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F = q Ezẑ + Ex − cBy( ) x̂ + Ey + cBx( ) ŷ"# $%≡ F// +F⊥

This force depends on the longitudinal and transverse position of the two 
particles. It is useful to distinguish two effects on the test charge : 

1) a longitudinal force which changes its energy, 

2) a transverse force which deflects its trajectory. 

Wake Fields and Wake Potentials
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2) The impulse approximation: although the test charge sees a force coming from the
electromagnetic field all along the structure, what it cares is the impulse

as the charge completes the traversal through the discontinuity at its fixed velocity v.

Two approximations
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Δp = Fdt
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If we consider a device of length L, we can perform the integral of the 
force acting on the test charge along the longitudinal path and get:

U(r, r0, z) = F//
0

L

∫ ds ≅U(z)

M r, r0, z( ) = F⊥
0

L

∫ ds ≅ r0M z( )

the Energy Gain (J):

These quantities are both function of the distance z between the two
particles. The transverse deflecting kick depends also on r0, the
transverse position of the source charge.

Note that the integration is performed over a given path of the trajectory.

These quantities, normalised to the charges, are called wake fields

the Transverse Deflecting Kick (N·m):
(dipolar)
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w// z( ) = −
U z( )
q2

w⊥ z( ) =
M z( )
q2

Longitudinal wake field 
(Volt/Coulomb)

Transverse dipole wake field    
(Volt/Coulomb/meter)

The minus sign in the longitudinal wake field means that the test
charge loses energy when the wake is positive.

Positive transverse wake means that the transverse force is
defocusing.

The wake fields are the important quantities to study the beam
dynamics.

What is the physical 
meaning of !(0)?
Can it be different 
from 0?



Coupling Impedance

The wake fields are generally useful to study the beam dynamics in the time
domain (for example instabilities in a LINAC). If we take the equation of
motion in the frequency domain (a trick generally used to study instabilities
in circular accelerators), we need the Fourier transforms of the wake fields.
Since these quantities have ohms units they are called coupling impedances:

Longitudinal impedance (W)

Z // ω( ) = 1
c

w// z( )e
iωz
c dz

−∞

∞

∫

Transverse  dipolar impedance (Ω/m)

Z⊥ ω( ) = − i
c
w⊥ z( )e

iωz
c dz

−∞

∞

∫
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It is also useful to define the loss factor as the normalised energy lost by
the source charge q

k = −U(z = 0)
q2

=
??
w// z = 0( )

Although in general the loss factor is given by the longitudinal wake at z=0,
for charges travelling with the speed of light, the longitudinal wake field is
discontinuous at z=0

The exact relationship between k and w(z®0) is given by the beam loading
theorem:

k = w// (z→ 0)
2
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Causality requires that the
longitudinal wake field of a charge
travelling with the speed of light is
discontinuous in the origin.
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UA = qA
2 k =

q2

4
k

UB = qB
2k + qAqBw// z( )

=
q2

4
k + q

2

4
w// z( )

UA +UB =
q2

2
k + q

2

4
w// z( )

z→ 0    UA +UB = q
2k

q2

2
k + q

2

4
w// 0( ) = q2k
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w// 0( )
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w// 0( )
2

q/2q/2

q

AB

w//

k

z

Demonstration of 
the beam loading 
theorem



z! z’!

λ(z)" dz’!

Wake potential and energy loss of a bunched distribution
When we have a bunch with longitudinal charge density !"/!$ = &($), we may want to
get the amount of energy lost or gained by a single charge e in the beam.

To this end let us evaluate the effect on
the charge e in a posizion z due to a slice
of the bunch in a position z’ so thin
(width dz’) that it can be considered as a
point charge:

dU(z) = −edq(z ')w// z '− z( ) = −ew// z '− z( )λ(z ')dz '

w// z '− z( )

e

We now use the superposition principle to obtain the energy lost or
gained by the charge e due to the entire distribution.



z! z’!

λ(z)" dz’!

