightarrow \frac{\partial}{\partial t} \cdots = j\omega \dots$

$$\vec{E}(\vec{r},t) = Re\left\{\vec{E}(\vec{r},\omega)e^{j\omega t}\right\}$$

Phasors are complex vectors

Power/Energy depend on time average of quadratic quantities

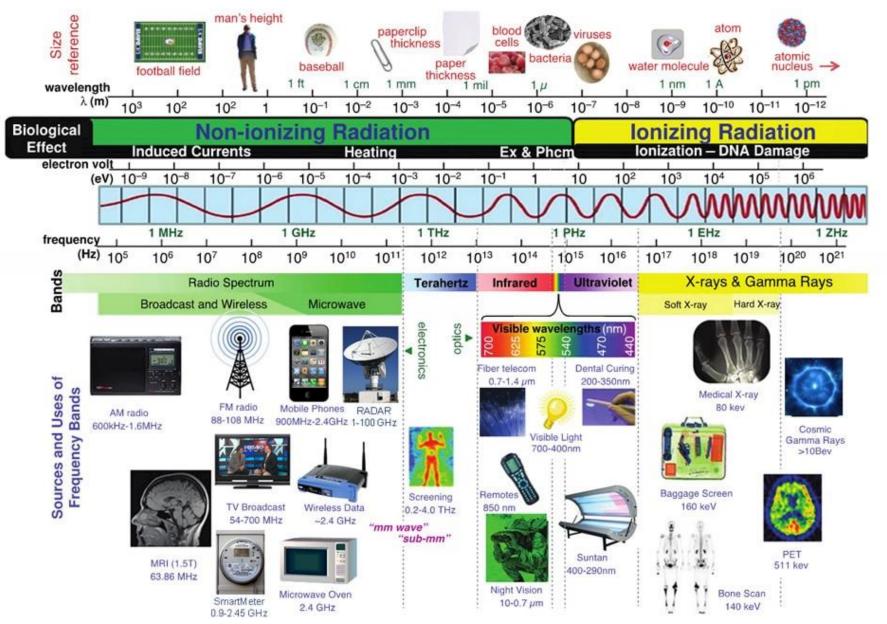
$$\left. \vec{E}(\vec{r},t) \right|_{average}^{2} = \frac{1}{T} \int_{0}^{T} \vec{E}(\vec{r},t) \cdot \vec{E}(\vec{r},t) dt = \cdots = \frac{1}{2} \vec{E}(\vec{r},\omega) \cdot \vec{E^{*}}(\vec{r},\omega) = \left| \vec{E}_{RMS}(\vec{r},\omega) \right|^{2} \left| \vec{E}_{RMS}(\vec{r},\omega) - \vec{E}_{RMS}(\vec{r},\omega) \right|^{2}$$

In the following we will use the same symbol for

Real vectorsComplex vectors $\vec{E}(\vec{r},t), \vec{H}(\vec{r},t), \dots$ $\vec{E}(\vec{r},\omega), \vec{H}(\vec{r},\omega), \dots$

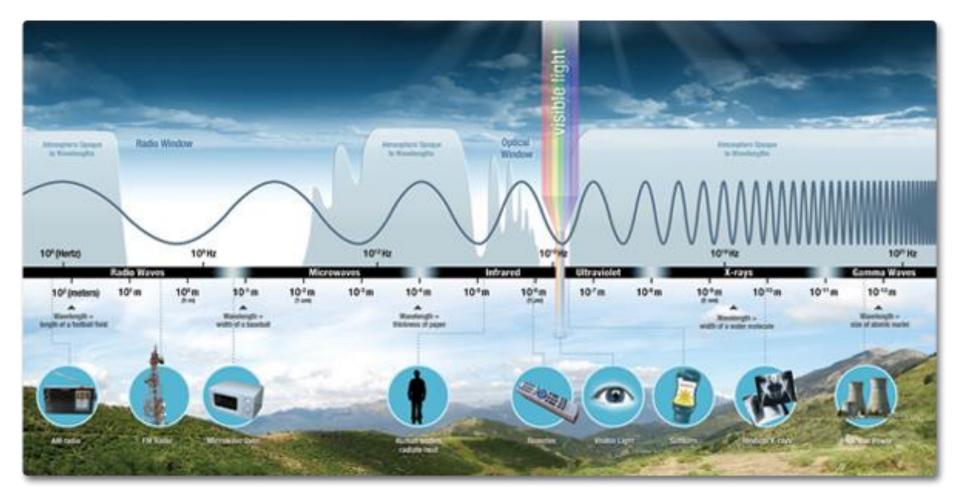
Note that, with phasors, a time animation is identical to phase rotation.

Electromagnetic radiation spectrum

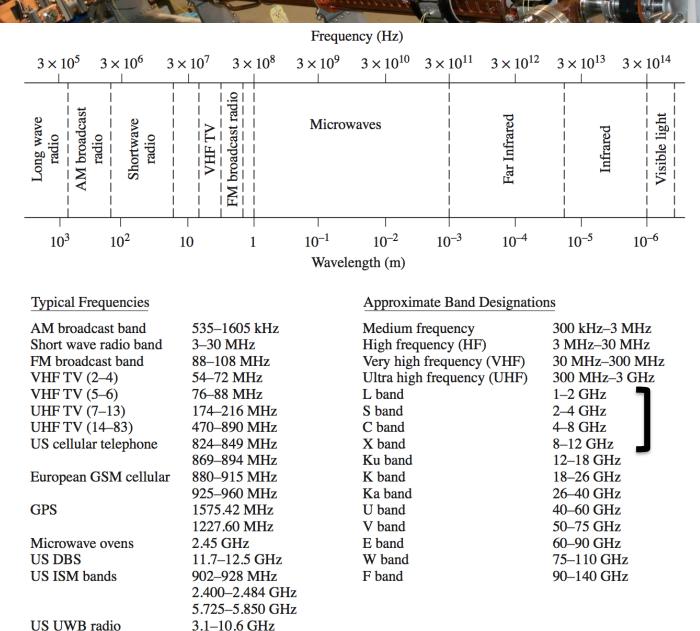


Source: Common knowledge (Wikipedia)

