Measurement of longitudinal Parameters

Measurement of longitudinal parameter:

$>$ Definition of longitudinal phase space
$>$ Proton LINAC: Determination of mean energy
$>$ Determination of longitudinal emittance
$>$ Bunch length measurement for non-relativistic beams
$>$ Bunch length measurement for relativistic beams
$>$ Summary

Longitudinal \leftrightarrow transverse correspondences:
$>$ position relative to rf \leftrightarrow transverse center-of-mass
$>$ bunch structure in time \leftrightarrow transverse profile in horizontal and vertical direction
$>$ momentum or energy spread \leftrightarrow transverse divergence
$>$ longitudinal emittance \leftrightarrow transverse emittance.

Measurement of longitudinal Parameters

The longitudinal dynamics is described by the longitudinal emittance as given by: $>$ Spread of the bunches \boldsymbol{l}
in time, length or rf-phase.
\Rightarrow Momentum spread $\delta=\Delta p / p$, or energy spread $\Delta W / W$

$$
\Rightarrow \varepsilon_{\text {long }}=\frac{1}{\pi} \int_{A} d l \cdot d \delta
$$

The normalized value is preserved:

$$
\varepsilon_{\text {long }}^{\text {norm }}=\beta \gamma \cdot \varepsilon_{\text {long }}
$$

Discussed devices:

> Pick-ups for bunch length and emittance.

$>$ Special detectors (low $\boldsymbol{E}_{\boldsymbol{k} \boldsymbol{i n}}$ protons), streak cameras \& ele.-optical modulation (e^{-})

The Bunch Position measured by a Pick-Up

The bunch position is given relative to the accelerating rf. e.g. $\varphi_{r e f}=-30^{\circ}$ inside a rf cavity must be well aligned for optimal acceleration Transverse correspondence: Beam position
Example: Pick-up signal and 36 MHz rf at GSI-LINAC:

Outline:

$>$ Definition of longitudinal phase space
$>$ Proton LINAC: Determination of mean energy used for alignment of cavities phase and amplitude
$>$ Determination of longitudinal emittance
$>$ Bunch length measurement for non-relativistic beams
$>$ Bunch length measurement for relativistic beams
$>$ Summary

Determination of non-relativistic mean Energy using Pick-Ups

The energy delivered by a LINAC is sensitive to the mechanics, rf-phase and amplitude. For non-relativistic energies at proton LINACs time-of-flight (TOF) with two pick-ups is used:

$$
\beta c=\frac{L}{N T+t_{\mathrm{scope}}}
$$

\rightarrow the velocity $\boldsymbol{\beta}$ is measured.
Example: Time-of-flight signal from two pick-ups at $1.4 \mathrm{MeV} / \mathrm{u}$:
The reading is $\boldsymbol{t}_{\text {scope }}=15.82(5) \mathrm{ns}$ with $f_{r f}=36.136 \mathrm{MHz} \Leftrightarrow \boldsymbol{T}=27.673 \mathrm{~ns}$
$L=1.629(1) \mathrm{m}$ and $\boldsymbol{N}=3$
$\Rightarrow \boldsymbol{\beta}=0.05497$ (7)
$\Leftrightarrow \boldsymbol{W}=1.407$ (3) MeV/u
The accuracy is typically 0.1%
i.e. comparable to $\Delta \mathrm{W} / \mathrm{W}$

Precision of TOF Measurement for non-relativistic Energy

The precision of TOF is given by the accuracy in time and distance reading:

$$
\frac{\Delta \beta}{\beta}=\sqrt{\left(\frac{\Delta L}{L}\right)^{2}+\left(\frac{\Delta t}{N T+t_{\text {scope }}}\right)^{2}}
$$

Accuracy of scope reading $\boldsymbol{\Delta t} \approx 100 \mathrm{ps}$, uncertainty in distance $\boldsymbol{\Delta L} \approx 1 \mathrm{~mm}$.
Example: GSI-LINAC: $L=3.25 \mathrm{~m}$ and $\boldsymbol{f}_{r f}=36 \mathrm{MHz}$:

Location (LINAC module name)	unit	RFQ	IH1	IH2	AL4
Output energy \boldsymbol{W}	$\mathrm{MeV} / \mathrm{u}$	0.12	0.75	1.4	11.4
Velocity $\boldsymbol{\beta}$	\%	1.6	4.0	5.5	15.5
Total time-of-flight $\boldsymbol{t}_{\boldsymbol{T}_{\text {o }}}$	ns	677	271	197	70
Bunch spacing $\beta \boldsymbol{c} / \mathrm{f}_{\text {rf }}$	cm	13	33	45	129
Resolution $4 W / W$	\%	0.07	0.10	0.12	0.22

$>$ The accuracy is typically 0.1% (same order of magnitude as $\Delta W / W$)
$>$ The length has to be matched to the velocity
$>$ Due to the distance of $\approx 3 \mathrm{~m}$, different solutions for the \# of bunches N are possible
\rightarrow A third pick-up has to be installed closed by, to get an unique solution.