Wake potential and energy loss of a bunched distribution

U(z) = −e w// z '− z( )λ(z ')dz '
−∞

∞

∫ =

= −e w// z '− z( )λ(z ')dz '
z

∞

∫

The energy lost allows to define the longitudinal wake potential of a distribution
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W // (z) = −
U(z)
qe

=
1
q

w// z'−z( )λ(z')dz'
−∞

∞

∫
The total energy lost by the bunch is computed summing up the losses of all the particles:

Ubunch =
1
e

U z( )λ(z)dz
−∞

∞

∫ = −q W// z( )λ(z)dz
−∞

∞

∫

q = λ(z)dz
−∞

∞

∫NB: we have



Some comments on the wake potential

• Observe that if we know the wake field, we can obtain the wake potential of any
distribution, but if we know the wake potential, we are limited to a particular beam
distribution.

• In a LINAC, with particles moving at the speed of light, the longitudinal distribution
does not change, and the wake potential can be used to evaluate the energy variation of
particles inside the bunch (energy spread). In this situation, the knowledge of the wake
potential can be sufficient to study the beam dynamics.

• In a circular accelerator the longitudinal position of a charge depends on its energy
through the slippage factor, and this energy is modified by the wake potential. As a
consequence the wake potential changes the longitudinal distribution which, on its turn,
changes the wake potential. In this case we have to study the beam dynamics in a self
consistent way, and the knowledge of the wake potential is not sufficient.
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W // (z) = −
U(z)
qe

=
1
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The study of the em fields requires to solve the Maxwell’s equations in a 
given structure taking the beam current as source of fields. This is a quite 
complicated task for which it has been necessary to develop dedicated 
computer codes, which solve the e.m. problem in the frequency or in the 
time domain. There are several useful codes for the em design of accelerator 
devices, and new ones are developed. Examples of codes: CST STUDIO 
SUITE, GDFIDL, ACE3P, ABCI, …

The wake potentials given by numerical codes depend on the particular 
charge distribution of the beam. It is therefore desirable to know what is the 
effect produced by a single charge, i.e. find the Green function (wake 
field), in order to reconstruct the fields produced by any charge distribution. 

Numerical Analysis

Theoretical Analysis

However, the result of the codes is a wake potential and not a wake field …



Example of longitudinal wake field and coupling impedance: 
finite conductivity of a circular pipe wall (resistive wall)

ℓ

b

Hp: high conductivity
such that the skin depth
is much smaller than the
wall thickness and

with

cχ / b <<ω << cχ −1/3 / b

χ =
1

Z0σ cb

χ1/3b << z << b / χ

Example: aluminum σc=3.5x107 [Ωm]-1, b=5 cm: 

9 <<ω << 5.2 1012  [rad/s] 5.7 10−5 << z << 3.3 107  [m]

"// $ = 1 − ( sgn $ ℓ
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Example of longitudinal wake field and coupling impedance: 
finite conductivity of a circular pipe wall (resistive wall)

ℓ

b

The real part of impedance can be justified in this way

" = ℓ
$%&

current

'( =
2

*%&+
= 2,
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Example of longitudinal wake field and coupling impedance: 
finite conductivity of a circular pipe wall (resistive wall)

The imaginary part of impedance can be justified in this 
way: the current is flowing through the brown area of 
thickness !" ≪ $. From the Ampere’s law 
(2'( ≃ 2'$)

2'$+ = -.2'$ ( − $ → + = -. ( − $

Φ + = ℓ-.3
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( − $ 8( =
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2 ( − $ 9 :
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Example of longitudinal wake field and coupling impedance: 
finite conductivity of a circular pipe wall (resistive wall)

Impedance comparison

Wake potential comparison



Example of longitudinal wake field and coupling impedance: 
space charge

Even if in the ultra-relativistic limit with γ⟶ ∞, we have seen that there is
no space charge effect, we can still define a wake field by considering a
moderately relativistic beam with γ>>1 but not infinite. It turns out that the
space charge forces can fit into the definition of wake field, and when that
is done, we find that the wake depends on beam properties such as the
transverse beam radius a and the beam energy γ. Let us consider a
relativistic beam with cylindrical symmetry and uniform transverse
distribution. We have already obtained the longitudinal force acting on a
charge of the beam travelling inside a cylindrical pipe of radius b:

F// (r, z) =
−q

4πε0γ
2 1− r

2

a2 + 2 ln b
a

⎛

⎝
⎜

⎞

⎠
⎟
∂
∂z
λ(z) 



Example of longitudinal wake field and coupling impedance: 
space charge

Since the space charge forces move together with the beam, they are
constant along the accelerator if the beam pipe remains constant. We can
therefore define the longitudinal wake field of a piece of pipe of length
ℓ. Assuming r®0 (particle on axis), and a charge line density given by
" # = %&' # , we obtain

w// z( ) = −
1
qq0

F//
0

L

∫ ds (// # = ℓ
4+,&-.