Electromagnetic radiation spectrum: users point of view

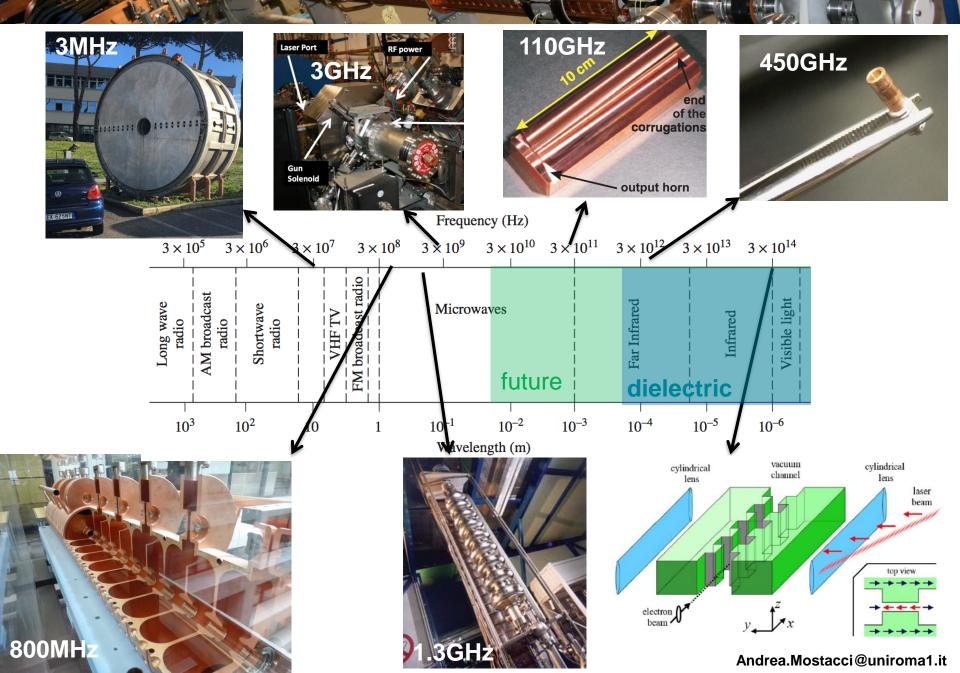


The electromagnetic spectrum for RF engineers

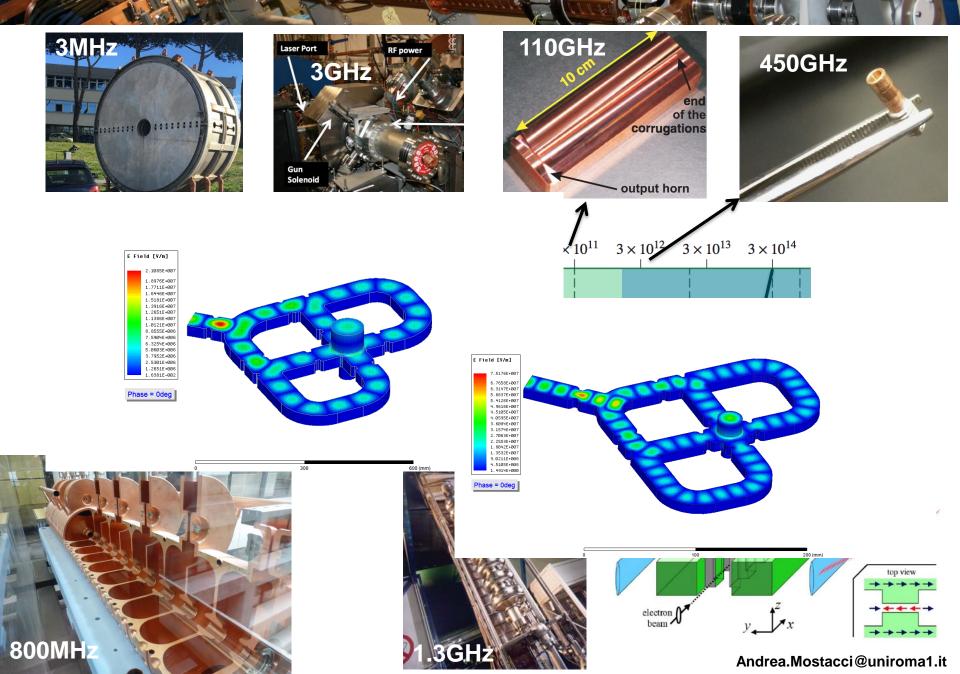


Source: Pozar, Microwave Engineering 4ed, 2012

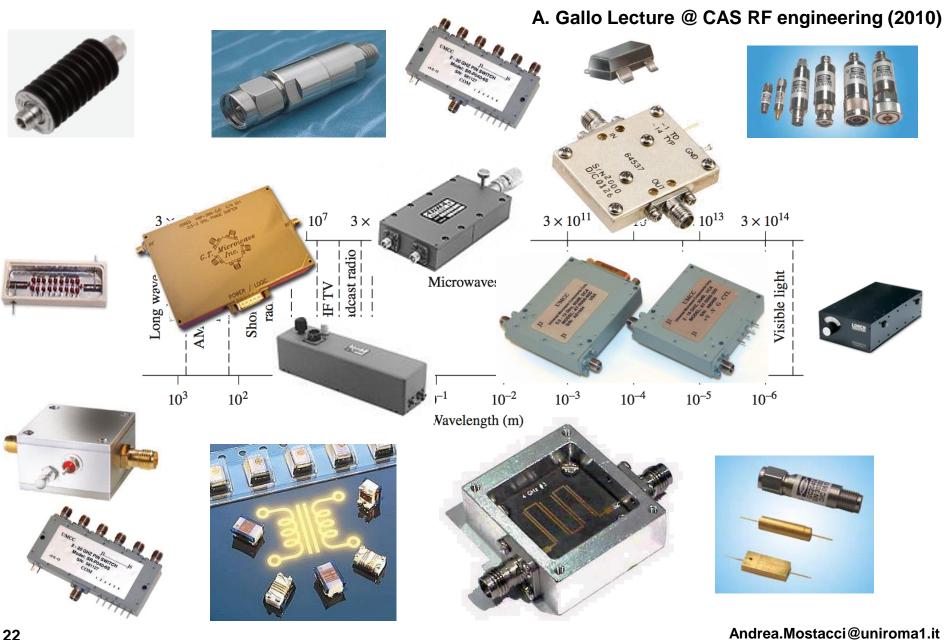
The RF spectrum and particle accelerator device



The RF spectrum and particle accelerator devi



The RF spectrum and particle accelerator electronics



Harmonic fields in media: constitutive relations

Hyp: Linear, Homogeneous, Isotropic and non Dispersive media

$$\vec{D} = \epsilon_0 \vec{E} + \vec{P} \qquad \vec{D} = \epsilon_c \vec{E} \qquad \epsilon_c = \epsilon' - j\epsilon''$$
Losses (heat) due to damping of vibrating dipoles
$$\vec{H} = \frac{\vec{B}}{\mu_0} - \vec{M} \qquad \vec{B} = \mu \vec{H} \qquad \mu = \mu' - j\mu''$$

complex permittivity

complex permeability

Ohm Law

 $\vec{J_c} = \sigma \vec{E}$

 σ conductivity (2

(S/m)

Losses (heat) due to moving charges colliding with lattice

Material	Conductivity S/m (20°C)	Material	Conductivity S/m (20°C)
Aluminum 🔶	3.816×10^7	Nichrome	1.0×10^{6}
Brass	2.564×10^{7}	Nickel	1.449×10^{7}
Bronze	1.00×10^{7}	Platinum	9.52×10^{6}
Chromium	3.846×10^{7}	Sea water	3–5
Copper	5.813×10^{7}	Silicon	4.4×10^{-4}
Distilled water	2×10^{-4}	Silver	6.173×10^{7}
Germanium	2.2×10^{6}	Steel (silicon)	2×10^6
Gold 🔶	4.098×10^{7}	Steel (stainless)	1.1×10^{6}
Graphite	7.0×10^{4}	Solder	7.0×10^{6}
Iron	1.03×10^{7}	Tungsten	1.825×10^{7}
Mercury	1.04×10^{6}	Zinc	1.67×10^{7}
Lead	4.56×10^{6}		

Source: Pozar, Microwave Engineering 4ed, 2012

Harmonic fields in media: Maxwell Equations

Hyp: Linear, Homogeneous, Isotropic and non Dispersive media

$$\vec{D} = \epsilon_0 \vec{E} + \vec{P} \qquad \vec{D} = \epsilon_c \vec{E} \qquad \epsilon_c = \epsilon' - j\epsilon'' \qquad \text{complex permittivity}$$
Losses (heat) due to damping of vibrating dipoles
$$\vec{H} = \frac{\vec{B}}{\mu_0} - \vec{M} \qquad \vec{B} = \mu \vec{H} \qquad \mu = \mu' - j\mu'' \qquad \text{complex permeability}$$
Ohm Law
$$\vec{J_c} = \sigma \vec{E} \qquad \sigma \qquad \text{conductivity} \qquad (S/m) \qquad \begin{array}{c} \text{Losses (heat) due to} \\ \text{moving charges} \\ \text{colliding with lattice} \end{array}$$

$$\vec{\nabla} \cdot \vec{D} = \rho \qquad \nabla \cdot \vec{B} = 0$$

$$\vec{\nabla} \times \vec{E} = -j\omega\mu\vec{H}$$

$$\vec{\nabla} \times \vec{E} = -j\omega\mu\vec{H}$$

$$\vec{\nabla} \times \vec{H} = j\omega\vec{D} + \vec{J_c} + \vec{J} = \dots = j\omega\epsilon\vec{E} + \vec{J} \qquad \epsilon = \epsilon' - j\epsilon'' - j\frac{\sigma}{\omega}$$

$$\tan \delta = \frac{\omega\epsilon'' + \sigma}{\omega\epsilon'} = \frac{\text{Losses}}{\text{Displacement current}} \qquad \epsilon = \epsilon_r \epsilon_0 (1 - j \tan \delta)$$

$$\vec{E} = \epsilon_r \epsilon_0 \qquad \epsilon_r \epsilon_0 \quad \epsilon_r \epsilon_0$$

Harmonic fields in media: Maxwell Equations

DIELECTRIC CONSTANTS AND LOSS TANGENTS FOR SOME MATERIALS

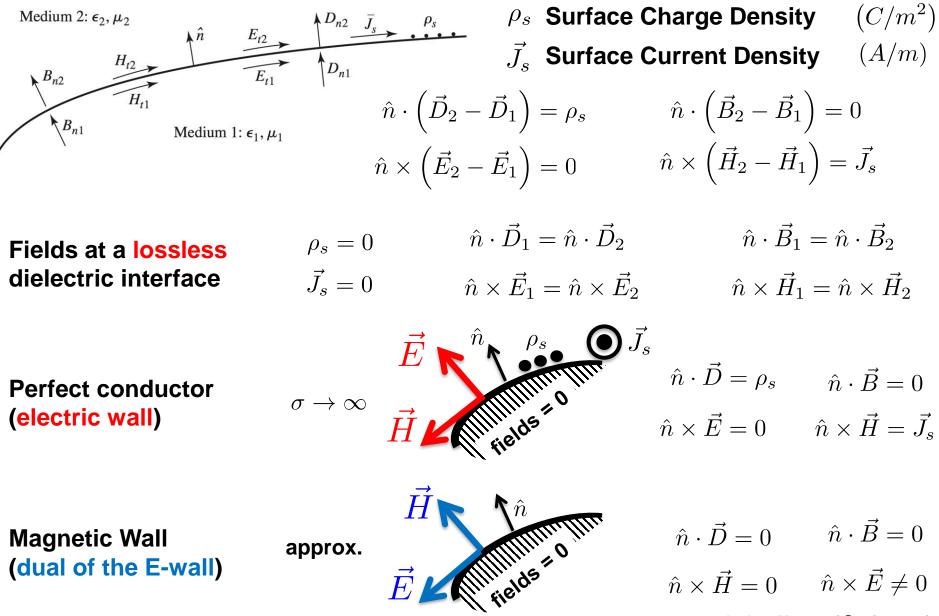
Material	Frequency	ϵ_r	$\tan \delta (25^{\circ}C)$
Alumina (99.5%)	10 GHz	9.5–10.	0.0003
Barium tetratitanate	6 GHz	$37 \pm 5\%$	0.0005
Beeswax	10 GHz	2.35	0.005
Beryllia	10 GHz	6.4	0.0003
Ceramic (A-35)	3 GHz	5.60	0.0041
Fused quartz	10 GHz	3.78	0.0001
Gallium arsenide	10 GHz	13.0	0.006
Glass (pyrex)	3 GHz	4.82	0.0054
Glazed ceramic	10 GHz	7.2	0.008
Lucite	10 GHz	2.56	0.005
Nylon (610)	3 GHz	2.84	0.012
Parafin	10 GHz	2.24	0.0002
Plexiglass	3 GHz	2.60	0.0057
Polyethylene	10 GHz	2.25	0.0004
Polystyrene	10 GHz	2.54	0.00033
Porcelain (dry process)	100 MHz	5.04	0.0078
Rexolite (1422)	3 GHz	2.54	0.00048
Silicon	10 GHz	11.9	0.004
Styrofoam (103.7)	3 GHz	1.03	0.0001
Teflon	10 GHz	2.08	0.0004
Titania (D-100)	6 GHz	$96 \pm 5\%$	0.001
Vaseline	10 GHz	2.16	0.001
Water (distilled)	3 GHz	76.7	0.157

Source: Pozar, Microwave Engineering 4ed, 2012

CITA					
ו Dispersive media					
//	complex permittivity				
<i>ı</i> ′′′	complex p	permeability			
ıctivity	(S/m)	Losses (heat) due to moving charges colliding with lattice			
$\vec{\vec{z}} + \vec{J}$	$\epsilon = \epsilon'$ -	$-j\epsilon''-jrac{\sigma}{\omega}$			
		Loss tangent			
ϵ	$=\epsilon_r\epsilon_0 (1$	$-j \tan \delta$)			

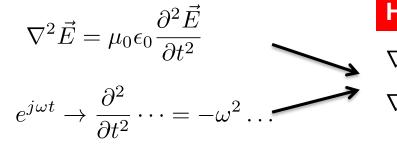
Dielectric constant

Boundary Conditions



Intititititit

Helmotz equation and its simplest solution



Helmotz equation

$$\nabla^2 \vec{E} + \omega^2 \mu \epsilon \vec{E} = 0$$
$$\nabla^2 \vec{H} + \omega^2 \mu \epsilon \vec{H} = 0$$

$$k = \omega \sqrt{\mu \epsilon} \qquad (1/m)$$

Propagation/phase constant Wave number

The simples solution: the plane wave

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial y} = 0 \qquad \qquad \frac{d^2 E_x}{dz^2} + k^2 E_x = 0$$

$$\hat{x} \qquad \hat{x} \qquad \hat{z} \qquad$$

 $E_x(z) = E^+ e^{-jkz} + E^- e^{jkz}$

 $E_x(z,t) = Re\left\{\frac{E(z,\omega)e^{j\omega t}}{E(z,\omega)e^{j\omega t}}\right\} = E^+ \cos\left(\omega t - kz\right) + E^- \cos\left(\omega t + kz\right)$