Cavity Alignment using a TOF Measurement

The mean energy is important for the matching between LINAC module.
It depends on phase and amplitude of the rf wave inside the cavities.
Example: Energy at GSI LINAC (nominal energy $1.400 \mathrm{MeV} / \mathrm{u}$):
(distance between pick-ups: $L=1.97 \mathrm{~m} \Rightarrow N=4$ bunches)

>Proton LINACs: Amplitude and phase should be carefully aligned by precise TOF $>$ Electron LINACs: Due to relativistic velocity, TOF is not applicable.

Outline:

$>$ Definition of longitudinal phase space
$>$ Proton LINAC: Determination of mean energy used for alignment of cavities phase and amplitude
$>$ Determination of longitudinal emittance
LINAC: variation of bunch length
Synchrotron: Topographic reconstruction
$>$ Bunch length measurement for non-relativistic beams
$>$ Bunch length measurement for relativistic beams
$>$ Summary

6-dim Phase Space for Accelerators

The particle trajectory is described with the 6-dim vector $\boldsymbol{x}^{t}=\left(x, x^{\prime}, y, y^{\prime}, l, \delta\right)$
For linear beam behavior the $\mathbf{6 x 6}$ transport matrix R is used:
Transformation from location $\boldsymbol{s}_{\boldsymbol{0}}$ to $\boldsymbol{s}_{\boldsymbol{1}}$ for a single particle is:

$$
\begin{aligned}
& \vec{x}\left(s_{1}\right)=\mathrm{R} \cdot \vec{x}\left(s_{0}\right) \\
& \vec{x}\left(s_{1}\right)=\left(\begin{array}{cccc|ccc|c}
R_{11} & R_{12} & R_{13} & R_{14} & R_{15} & R_{16} \\
R_{21} & R_{22} & \ldots & \ldots & \ldots & R^{16} \\
R_{31} & \ldots & R_{33} & R_{34} & \ldots & \ldots & \ldots \\
R_{41} & \ldots & R_{12} & R_{44} & \ldots & \ldots \\
R_{51} & \cdots & \ldots & \ldots & R_{55} & R_{56} \\
\bar{R}_{61} & \ldots & \ldots & \ldots & \ldots & R_{65} & R_{66}
\end{array}\right) \cdot\left(\begin{array}{c}
x \\
x^{\prime} \\
y \\
y^{\prime} \\
l \\
\delta
\end{array}\right)
\end{aligned}
$$

Envelope i.e. emittance
defined by beam matrix:

$$
\sigma\left(s_{l}\right)=\mathrm{R} \cdot \sigma\left(s_{0}\right) \cdot \mathrm{R}^{T}
$$

\mathbf{R} separates in 3 matrices only if the transverse and longitudinal planes do not couple, e.g. no dispersion $\boldsymbol{D}=-\boldsymbol{R}_{16}=\mathbf{0}$

The longitudinal beam matrix σ is then a 2×2 matrix with bunch length $l_{r m s}=\sqrt{\sigma_{55}} \&$ momentum spread $\frac{\Delta p}{p}=\delta_{r m s}=\sqrt{\sigma_{66}}$

Longitudinal Emittance by linear Transformation using a Buncher

Longitudinal focusing:

Variation of the bunch shape by a rf-buncher \rightarrow components 5 and 6 from 6-dim phase-space Transversal corres.: Quadrupole variation
$>$ Transfer matrix of buncher \& drift:
$\mathrm{R}_{\text {buncher }}=\left(\begin{array}{cc}1 & 0 \\ -1 / f & 1\end{array}\right), \mathrm{R}_{\text {drift }}=\left(\begin{array}{cc}1 & L / \gamma^{2} \\ 0 & 1\end{array}\right)$
with focal length: $1 / f=\frac{2 \pi f_{r f}}{A p v^{2}} \cdot U$
$>$ Variation of buncher amplitude \boldsymbol{U}
\Rightarrow different bunch width at s_{1} : beam matrix $\Delta t^{2}{ }_{r m s}=\sigma_{55}(1, f)$
$>$ System of redundant linear equations for $\sigma_{i j}(\mathbf{1})$ using $\sigma(\mathbf{1})=\mathbf{R} \cdot \sigma(\mathbf{0}) \cdot \mathbf{R}^{\mathrm{T}}$:

time or phase

$$
\sigma_{55}\left(1, f_{1}\right)=R_{55}^{2}\left(f_{1}\right) \cdot \sigma_{55}(0)+2 R_{55}\left(f_{1}\right) R_{56}\left(f_{1}\right) \cdot \sigma_{56}(0)+R_{56}^{2}\left(f_{1}\right) \cdot \sigma_{66}(0) \quad \text { focusing } f_{1}
$$

$$
\sigma_{55}\left(1, f_{n}\right)=R_{55}^{2}\left(f_{n}\right) \cdot \sigma_{55}(0)+2 R_{55}\left(f_{n}\right) R_{56}\left(f_{n}\right) \cdot \sigma_{56}(0)+R_{56}^{2}\left(f_{n}\right) \cdot \sigma_{66}(0) \quad \text { focusing } f_{n}
$$

Result of a longitudinal Emittance Measurement

Example GSI LINAC: Voltage variation at buncher for $11.4 \mathrm{MeV} / \mathrm{u} \mathrm{Ni}^{14+}$ beam, 31 m drift:
> The structure of short bunches can be determined with special monitor
> This example: The resolution is better than 50 ps or 2° for 108 MHz
$>$ Typical bunch length at proton LINACs:

$$
\sigma_{\text {bunch }} \approx 10 \text { to } 300 \mathrm{ps}
$$

$>$ Determination of longitudinal emittance possible

Application for synchrotron injection:

Shaping of longitudinal phase space by buncher i.e. long bunches \Leftrightarrow low momentum spread to match to the synchrotron long acceptance

Measurement of Energy Spread by magnetic Spectrometer

Transfer line: The mom. spread $\delta=\Delta p / p$ can be determined by a magnetic spectrometer: via dispersion, the momentum is shifted to a spatial distance. An appropriate optic must be chosen to separate the transverse and longitudinal parameters

However, a synchrotron is a very high resolution spectrometer Goal: Measurement of central momentum \boldsymbol{p}_{0} and momentum spread $\Delta p / p_{0}$
$>$ un-bunched beam \rightarrow Schottky noise analysis
$>$ bunched beam: broadband FCT or BPM recording coherent synchrotron oscillations, bunch shape
multi-turn injection

Longitudinal Emittance using tomographic Reconstruction

Tomography is medical image method Tomography:
2-dim reconstruction of sufficient 1-dim projections

$1^{\text {st }}$ backprojection
after sufficient

Algebraic back projection:
Iterative process by redistributing the 2-dim image and considering the

iterations

$$
?
$$ differences to the previous iteration step.

Tomography is medical image method Tomography:
2-dim reconstruction of sufficient 1-dim projections
Application at accelerators:
Longitudinal emittance evolution in synchrotrons.

Bunch observation:
Each revolution, the bunch shape changes a bit due to synchrotron oscillations. Fulfilled condition: $f_{\text {synch }} \ll f_{\text {ref }}$.

Algebraic back projection: Iterative process by redistributing the 2-dim image and considering the
 differences to the previous iteration step.

Results of tomographic Reconstruction at a Synchrotron I

Bunches from 500 turns at the CERN PS and the phase space for the first time slice, measured with a wall current monitor:

T Tomoscope ${ }_{\text {a }}$										
Fle Vlew Option Control									$\underline{\text { Help }}$	
Tomoscope Lic Jui ${ }^{\text {L }}$								61	16:27	0200
								C Tining 1372 Delta Tume 15 if Trosen 60 The Span 2.03 re 0		

Typical bucket filling. Important knowledge for bunch 'gymnastics'.

Results of tomographic Reconstruction at a Synchrotron II

Bunches from 500 turns at the CERN PS and the phase space for the first time slice, measured with a wall current monitor:

Mismatched bunch shown oscillations and filamentation due to 'bunch-rotation'.