1 + 2 ln 45
6
6# ' #
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9:;<

<
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4+DE.-. 1 + 2 ln 45



Example of wake potential and longitudinal coupling impedance for an 
entire machine: DAΦNE accumulator
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DAΦNE accumulator wake potential of
a 2.5 mm Gaussian bunch.



Short range wake field/potential acts over the bunch length

• Vanishes after a distance 
of few bunch lengths

• Influences the single 
bunch beam dynamics

• Poor frequency resolution 
of Fourier transform of 
coupling impedance => 
broad band impedance

DAΦNE wake potential of
a 2.5 mm Gaussian bunch.



Re[Z]
Im[Z]

Long range wake field/potential acts on many 
bunches/multi-turn

• Field oscillates over long distances
• High peak impedance
• Produced by high quality resonant modes 
• Described by only 3 parameters: Q, ωr and Rs



Longitudinal wake field of a resonant mode

When a charge crosses a resonant structure, as an RF cavity, it excites
resonant modes (fundamental and HOMs).

Each mode can be treated as an electric RLC circuit loaded by an impulsive 
current. Just after the charge passage, the capacitor is charged with a voltage 
Vo=qo /C and the electric field is Eso= Vo/lo. 

The passage of the impulsive current charges only the capacitor, which
changes its potential by an amount V0. This potential will oscillate and decay
producing a current flow in the resistor and inductance.
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Ib t( ) = q0δ(t)

Equivalent circuit
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The time evolution of the electric field is governed by the same differential
equation of the voltage

For ! > 0 the potential satisfies the following equations and initial
conditions:
V + 1

RC
V + 1

LC
V = 0

V (t = 0+ ) = q0
C
≡V0

V (t = 0+ ) = q
C
= −

I(0+ )
C

= −
V0
RC

V (t) =V0e
−γ  t cos(ωnt)−

γ
ωn

sin(ωnt)
"

#
$

%

&
'

ωn
2 =ωr

2 −γ 2

γ =
1

2RC

putting z = -ct (z is negative behind the 
source charge),

w// (z) =
V(z)
q0

= w0e
γ  z/c cos(ωnz / c)+ γ

ωn

sin(ωnz / c)
!

"
#

$

%
&H −z( )
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ω r =
1
LC
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w0 =
1
C

" 

# 
$ 

% 

& 
' 

-

011
=++ V

LC
V

RC
V !!!



Coupling impedances of a resonant mode

Rs = R =
wo

2γ
 shunt impedance:
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Q =
ω r
2γ

quality factor:

Transverse wakefield and impedance of a resonant mode:

Z⊥ ω( ) = ω
ω

R⊥

1+ iQr
ωr

ω
−
ω
ωr

#

$
%

&

'
(

Longitudinal Impedance:
Z|| ω( ) = Rs

1+ iQ ωr

ω
−
ω
ωr

"

#
$

%

&
'

The parameters , and , that can be evaluated by computer codes, can be
related to the parameters RLC of the parallel circuit
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Rs
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Q
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ω r

w⊥(z) = R⊥ωr

Q
eΓ  z/c sin(ωz / c)



Broad Band Resonator Model DAΦNE Accumulator Impedance

Some remarks on the longitudinal impedance of a resonant mode

Z|| ω( ) = Rs

1+ iQ ωr

ω
−
ω
ωr

"

#
$

%

&
'

This impedance can be also used as a
simplified impedance model of a whole
machine for the short range wake fields
assuming Q ~ 1 (it is called Broad Band
Impedance Model)



Wake fields effects in LINACS
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Example: Energy lost by a finite uniform beam due to a resonant mode  

w// (z) = woe
γ  z/c cos(ωnz / c)+ γ

ωn

sin(ωnz / c)
!