It is a wave, moving in the +z direction or -z direction

Phase velocityVelocity at which a fixed phase point on the wave travels $\omega t \mp kz = \text{const}$ $v_p = \frac{dz}{dt} = \frac{d}{dt} \left(\frac{\omega t \mp \text{const}}{k} \right) = \frac{\omega}{k} = \frac{1}{\sqrt{\mu\epsilon}}$ Speed of light

Plane waves and Transverse Electro-Magnetic (TEM) waves

Wave length Distance between two consecutive maxima (or minima or ...)

$$(\omega t - kz) - [\omega t - k(z + \lambda)] = 2\pi \qquad \qquad \lambda = \frac{2\pi}{k} = \frac{2\pi v_p}{\omega} = \frac{v_p}{f}$$

 $\nabla \times \vec{E} = -j\omega\mu\vec{H}$

Compute H ...

$$E_x(z) = E^+ e^{-jkz} + E^- e^{jkz}$$

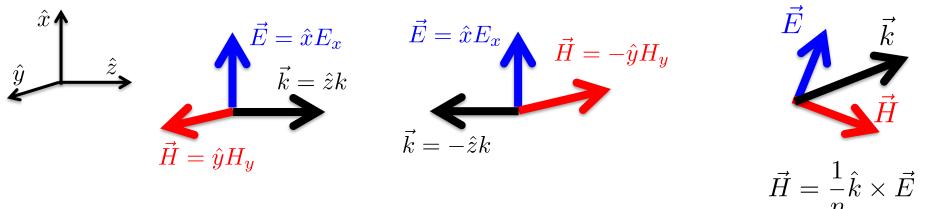
Plane waves and Transverse Electro-Magnetic (TEM) waves

Wave length Distance between two consecutive maxima (or minima or ...)

$$(\omega t - kz) - [\omega t - k(z + \lambda)] = 2\pi$$
 $\lambda = \frac{2\pi}{k} = \frac{2\pi v_p}{\omega} = \frac{v_p}{f}$

 $\nabla \times \vec{E} = -j\omega\mu\vec{H} \qquad \qquad E_x(z) = E^+ e^{-jkz} + E^- e^{jkz}$ $H_x = H_z = 0 \qquad \qquad H_y = \frac{j}{\omega\mu}\frac{\partial E_x}{\partial z} = \frac{1}{\eta}\left(E^+ e^{-jkz} - E^- e^{jkz}\right)$ $\eta = \frac{\omega\mu}{k} = \sqrt{\frac{\mu}{\epsilon}} \qquad \qquad \text{Intrinsic impedance of the medium } (\Omega) \qquad \eta_0 = \sqrt{\frac{\mu_0}{\epsilon_0}} = 377 \ \Omega$

The ratio of E and H component is an impedance called wave impedance

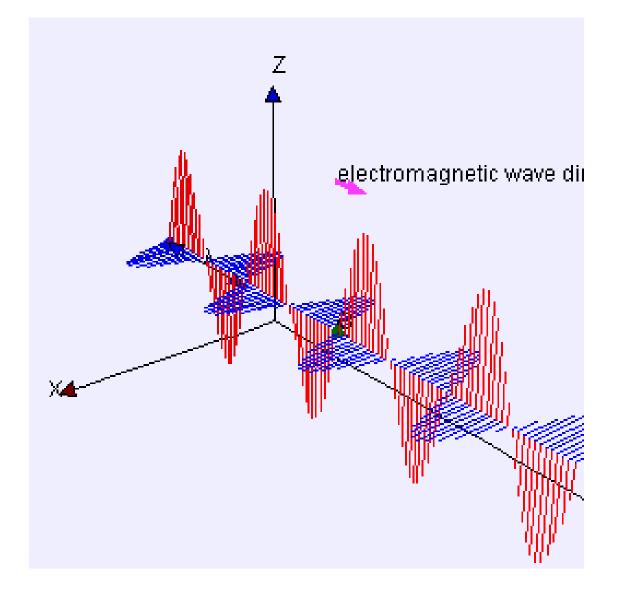


TEM wave

E and H field are transverse to the direction of propagation.

$$Z_{TEM} = \eta$$

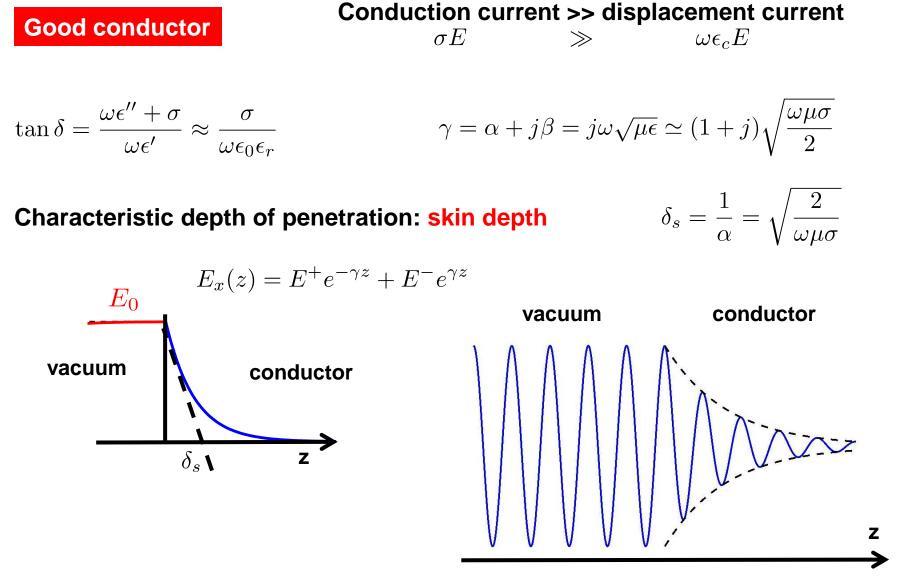
Plane waves and Transverse Electro-Magnetic (TEM) waves



Plane wave in lossy media

$$\nabla^{2}\vec{E} + \omega^{2}\mu\epsilon\vec{E} = 0 \qquad \epsilon = \epsilon_{r}\epsilon_{0}\left(1 - j\tan\delta\right) \qquad \tan\delta = \frac{\omega\epsilon'' + \sigma}{\omega\epsilon'}$$
Definition: $\gamma = \alpha + j\beta = j\omega\sqrt{\mu\epsilon} = j\omega\sqrt{\mu\epsilon_{0}\epsilon_{r}(1 - j\tan\delta)}$
Attenuation constant
$$\begin{array}{c} \vec{x} & \vec{E} = E_{x}\hat{x} \\ \vec{y} & \vec{z} \\ \textbf{Positive z direction} \\ \textbf{Positive z direction} \\ e^{-\gamma z} = e^{-\alpha z}e^{-j\beta z} \\ \textbf{H}_{y} = \frac{j}{\omega\mu}\frac{\partial E_{x}}{\partial z} = -\frac{j\gamma}{\omega\mu}\left(E^{+}e^{-\gamma z} - E^{-}e^{\gamma z}\right) = \frac{1}{\eta}\left(E^{+}e^{-\gamma z} - E^{-}e^{\gamma z}\right) \\ \textbf{H}_{z} = \frac{j}{\mu}\frac{\partial E_{x}}{\partial z} = -\frac{j\gamma}{\omega\mu}\left(E^{+}e^{-\gamma z} - E^{-}e^{\gamma z}\right) = \frac{1}{\eta}\left(E^{+}e^{-\gamma z} - E^{-}e^{\gamma z}\right) \\ \vec{H} = \frac{1}{\eta}\hat{\beta}\times\vec{E} \\ \textbf{Attenuating TEM "wave" ...} \\ \textbf{Andrea.Mostacci@uniromal.if} \\ \textbf{H} = \frac{1}{\eta}\hat{\beta}\times\vec{E} \\ \textbf{H} = \frac{1}{\eta}\hat{\beta}\cdot\vec{E} \\ \textbf{H} = \frac$$

Plane waves in good conductors



Plane waves in good conductors

Good conductorConduction current >> displacement current
$$\sigma E$$
 $\tan \delta = \frac{\omega \epsilon'' + \sigma}{\omega \epsilon'} \approx \frac{\sigma}{\omega \epsilon_0 \epsilon_r}$ $\gamma = \alpha + j\beta = j\omega \sqrt{\mu \epsilon} \simeq (1+j)\sqrt{\frac{\omega \mu \sigma}{2}}$ Characteristic depth of penetration: skin depth $\delta_s = \frac{1}{\alpha} = \sqrt{\frac{2}{\omega \mu \sigma}}$ $I = \frac{E_0}{\sqrt{\alpha \omega \sigma}}$ Al $\delta_s = 8.14 \ 10^{-7} \ m$ $I = \frac{E_0}{\delta_s \sqrt{z}}$ Al $\delta_s = 6.60 \ 10^{-7} \ m$ Al $\delta_s = 7.86 \ 10^{-7} \ m$ Al $\delta_s = 6.40 \ 10^{-7} \ m$ Al

impedance of $~~\eta$ the medium

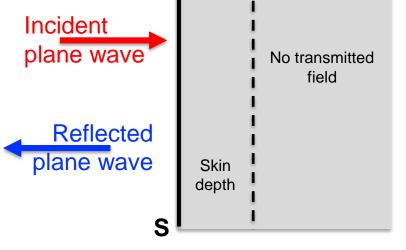
$$\eta = \frac{j\omega\mu}{\gamma} \simeq (1+j)\sqrt{\frac{\omega\mu}{2\sigma}} = (1+j)\frac{1}{\sigma\delta_s}$$

? Copper @ 100 MHz

Surface Impedance

Good conductor

Goal: account for an imperfect conductor



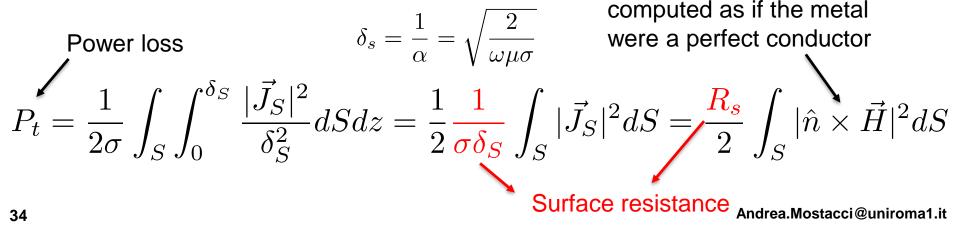
The power that is transmitted into the conductor is dissipated as heat within a very short distance from the surface.