Outline:

$>$ Definition of longitudinal phase space
$>$ Proton LINAC: Determination of mean energy
used for alignment of cavities phase and amplitude
> Determination of longitudinal emittance
LINAC: variation of bunch length
Synchrotron: Topographic reconstruction
$>$ Bunch length measurement for non-relativistic beams Determination of particle arrival
$>$ Bunch length measurement for relativistic beams
$>$ Summary

Bunch Structure at low $E_{\text {kin }}$: Not possible with Pick-Ups

Pick-ups are used for:

$>$ precise for bunch-center relative to rf
$>$ course image of bunch shape
But:
For $\boldsymbol{\beta} \ll 1 \rightarrow$ long. \boldsymbol{E}-field significantly modified:

ampl.

Example: Comparison pick-up - particle counter: Ar beam of $1.4 \mathrm{MeV} / \mathrm{u}(\boldsymbol{\beta}=5.5 \%), \boldsymbol{f}_{\text {rf }}=108 \mathrm{MHz}$

\Rightarrow the pick-up signal is insensitive to bunch 'fine-structure'

Low Velocity Effect: General Consideration

Lorentz transformation of single point-like charge:
Lorentz boost and transformation of time: $E_{\perp}(t)=\gamma \cdot E_{\perp}^{\prime}\left(t^{\prime}\right)$ and $t \rightarrow t^{\prime}$
Trans. \boldsymbol{E}_{\perp} lab.-frame of a point charge:

$$
E_{\perp}(t)=\frac{e}{4 \pi \varepsilon_{0}} \cdot \frac{\gamma R}{\left[R^{2}+(\gamma \beta c t)^{2}\right]^{3 / 2}}
$$

Long. $\boldsymbol{E}_{\|}$lab.-frame of a point charge:

Broadband coaxial Faraday Cups for Bunch Structure

The bunch structure can be observed with cups, having a bandwidth up to several GHz.
Bandwidth and rise time: $\mathrm{BW}[\mathrm{GHz}]=\mathbf{0 . 3} / \boldsymbol{t}_{\text {rise }}[\mathrm{ns}]$
Impedance of a
coaxial transmission line:

$$
Z_{0}=\frac{Z_{c}}{2 \pi} \cdot \ln \frac{r_{\text {shield }}}{r_{\text {coll }}}
$$

with $Z_{c}=\sqrt{\frac{\mu_{0} \mu_{r}}{\varepsilon_{0} \varepsilon_{r}}}$
for vacuum $Z_{C}=\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}=377 \Omega$
\rightarrow impedance matching to prevent for reflections
Voltage reflection: $\rho_{V}=\frac{Z-Z_{0}}{Z+Z_{0}}$

Voltage Standing Wave Ratio: $\quad \operatorname{VSWR}=\frac{Z}{Z_{0}}=\frac{1+\rho_{V}}{1-\rho_{V}}$
$\boldsymbol{Z}=\boldsymbol{Z}_{\boldsymbol{0}}$: no reflection. $\boldsymbol{Z}=\mathbf{0} \Rightarrow \boldsymbol{\rho}_{\boldsymbol{V}}=-1$: short circuit. $\boldsymbol{Z}=\infty \Rightarrow \boldsymbol{\rho}_{\boldsymbol{V}}=1$: open circuit.

Realization of a Broadband coaxial Faraday Cup

Bunch Structure using secondary Electrons for low $E_{\text {kin }}$ Protons

Secondary e^{-}liberated from a wire carrying the time information.
\rightarrow Bunch Shape Monitor (BSM)
Working principle:
$>$ insertion of a 0.1 mm wire at $\approx 10 \mathrm{kV}$
$>$ emission of secondary e^{-}within less 0.1 ps
$>$ secondary e^{-}are accelerated
$>$ toward an rf-deflector
$>$ rf-deflector as 'time-to-space' converter
$>$ detector with a thin slit
$>$ slow shift of the phase
$>$ resolution $\approx 1^{0}<10 \mathrm{ps}$
$>$ Measurements are comparable
to that obtained with particle detectors.

