Diagnostics is the 'sensory organ' for the beam. It required for operation and development of accelerators

Four types of demands leads to different installations:

- > Quick, non-destructive measurements leading to a single number or simple plots.
- ▶ Instrumentation for daily check, malfunction diagnosis and wanted parameter variation.
- > Complex instrumentation used for hard malfunction and accelerator development.
- > Automated measurement and control of beam parameters i.e. feedback
- A clear interpretation of the results is a important design criterion.

General comments:

- ➤ Good knowledge of accelerators, general physics and technologies needed.
- > Quite different technologies are used, based on various physics processes.
- \succ Each task and each technology calls for an expert.
- > Accelerator development goes parallel to diagnostics development.
- \Rightarrow Interesting and challenging subject!

Conclusion

LINAC & transport lines: Single pass \leftrightarrow **Synchrotron:** multi pass **Electrons:** always relativistic \leftrightarrow **Protons/Ions:** non-relativistic for $E_{kin} < 1$ GeV/u **Depending on application:** Low current \leftrightarrow high current

Overview of the most commonly used systems:

Beam quantity		LINAC & transfer line	Synchrotron
Current I	General	Transformer, dc & ac	Transformer, dc & ac
		Faraday Cup	
	Special	Particle Detectors	Pick-up Signal (relative)
Profile <i>x</i> _{width}	General	Screens, SEM-Grids	Ionization Profile Monitor
		Wire Scanners, OTR Screen	Wire Scanner,
			Synchrotron Light Monitor
	Special	MWPC, Fluorescence Light	
Position <i>x_{cm}</i>	General	Pick-up (BPM)	Pick-up (BPM)
	Special	Using position measurement	
Transverse Emittance ε_{tran}	General	Slit-grid	Ionization Profile Monitor
		Quadrupole Variation	Wire Scanner
	Special	Pepper-Pot	Transverse Schottky

Beam Quantities and their Diagnostics II

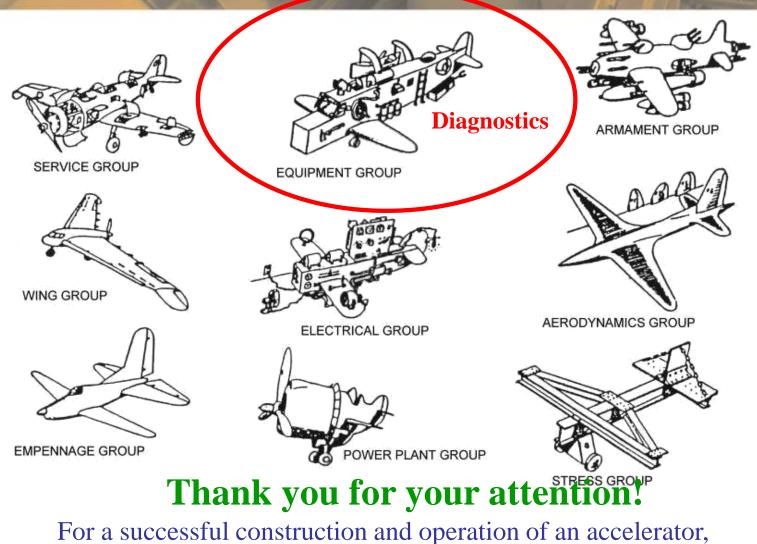
j	uas 🧖

G 55 H

Conclusion

Beam quantity		LINAC & transfer line	Synchrotron
Bunch Length <i>∆φ</i>	General	Pick-up	Pick-up
			Wall Current Monitor
	Special	Secondary electrons	Streak Camera
			Electro-optical laser mod.
Momentum <i>p</i> and	General	Pick-ups (Time-of-Flight)	Pick-up (e.g. tomography)
Momentum Spread <i>∆p/p</i>	Special	Magnetic Spectrometer	Schottky Noise Spectrum
Longitudinal Emittance	General	Buncher variation	
Elong	Special	Magnetic Spectrometer	Pick-up & tomography
Tune and Chromaticity Q, ξ	General		Exciter + Pick-up
	Special		Transverse Schottky Spectrum
Beam Loss r _{loss}	General	Particle Detectors	
Polarization P	General	Particle Detectors	
	Special	Laser Scattering (Compton scattering)	
Luminocity L	General	Particle Detectors	

>Destructive and non-destructive devices depending on the beam parameter.


 \succ Different techniques for the same quantity \leftrightarrow Same technique for the different quantities.

Conclusion for Beam Diagnostics Course

18

GSI

Conclusion

the understand and right balance of all disciplines is required!