Being
$$\vec{J}_S = \hat{n} \times \vec{H} \Big|_S$$
 when $\sigma \to \infty$

Approximation

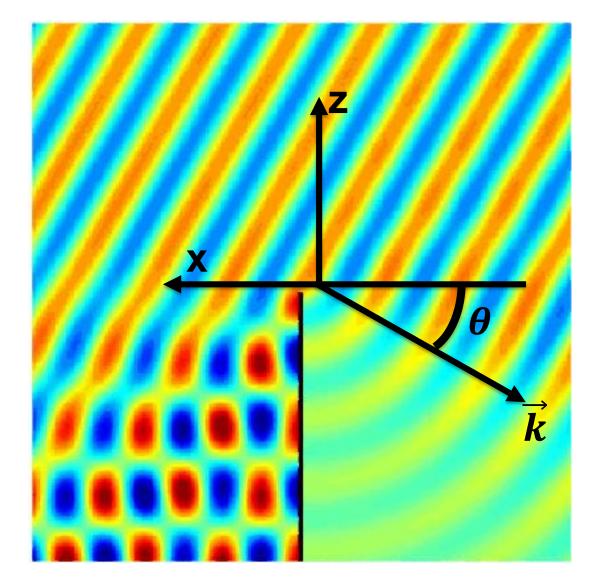
Replace the exponentially decaying volume current volume with a uniform current extending a distance of one skin depth

 $\bar{J}_t = \begin{cases} \bar{J}_s / \delta_s & \text{for } 0 < z < \delta_s \\ 0 & \text{for } z > \delta_s, \end{cases}$



Reflection of plane waves (a first boundary value problem)

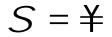
Courtesy of M. Ferrario, INFN-LNF

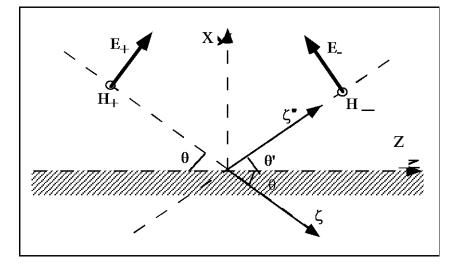


Reflection of plane waves (a first boundary value problem)

Plane wave reflected by a perfectly conducting plane

Courtesy of M. Ferrario, INFN-LNF





In the plane xz the field is given by the superposition of the incident and reflected wave:

$$E(x, z, t) = E_{+}(x_{o}, z_{o}, t_{o})e^{iWt - ikZ} + E_{-}(x_{o}, z_{o}, t_{o})e^{iWt - ikZ'}$$
$$Z = z\cos q - x\sin q \qquad Z' = z\cos q' + x\sin q'$$

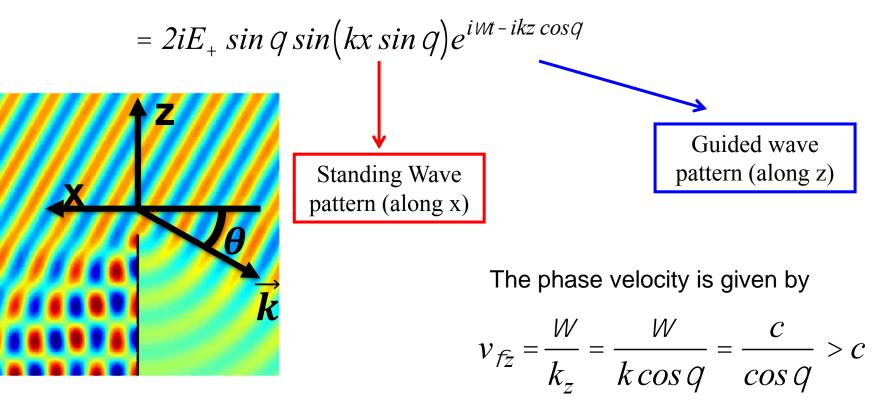
And it has to fulfill the boundary conditions (no tangential E-field)

Reflection of plane waves (a first boundary value problem)

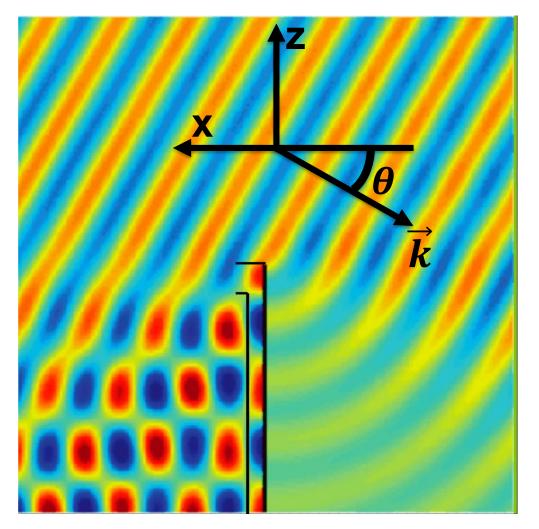
Taking into account the boundary conditions the longitudinal component of the field becomes:

Courtesy of M. Ferrario, INFN-LNF

$$E_z(x,z,t) = (E_+ \sin q)e^{iWt - ik(z\cos q - x\sin q)} - (E_+ \sin q)e^{iWt - ik(z\cos q + x\sin q)}$$



From reflections to waveguides



Courtesy of M. Ferrario, INFN-LNF

Put a metallic boundary where the field is zero at a given distance from the wall.

Between the two walls there must be an integer number of half wavelengths (at least one).

For a given distance, there is a maximum wavelength, i.e. there is **cut-off frequency**.

$$v_{fz} = \frac{W}{k_z} = \frac{W}{k \cos q} = \frac{c}{\cos q} > c \longrightarrow$$

It can not be used as it is for particle acceleration

Maxwell equations and boundary value problem

Maxwell equation with sources + boundary conditions = boundary value problem

Sources

 \vec{J}, ρ

Homogeneous medium

$$\nabla \cdot \vec{E} = \rho / \epsilon \qquad \qquad \nabla \cdot \vec{H} = 0$$

$$\nabla \times \vec{E} = -j\omega\mu\vec{H} \qquad \qquad \nabla \times \vec{H} = +j\omega\epsilon\vec{E} + \vec{J}$$

Do you see asymmetries?

Maxwell equations and boundary value problem

Maxwell equation with sources + boundary conditions = boundary value problem

Homogeneous medium

$$abla \cdot ec E =
ho / \epsilon \qquad \qquad
abla \cdot ec H =
ho_m / \mu \qquad \qquad
otag J, \
ho$$

Sources

Actual or equivalent

Vector Helmotz Equation

$$\nabla^{2}\vec{E} + k^{2}\vec{E} = \nabla \times \vec{J}_{m} + j\omega\mu\vec{J} + \frac{1}{\epsilon}\nabla\rho$$

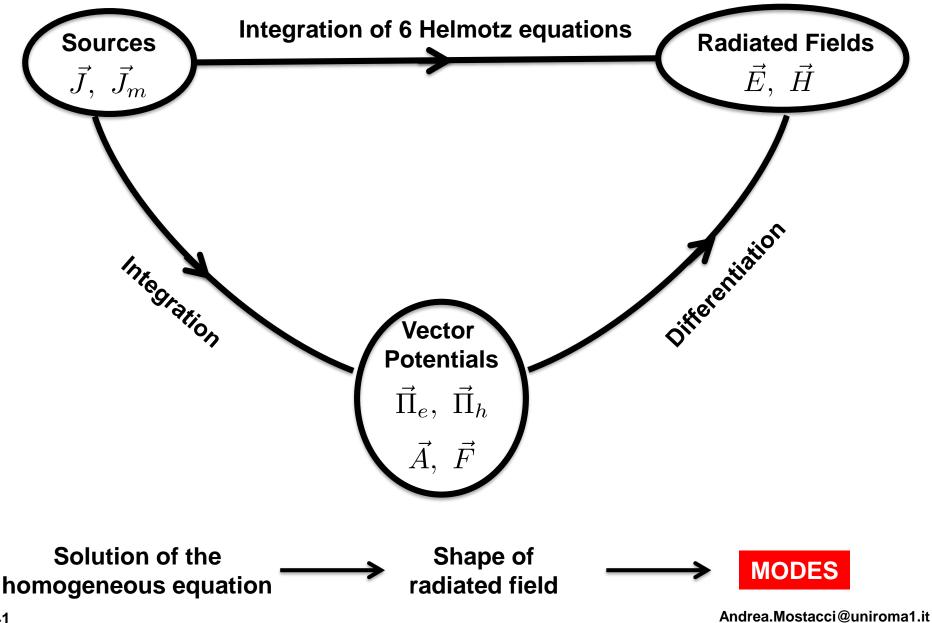
$$\nabla^{2}\vec{H} + k^{2}\vec{H} = -\nabla \times \vec{J} + j\omega\epsilon\vec{J}_{m} + \frac{1}{\mu}\nabla\rho_{m}$$

$$k^{2} = \omega^{2}\mu\epsilon$$

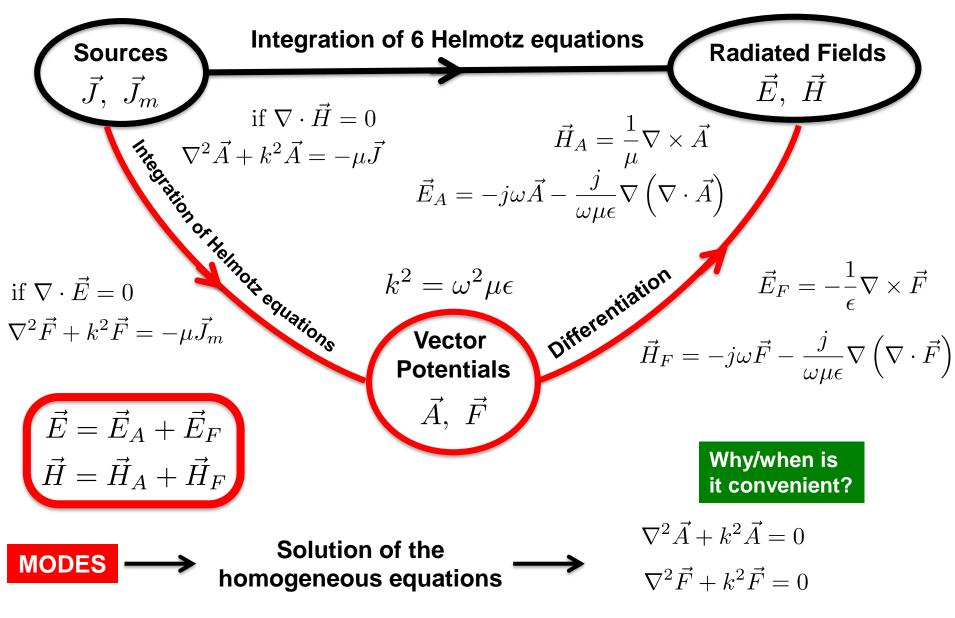
Step 1Source free region $\vec{J} = \vec{J}_m = \rho_m = \rho = 0$ Homogeneous problemStep 2Solution $= \sum_k C_k \left(\vec{J}, \vec{J}_m, \rho_m, \rho \right)$ Solution-Homogeneous-Problem