SEM: secondary electron multiplier

Realization of Bunch Shape Monitor at CERN LINAC2

Example: The bunch shape at $120 \mathrm{keV} / \mathrm{u}$ for $120 \mathrm{keV} / \mathrm{u}$:

Outline:

$>$ Definition of longitudinal phase space
$>$ Proton LINAC: Determination of mean energy
used for alignment of cavities phase and amplitude
> Determination of longitudinal emittance
LINAC: variation of bunch length
Synchrotron: Topographic reconstruction
$>$ Bunch length measurement for non-relativistic beams
Determination of particle arrival
$>$ Bunch length measurement for relativistic beams
Synchrotron light monitor and electro-optical modulation of a laser beam
$>$ Summary

Excurse: $3^{\text {rd }}$ and $4^{\text {th }}$ Generation Light Sources

$3^{\text {rd }}$ Generation Light Sources: \quad Example: Soleil, Paris, $\boldsymbol{E}_{\text {electron }}=2.5 \mathrm{GeV}, \boldsymbol{C}=354 \mathrm{~m}$ Synchrotron-based with $\boldsymbol{E}_{\text {electron }} \approx 1 \ldots 8 \mathrm{GeV}$ Light from dipoles, undulators\& wigglers, $\boldsymbol{E}_{\gamma}<10 \mathrm{keV}$ Users: biology, chemistry, material science, solid state and atomic physics National facilities in many counties, some international facilities.

$4^{\text {th }}$ Generation Light Sources: LINAC based, single pass with large energy loss
$\boldsymbol{E}_{\text {electron }} \approx 1 \ldots 18 \mathrm{GeV}$, coherent light from undulator, $\boldsymbol{E}_{\gamma}<1000 \mathrm{keV}$ range, short pulse Europe: Germany, Italy, Netherlands, Switzerland, America: USA, Asia: China, Japan ... Superconducting

Bunch Length Measurement for relativistic e^{-}

Electron bunches are too short ($\sigma_{t}<300 \mathrm{ps}$) to be covered by the bandwidth of pick-ups $\left(\boldsymbol{f}<1 \mathrm{GHz} \Leftrightarrow \boldsymbol{t}_{\text {rise }}>300 \mathrm{ps}\right)$ for structure determination.
\rightarrow Time resolved observation of synchr. light with a streak camera: Resolution $\approx 1 \mathrm{ps}$.

Temporal resolution depends on light generation process, light bandwidth, optical aberration, sweeping voltage, etc.

200 fs resolution achieved with Hamamatsu FESCA-200

From D. Xiang, IPAC'12

Bunch Length Measurement for relativistic e^{-}

Electron bunches are too short ($\sigma_{t}<300 \mathrm{ps}$) to be covered by the bandwidth of pick-ups ($\boldsymbol{f}<1 \mathrm{GHz} \Leftrightarrow \boldsymbol{t}_{\text {rise }}>300 \mathrm{ps}$) for structure determination.
\rightarrow Time resolved observation of synchr. light with a streak camera: Resolution $\approx 1 \mathrm{ps}$.

Technical Realization of Streak Camera

Hardware of a streak camera Time resolution down to 0.5 ps :

Optical signals

Technical Realization of Streak Camera

The Streak Camera setup at ELETTRA, Trieste, Italy

Results of Bunch Length Measurement by a Streak Camera

The streak camera delivers a fast scan in vertical direction (here 360 ps full scale) and a slower scan in horizontal direction ($24 \mu \mathrm{~s}$).
Example: Bunch length at the synchrotron light source SOLEIL for $\boldsymbol{U}_{\boldsymbol{r f}}=2 \mathrm{MV}$
for slow direction $24 \mu \mathrm{~s}$ and scaling for fast scan 360 ps : measure $\sigma_{t}=35 \mathrm{ps}$.

The Importance of Bunch Length by Streak Camera

Short bunches are desired by the synchrotron light users for time resolved spectroscopy. The bunch focusing is changed by the rf-amplitude.

Example: Bunch length σ_{t} as a function of stored current
(space-charge de-focusing, impedance broadening) for different rf-amplitudes at SOLEIL:

The Artist View of a Streak Camera

FARADAY CUP 1998

Purpose To recognize and ensourage accelerator bean inatrumentation
wand. The Firaday Cup Award consits of a USS 5000 prize and a cenificate to 1 s presented
at the next Beam Instrumentation Workshop. Winners participuting in the BIW will be given $\$ 1000$ travel allonance

Enigibitity.
contributon of all nations regardiess of the brographical lecation at which the work was lone.
The Awand goes nomally to voe persous, but he be shered by recipients having coetributed to warded to scomplististe in the It will nomully be areced Nomimetions in the crily stage of their atie Nominations of candidetes shall rimain active for 2 comperitions.