Solution

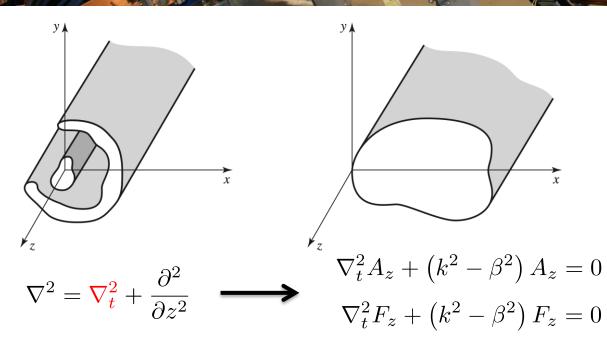
Method of solution of Helmotz equations



Solution of Helmotz equations using potentials



Modes of cylindrical waveguides: propagating field



Field propagating in the positive z direction

 $\vec{A} = \hat{z} A_z(x, y) e^{-j\beta z} = \hat{z} A$

$$\vec{F} = \hat{z} \ F_z(x,y) \ e^{-j\beta z} = \hat{z} \ F$$

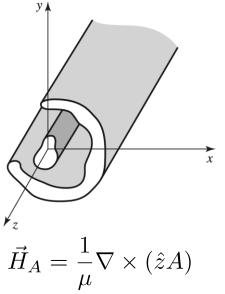
2 Helmotz equations (transverse coordinates)

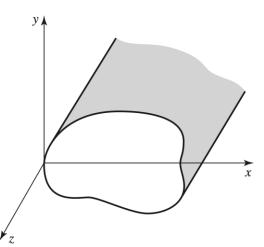
$$\vec{H}_{A} = \frac{1}{\mu} \nabla \times (\hat{z}A) \longrightarrow \vec{H}_{A} = \vec{h}_{t} e^{-j\beta z} \qquad \begin{array}{c} \text{Only E field along z} \\ \text{E-mode} \\ \vec{E}_{A} = -j\omega A \hat{z} - \frac{\beta}{\omega\mu\epsilon} \nabla A \longrightarrow \vec{E}_{A} = [\vec{e}_{t} + \hat{z} \ \boldsymbol{e}_{z}] e^{-j\beta z} \\ \end{array} \qquad \begin{array}{c} \text{Only E field along z} \\ \text{E-mode} \\ \text{E-mode} \\ \end{array}$$

$$\vec{E}_{F} = -\frac{1}{\epsilon} \nabla \times (\hat{z}F) \longrightarrow \vec{E}_{F} = \vec{e}_{t} \ e^{-j\beta z} \qquad \begin{array}{c} \text{Only H field along z} \\ \text{H-mode} \\ \text$$

1

Modes of cylindrical waveguides: propagating field

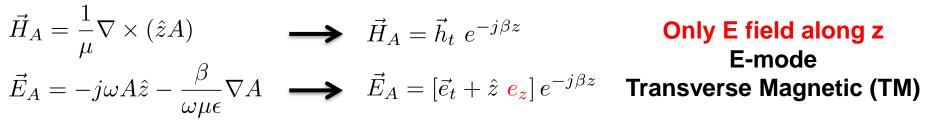




Field propagating in the positive z direction

 $\vec{A} = \hat{z} \ A_z(x, y) \ e^{-j\beta z} = \hat{z} \ A$

$$\vec{F} = \hat{z} F_z(x,y) e^{-j\beta z} = \hat{z} F$$

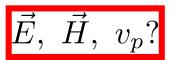


$$\vec{E}_{F} = -\frac{1}{\epsilon} \nabla \times (\hat{z}F) \longrightarrow \vec{E}_{F} = \vec{e}_{t} \ e^{-j\beta z} \qquad \begin{array}{c} \text{Only H field along z} \\ \text{H-mode} \\ \text{H-mode} \\ \vec{H}_{F} = -j\omega F \hat{z} - \frac{\beta}{\omega\mu\epsilon} \nabla F \longrightarrow \vec{H}_{F} = \left[\vec{h}_{t} + \hat{z} \ h_{z}\right] e^{-j\beta z} \qquad \begin{array}{c} \text{Only H field along z} \\ \text{H-mode} \\ \text{H-mode} \\ \end{array}$$

$$\vec{E} = \vec{E}_A + \vec{E}_F \qquad \vec{H} = \vec{H}_A + \vec{H}_F \longrightarrow$$
 TM modes

Transverse Electric Magnetic modes

Look for a Transverse Electric Magnetic mode $E_z = H_z = 0$



Example

Hint 1 Start from a TM mode (vector potential A) $H_z = 0$

$$\nabla = \nabla_t + \hat{z} \frac{\partial}{\partial z} \qquad \vec{A} = \hat{z} \ A_z(x, y) \ e^{-j\beta z} = \hat{z} \ A \qquad \nabla \cdot \vec{A} = \cdots$$

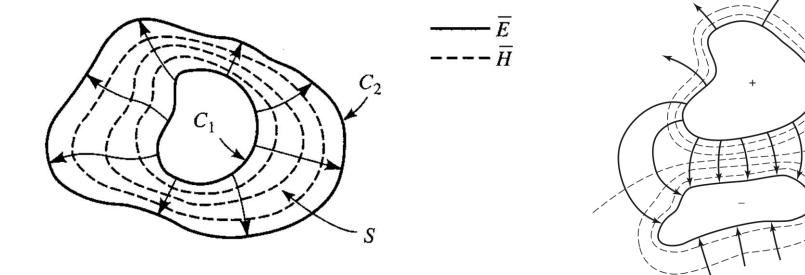
Hint 2
$$\vec{E}_A = \cdots$$

Transverse Electric Magnetic mode in waveguides

Example

Solution For a given
$$A_z \quad \vec{H} = \frac{1}{\mu} \nabla_t \times (\hat{z}A_z) e^{-j\omega\sqrt{\mu\epsilon}z} \quad \vec{E} = -\frac{1}{\sqrt{\mu\epsilon}} \nabla_t A_z e^{-j\omega\sqrt{\mu\epsilon}z}$$

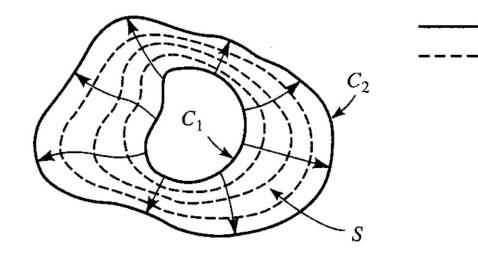
3. TEM waves are possible only if there are at least two conductors.

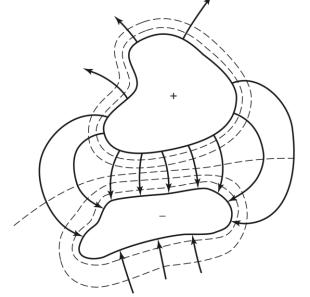


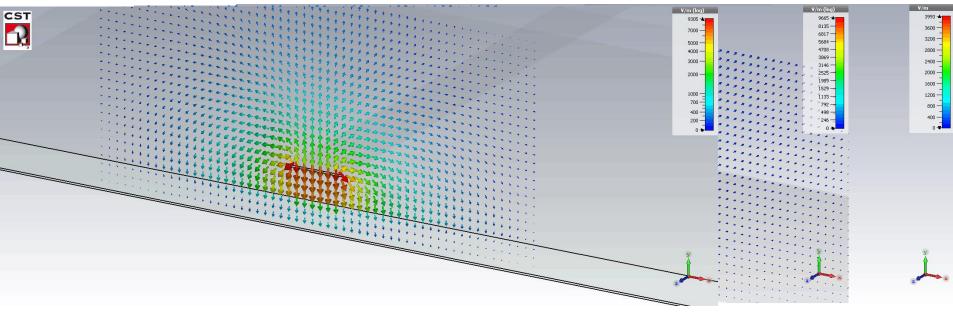
4. The plane wave is a TEM wave of two infinitely large plates separated to infinity

5. Electrostatic problem with boundary conditions $\vec{e}_t \longrightarrow \vec{h}_t = \frac{1}{Z_{TEM}} \hat{z} \times \vec{e}_t \longrightarrow \vec{H} = \vec{h}_t \ e^{-j\omega\sqrt{\mu\epsilon z}}$

Common TEM waveguides







 $\frac{E}{H}$

Animations by G. Castorina

General solution for fields in cylindrical waveguide

Write the Helmotz equations for potentials

 $\nabla_t^2 A_z + k_t^2 A_z = 0$ TM waves **TE waves** $\nabla_t^2 F_z + k_t^2 F_z = 0$



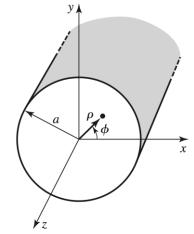
Cartesian coordinates

$$\nabla_t^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

 $A_z(x,y) = X(x)Y(y)$

$$k_t^2 = k^2 - \beta^2 = \omega^2 \mu \epsilon - \beta^2$$

$$\epsilon = \epsilon_r \epsilon_0 \left(1 - j \tan \delta\right)$$



Cylindrical coordinates

$$\nabla_t^2 = \frac{\partial^2}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial}{\partial \rho} + \frac{1}{\rho^2} \frac{\partial^2}{\partial \phi^2}$$

$$A_z(\rho,\phi) = R(\rho)\Phi(\phi)$$

Separation of variables

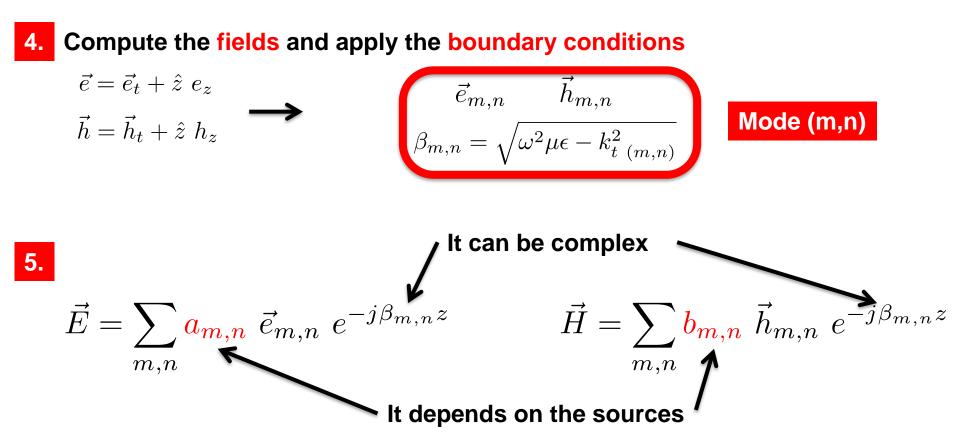
Andrea.Mostacci@uniroma1.it

2.

General solution for fields in cylindrical waveguide

3. Eigenvalue problem: Eigenvalues + Eigen-function

- $\mathbf{TM} \quad \nabla_t^2 A_z + k_t^2 A_z = 0 \qquad \qquad k_t \qquad \qquad A_z, \ F_z$
- $\mathbf{TE} \quad \nabla_t^2 F_z + k_t^2 F_z = 0$

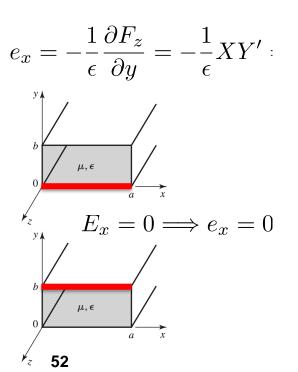


Rectangular waveguides

Rectangular waveguides: TE mode

Example

 $F_z = X(x)Y(y)$ Write the Helmotz equation X(x) =



Rectangular waveguides: TE mode

$$F_{z} = X(x)Y(y) \qquad \nabla_{t}^{2}F_{z} + k_{t}^{2}F_{z} = YX'' + XY'' + k_{t}^{2}XY = 0$$

$$\frac{X''}{X} + \frac{Y''}{Y} + k_{t}^{2} = 0 \qquad -k_{x}^{2} - k_{y}^{2} + k_{t}^{2} = 0 \qquad \text{constraint} \\ \text{condition}$$

$$\frac{X''}{X} = -k_{x}^{2} \implies X(x) = C_{1}\cos(k_{x}x) + D_{1}\sin(k_{x}x)$$

$$\frac{Y''}{Y} = -k_{y}^{2} \implies Y(y) = C_{2}\cos(k_{y}y) + D_{2}\sin(k_{y}y)$$

$$e_{x} = -\frac{1}{\epsilon}\frac{\partial F_{z}}{\partial y} = -\frac{1}{\epsilon}XY' = -\frac{k_{y}}{\epsilon}\left[C_{1}\cos(k_{x}x) + D_{1}\sin(k_{x}x)\right]\left[-C_{2}\sin(k_{y}y) + D_{2}\cos(k_{y}y)\right]$$

$$e_{x}(0 \le x \le a, y = 0) = \dots\left[-C_{2} \cdot 0 + D_{2} \cdot 1\right] = 0 \iff D_{2} = 0$$

$$k_{y}b = n\pi$$

$$e_x(0 \le x \le a, y = b) = \dots [-C_2 \sin(k_y b)] = 0 \iff \frac{\kappa_y b - n\pi}{n = 0, 1, 2, \dots}$$

Andrea.Mostacci@uniroma1.it

53

 μ, ϵ

a

Eigenvalues and cut-off frequencies (TE mode, rect. WG)

$$k_t^2 = k_x^2 + k_y^2 = \left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2 = \omega^2 \mu \epsilon - \beta^2 \quad \begin{array}{constraint\\condition\end{array}$$
$$\vec{H} = \sum_{m,n} b_{m,n} \ \vec{h}_{m,n} \ e^{-j\beta_{m,n}z} \\ \beta_{m,n} = \sqrt{\omega^2 \mu \epsilon - \left(\frac{m\pi}{a}\right)^2 - \left(\frac{n\pi}{b}\right)^2} \quad \begin{array}{c} \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ z \end{array}$$

Cut-off frequencies f_c such that $\beta_{m,n} = 0$

$$(f_c)_{\boldsymbol{m},\boldsymbol{n}} = \frac{1}{2\pi\sqrt{\mu\epsilon}}\sqrt{\left(\frac{\boldsymbol{m}\pi}{a}\right)^2 + \left(\frac{\boldsymbol{n}\pi}{b}\right)^2} \qquad \begin{array}{l} m, \ n = 0, 1, 2, \dots\\ m = n \neq 0 \end{array}$$

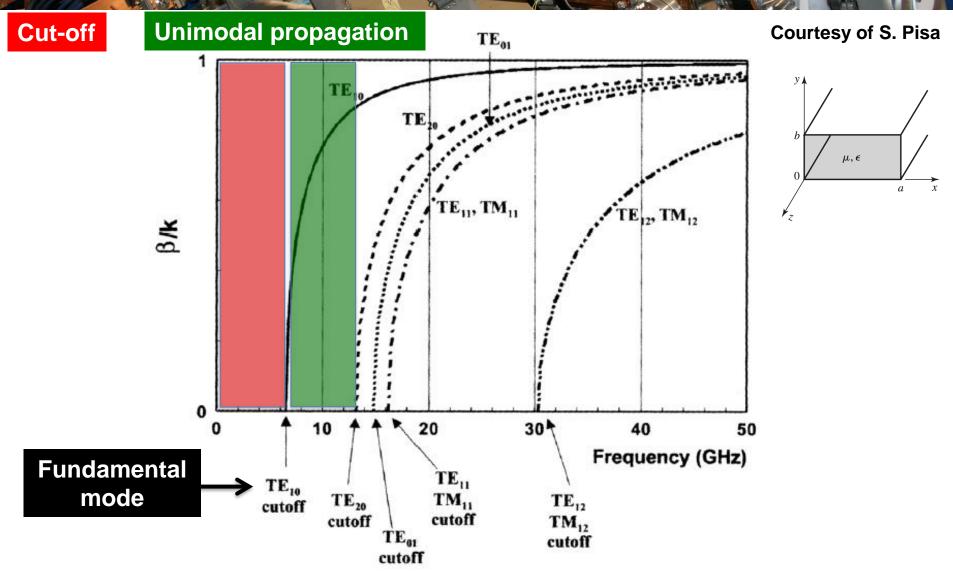
 $f < (f_c)_{m,n}$

mode m, n is attenuated exponentially (evanescent mode)

VA

 $f > (f_c)_{m,n}$ mode m, n is propagating with no attenuation

Waveguide dispersion curve



Same curve for TE and TM mode, but n=0 or m=0 is possible only for TE modes.

In any metallic waveguide the fundamental mode is TE.

Andrea.Mostacci@uniroma1.it

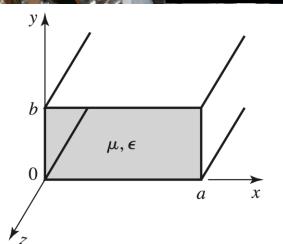
55

Single mode operation of a rectangular waveguide

Exercise

- Find the smallest ratio a/b allowing the largest bandwidth of single mode operation
- 2. State the largest bandwidth of single mode operation
- 3. Defining the single mode bandwidth as

 $1.25 \ (f_c)_1 < f < 0.95 \ (f_c)_2$



Find the single mode BW for WR-90 waveguide (a=22.86mm and b=10.16 mm)

Hint:
$$(f_c)_{\boldsymbol{m},\boldsymbol{n}} = \frac{1}{2\pi\sqrt{\mu\epsilon}}\sqrt{\left(\frac{\boldsymbol{m}\pi}{a}\right)^2 + \left(\frac{\boldsymbol{n}\pi}{b}\right)^2} \qquad \begin{array}{l} m, \ n = 0, 1, 2, \dots\\ m = n \neq 0 \end{array}$$

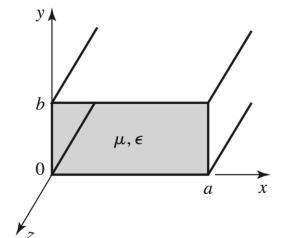
Single mode operation of a rectangular waveguide

Exercise

3.

- Find the smallest ratio a/b allowing the largest bandwidth of single mode operation
- 2. State the largest bandwidth of single mode operation
 - Defining the single mode bandwidth as

 $1.25 \ (f_c)_1 < f < 0.95 \ (f_c)_2$



Find the single mode BW for WR-90 waveguide (a=22.86mm and b=10.16 mm)

Eigenfunctions and mode pattern (TE mode, rect. WG)

$$E_x^{+,(m,n)} = a_{m,n} \frac{k_y}{\epsilon} \cos\left(k_x x\right) \sin\left(k_y y\right) e^{-j\beta z}$$

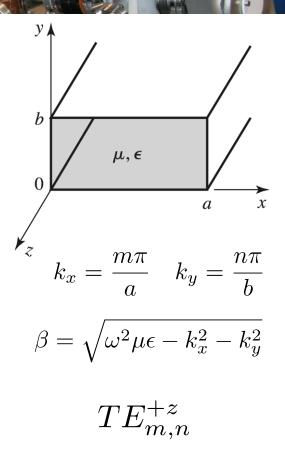
$$E_y^{+,(m,n)} = -a_{m,n}\frac{k_x}{\epsilon}\sin\left(k_x x\right)\cos\left(k_y y\right)e^{-j\beta z}$$

 $E_z^{+,(m,n)} = 0$

$$H_x^{+,(m,n)} = a_{m,n} \frac{k_x \beta}{\omega \mu \epsilon} \sin(k_x x) \cos(k_y y) e^{-j\beta z}$$

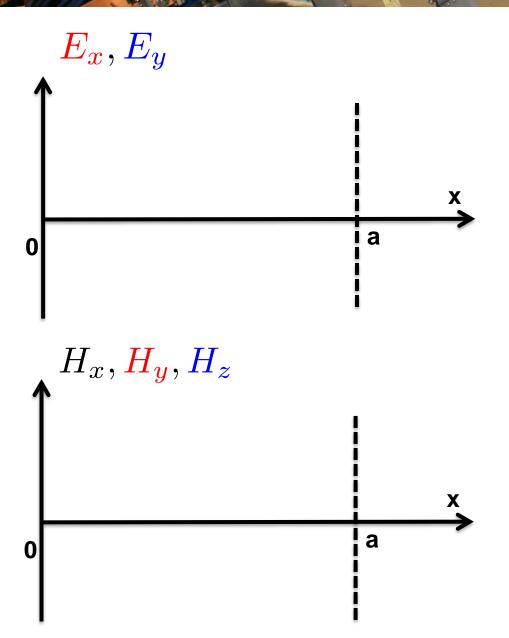
$$H_y^{+,(m,n)} = a_{m,n} \frac{k_y \beta}{\omega \mu \epsilon} \cos\left(k_x x\right) \sin\left(k_y y\right) e^{-j\beta z}$$

$$H_z^{+,(m,n)} = -ja_{m,n}\frac{k_t^2}{\omega\mu\epsilon}\cos\left(k_x x\right)\cos\left(k_y y\right)e^{-j\beta z}$$