Rures. The Fanduy Cup shail be awarded for an sulstanding coectitution to the evelopment of an matrument of proven corkability The proven Cup is ouly awarded for poblished cootribution and delivered perfomasce -as
vailable ca reque
Rules are
Evablichment and xupport. The Awand wa
cataltiched in 1991 with be supoet of the Beam etalkithed in 1991 with be suppot of the Beam
Intrumenation Workatiop Organizing Imirumenat
Cominide.

Bunch length measurement by electro-optical methods

For Free Electron Lasers \rightarrow bunch length below 1 ps is achieved
\rightarrow below resolution of streak camera
\rightarrow short laser pulses with $\boldsymbol{t} \approx \mathbf{1 0} \mathbf{f s}$ and electro-optical modulator
Electro optical modulator: birefringent, rotation angle depends on external electric field Relativistic electron bunches: transverse field $\boldsymbol{E}_{\perp, \boldsymbol{l a b}}=\boldsymbol{\gamma} \boldsymbol{E}_{\perp, \text { rest }}$ carries the time information Scanning of delay between bunch and laser \rightarrow time profile after several pulses.

From S.P.Jamison et al., EPAC 2006

Realization of EOS Scanning

Setup of a scanning EOS method

X. Yan et al, PRL 85, 3404 (2000)

Measurement of Bunch Shape at FEL-Facility

Example: Bunch length at FEL test facility FLASH

Bunch shape dependence on bunch charge

Scanning of the short laser pulse relative to bunch:

Results at FLASH, Hamburg, see B. Steffen et al., FEL Conf. Stanford, p. 549, 2005.

Bunch Length by rf-Deflection: Principle

Transversal deflection of the bunch i.e. time-to-space conversion

Size of the streak given by

$$
\sigma_{y}=\sqrt{\sigma_{y 0}^{2}+R_{35} \cdot k \cdot \sigma_{z}^{2}}
$$

on

k is determined by the rf-power

$$
k=\frac{2 \pi e \cdot U_{r f}}{\lambda_{r f} E}
$$

From D. Xiang, IPAC'12

Bunch Length by rf-Deflection: Hardware

Transversal deflection of the bunch
i.e. time-to-space conversion

Example: Cavity at FERMI, Trieste, Italy

From M. Veronese, BIW'12

Beam energy	320 MeV
Typical beam size	0.2 mm
Length	0.5 m
Frequency	2.998 GHz
Max. rf power	5 MW
Total trans. volt.	4.9 MV
Time resolution	70 fs

Bunch length compression (1ps fwhm)

Summary of longitudinal Measurements

Longitudinal \leftrightarrow transverse correspondences:
$>$ position relative to $\mathrm{rf} \leftrightarrow$ transverse center-of-mass
$>$ bunch structure in time \leftrightarrow transverse profile in space
$>$ momentum or energy spread \leftrightarrow transverse divergence.
Determination uses:
Broadband pick-ups: \gg position relative to rf, mean energy
$>$ emittance at transfer lines or synchrotron via tomographyassumption: bunches longer than pick-up.
Particle detectors: $\quad>$ TOF or secondary e^{-}from wire\rightarrow for non-relativistic proton beamsreason: \boldsymbol{E}-field does not reflect bunch shape.
Streak cameras: $>$ time resolved monitoring of synchrotron radiation
\rightarrow for relativistic e^{-}-beams, $\boldsymbol{t}_{\text {bunch }}<1 \mathrm{~ns}$reason: too short bunches for rf electronics.
Laser scanning: $>$ Electro-optical modulation of short laser pulse
\rightarrow very high time resolution
Beam deflection: $>$ Transverse deflection of primary beam \rightarrow very high time resolution, but most expensive 'device'.

Excurse: $4^{\text {th }}$ Generation Light Sources \& Beam Delivery

$4^{\text {th }}$ Generation Light Sources: LINAC based, single pass with large energy loss
$\boldsymbol{E}_{\text {electron }} \approx 1 \ldots 18 \mathrm{GeV}$, coherent light from undulator, $\boldsymbol{E}_{\boldsymbol{\gamma}}<1000 \mathrm{keV}$, temporally short pulse Superconducting $f_{\text {acc }}=1.3 \mathrm{GHz}$

Peter Forck, JUAS Archamps

Goal: Short bunches with high number of particles \rightarrow short, intense laser pulses for electron generation Requirement: Position stability \Rightarrow resolution $<1 \mu \mathrm{~m}$

Single bunch duration < $1 \mathbf{p s}$