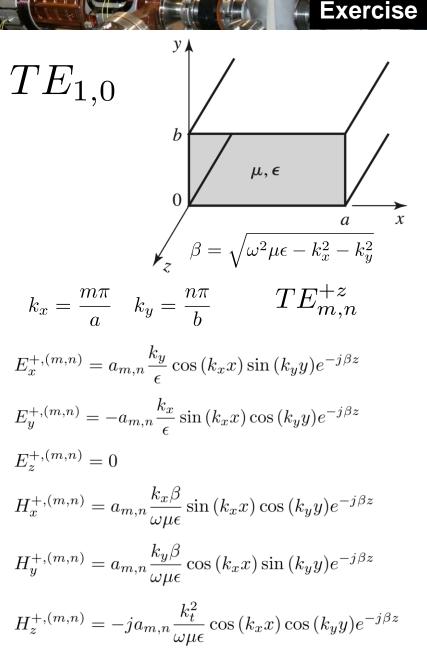
60

Let's draw



Mannen and

Mililililili



Eigenfunctions and mode pattern (TE mode, rect. WG)

$$E_x^{+,(m,n)} = a_{m,n} \frac{k_y}{\epsilon} \cos\left(k_x x\right) \sin\left(k_y y\right) e^{-j\beta z}$$

$$E_y^{+,(m,n)} = -a_{m,n} \frac{k_x}{\epsilon} \sin(k_x x) \cos(k_y y) e^{-j\beta z}$$

 $E_z^{+,(m,n)} = 0$

$$H_x^{+,(m,n)} = a_{m,n} \frac{k_x \beta}{\omega \mu \epsilon} \sin(k_x x) \cos(k_y y) e^{-j\beta z}$$

$$H_y^{+,(m,n)} = a_{m,n} \frac{k_y \beta}{\omega \mu \epsilon} \cos\left(k_x x\right) \sin\left(k_y y\right) e^{-j\beta z}$$

$$H_z^{+,(m,n)} = -ja_{m,n}\frac{k_t^2}{\omega\mu\epsilon}\cos\left(k_x x\right)\cos\left(k_y y\right)e^{-j\beta z}$$

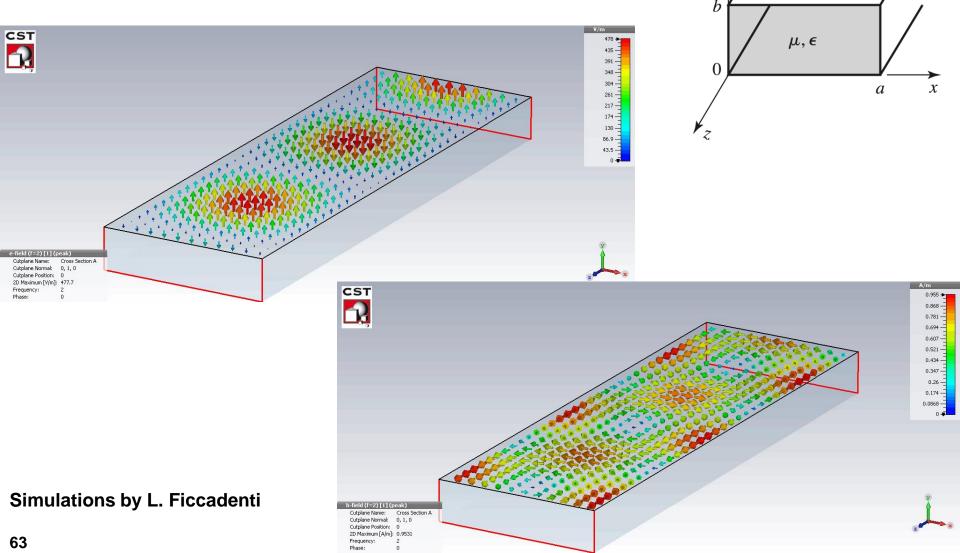
y, b μ, ϵ 0 x a \mathbf{r}_{z} $k_x = \frac{m\pi}{a} \quad k_y = \frac{n\pi}{b}$ $\beta = \sqrt{\omega^2 \mu \epsilon - k_x^2 - k_y^2}$ $TE_{m,n}^{+z}$

Exercise

Draw the field patter in the xz plane for TE10 E field H field

Field pattern (TE10 mode, rect. WG)

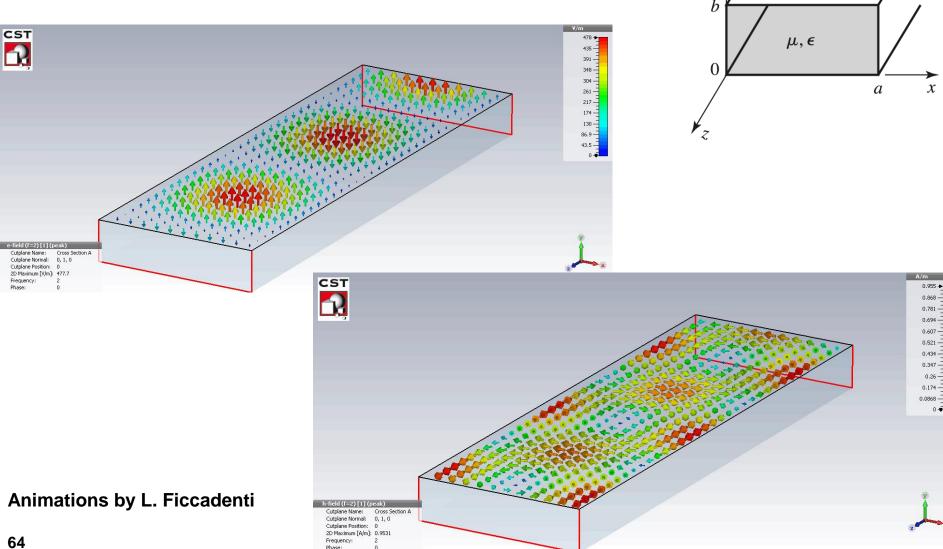
 $TE_{m,n}^{+z}$ m (n) is the number of half periods (or maxima/minima) along the x (y) axis in the cross-section.



y

Field pattern (TE10 mode, rect. WG)

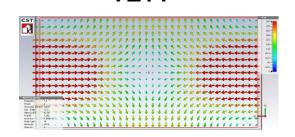
 $TE_{m,n}^{+z}$ m (n) is the number of half periods (or maxima/minima) along the x (y) axis in the crosssection.

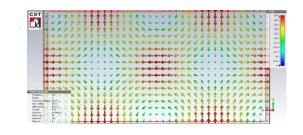


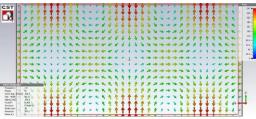
y

Field pattern at the cross section

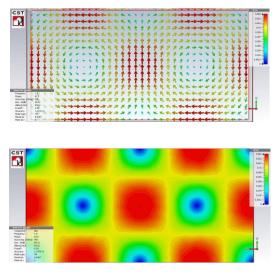
 $TE_{m,n}^{+z}$ m (n) is the number of half periods (or maxima/minima) along the x (y) axis in the crosssection. TE?? TE??



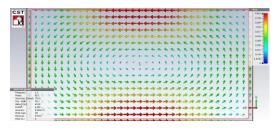


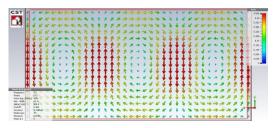


TM??



TM??



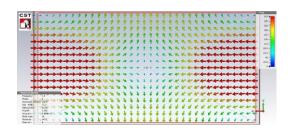


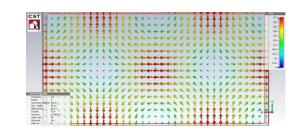
Simulations by L. Ficcadenti

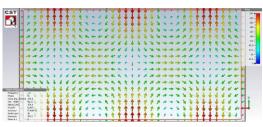
Field pattern at the cross section

 $TE_{m,n}^{+z}$

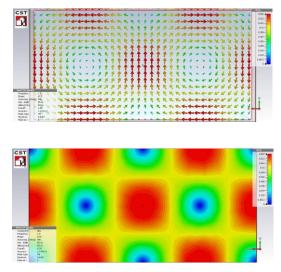
m (n) is the number of half periods (or maxima/minima) along the x (y) axis in the crosssection. TE11 TE21

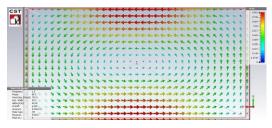


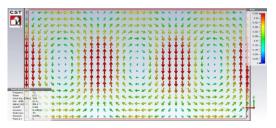




TM21



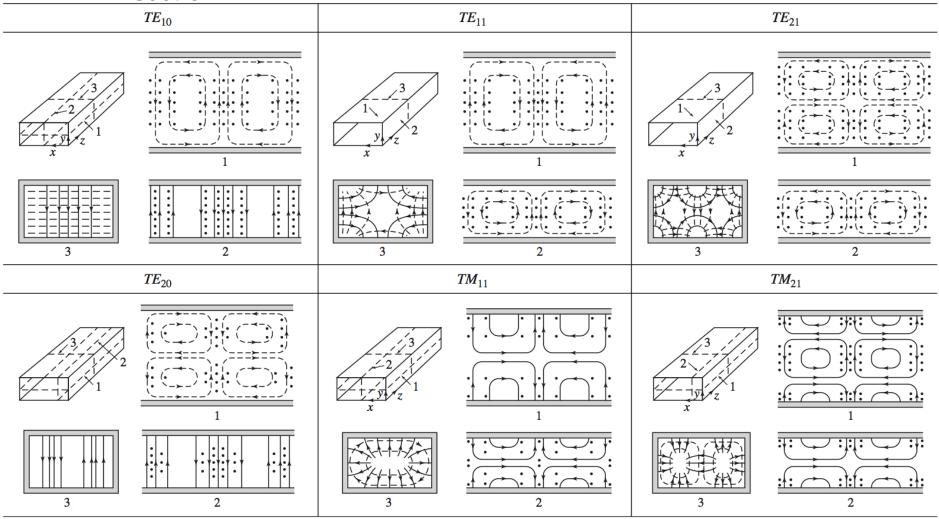




Simulations by L. Ficcadenti

 $TE_{m,n}^{+z}$

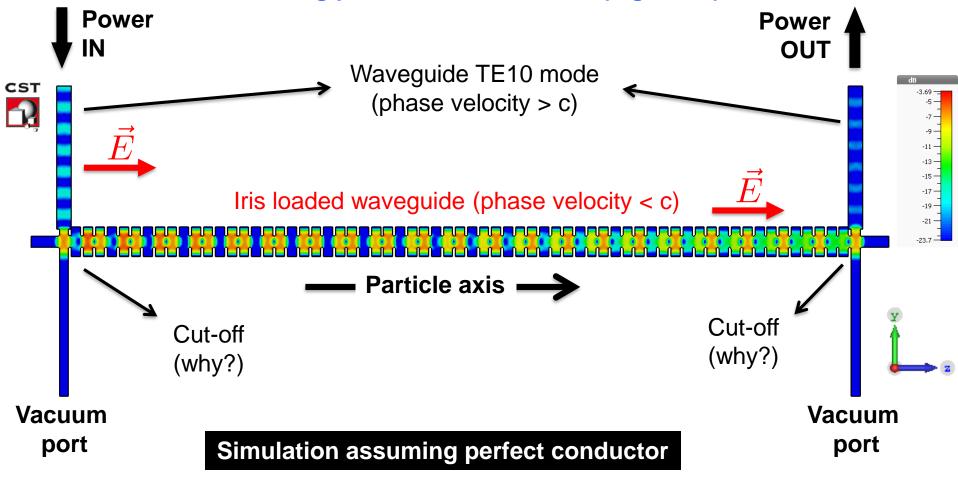
m (n) is the number of half periods (or maxima/minima) along the x (y) axis in the cross-section.



Full EM simulation of a RF accelerating structure

Exercise

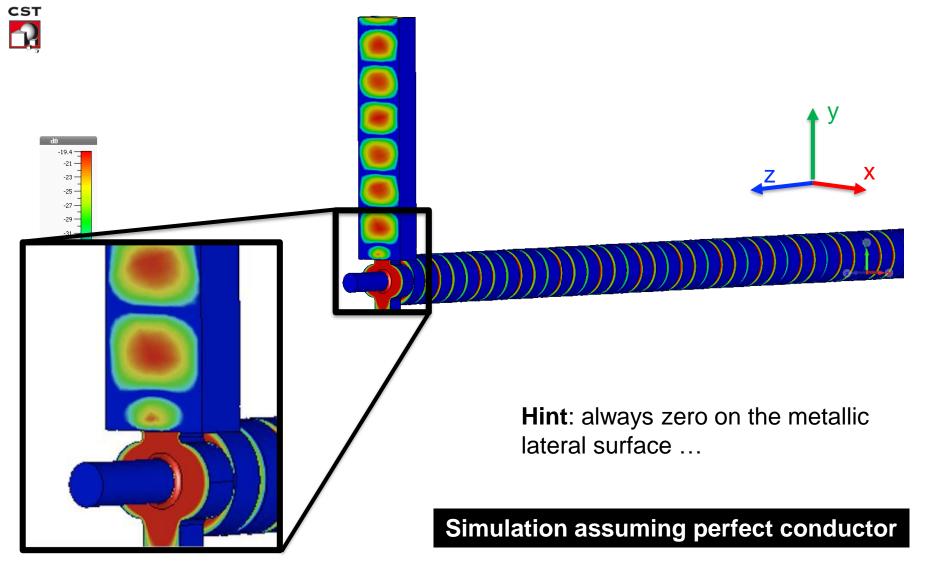
E-field along particle axis, i.e. z-axis (log-scale)



With phasors, a time animation is identical to phase rotation.

Exercise

Which field is this one? E or H field?



Exercise

-27 ---28 ---29 ---30 ---31 ---32 ---33 ---34 ---36 --

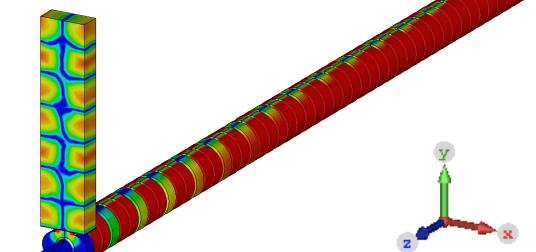
Which field?

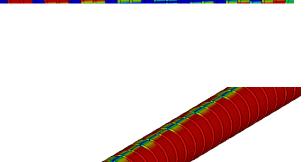
Which component?

Simulation assuming perfect conductor

-23.8 --26 --28 --30 -

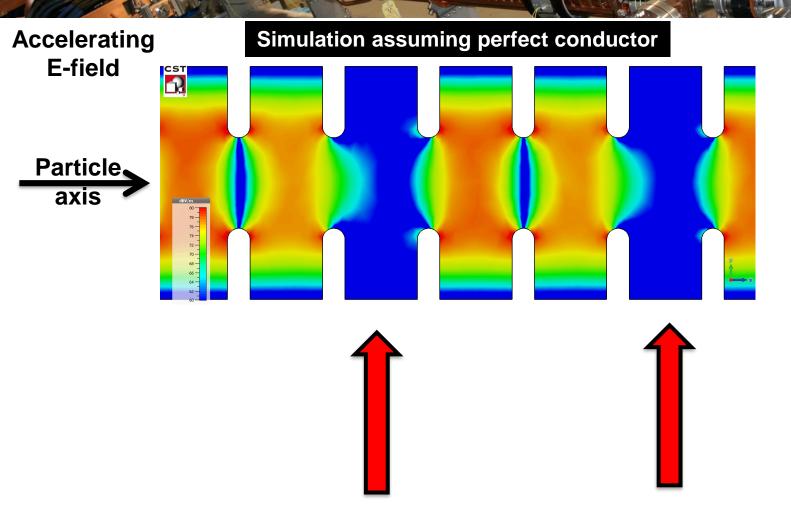
CST





Х

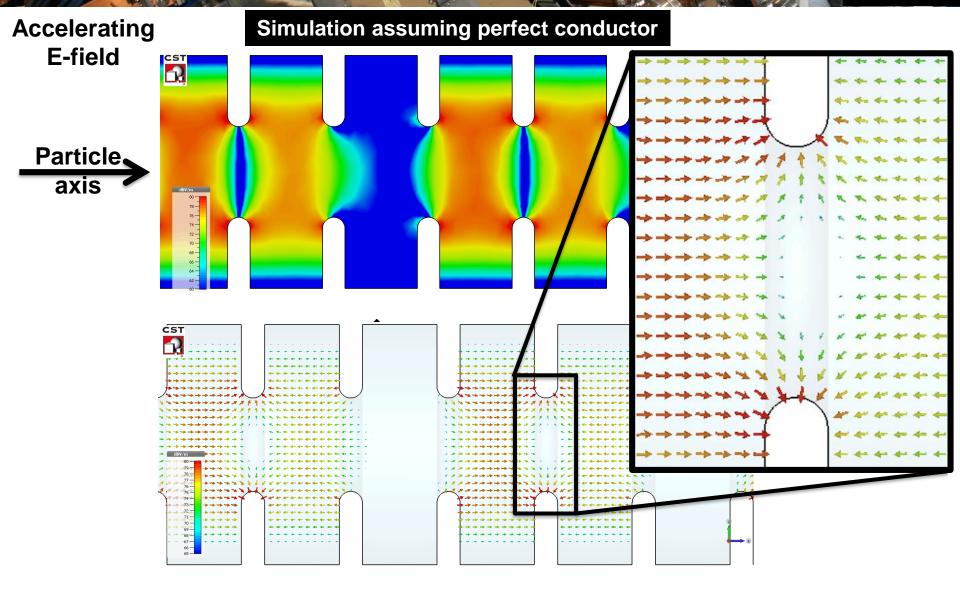
Exercis<u>e</u>



3 cell periodicity

 $2\pi/3$ phase advance

Exercise



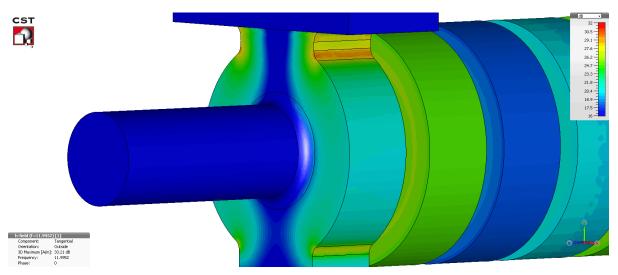
3 cell periodicity

 $2\pi/3$ phase advance

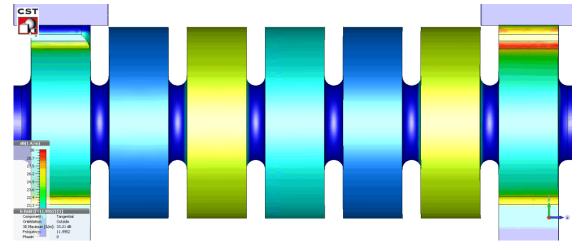
Exercise

Temperature breakdown: seek for maximum power loss

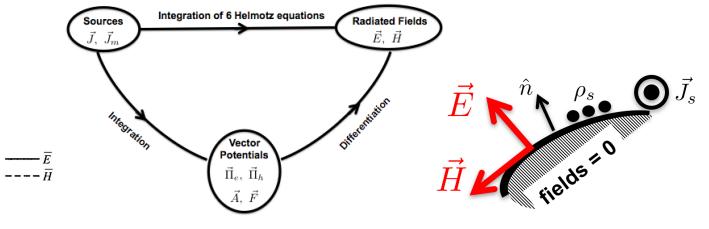
 $P_t = \frac{R_s}{2} \int_{S} |\hat{\mathbf{n}} \times \vec{\mathbf{H}}|^2 dS$

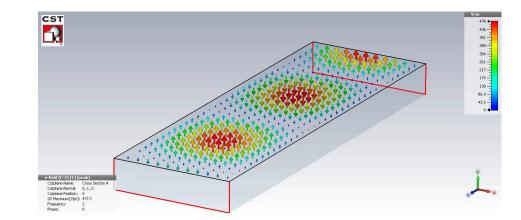


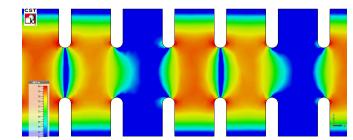
Simulation with perfect conductor



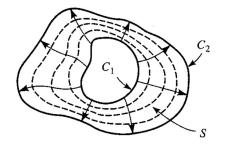
Conclusions

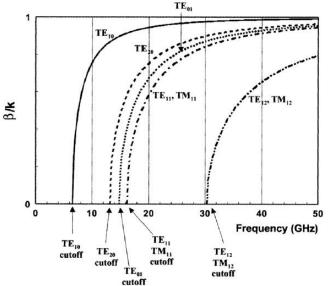






Andrea.Mostacci@uniroma1.it





74

Conclusions