"
#

$

%
&H −z( ) ≈ wo cos(ωrz / c)H −z( )

What is the wake potential?
What is the energy spread?



Ubunch =
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U
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∫ (z)λ(z)dz ≈ −q2w0
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Energy loss 



Consider an harmonic oscillator with natural
frequency w and with an external excitation at
frequency W. Instead of time, let us use, as
independent variable, ! = #$:

General solution:

Instability: driven oscillator

substitution in the diff. equation:

%&& + (
)

#) % = * cos Ω!
#

% ! = %/011 ! + %203415 !
cos Ω!

# ⟹ 73
89
:

%/011 ! = ;%</ 73
=9
:

%203415 ! = ;%<2 73
89
:

() − Ω) ;%<2 73
?@
A = #)*73

?@
A

%203415 ! = #)*
() − Ω) 73

89
:



The general solution has to satisfy the initial conditions at s=0. In our case
we assume that the oscillator is at rest for s=0:

thus we get:

taking only the real part:

NB: if the initial
conditions are different,
we just need to add to our
solution a sinusoidal term

!"#$$ % = 0 = −!)#*+$, % = 0
-!." = − /01

20 − Ω0

! % = /01
20 − Ω0 4*

56
7 − 4*

86
7

! % = /01
20 − Ω0 cos Ω%

/ − cos 2%
/

! % = <= cos
2%
/ + ?= + /01

20 − Ω0 cos Ω%
/ − cos 2%

/



This expression is suitable for deriving the response of the oscillator
driven at resonance or at frequency very close:

€ 

ω =Ω+δ,    δ →0
ω = (ω +Ω) /2; ω =ω +δ /2, Ω =ω −δ /2
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amplitude 
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Single Bunch Beam Break Up in Linacs

A beam injected off-centre in a LINAC, because of the focusing
quadrupoles, executes betatron oscillations. The displacement produces a
transverse wake field in all the devices crossed during the flight, which
deflects the trailing charges.



In order to understand the effect, we consider a simple model with only
two charges q1=Ne/2 (source charge = half bunch) and q2=e (test charge =
single charge).

q1=Ne/2q2=e

lw

the source charge executes free betatron oscillations:

y1(s) = ŷ1 cos
ωy

c
s

!

"
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ωy

c
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2π
λβ

=
Qy

ρx

s

z



This force drives the motion of the test charge:

y2
'' +

ωy

c
!
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y2 =
1

β 2Eo

F⊥ z, y1( ) =
Ne2w⊥(z)
2β 2EoLw

ŷ1 cos
ωy

c
s

!

"
#

$

%
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This is the typical equation of an harmonic oscillator driven at the resonant
frequency. The solution is given by the superposition of the “free” oscillation
and a “driven” oscillation, which, being driven at the resonant frequency,
grows linearly with s.

the test charge, at a distance z behind, over a length Lw experiences a
deflecting force proportional to the displacement y1, and dependent on the
distance z:

F⊥ (z, y1) =
Ne2

2Lw
w⊥(z)y1(s)

€ 

e

€ 

Ne /2
w⊥ z( ) =

M z( )
q2

betatron equation of motion with coherent force

r0M z( ) = F⊥ ds = F⊥ r0, z( )
0

Lw

∫ Lw



At the end of the LINAC of length LL, the oscillation amplitude of the tail
with respect to the head is grown by

€ 

y2
driven =

cNe2w⊥(z)s
4ω y EoLw

ˆ y 1 sin
ω y
c

s
$ 

% 
& 

' 

( 
) 

β =1( )€ 

y2(s) = ˆ y 2 cos
ω y
c

s
# 

$ 
% 

& 

' 
( + y2

driven

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 100 200 300 400 500 600 700 800

<y
>_
[m
m
]

s_[m]

!"# $% − !"' $%
!"' $% ()*

= ,-./0 1 $%
434 ⁄67 . $8



Balakin-Novokhatsky-Smirnov Damping

The BBU instability can be quite harmful and hard to take under control
even at high energy, with a strong focusing, and after a careful injection and
steering.

A simple method to cure it has been proposed observing that the strong
oscillation amplitude of the bunch tail is due to the “resonant” driving
force.

If the tail and the head of the bunch oscillate with different frequencies,
this effect can be significantly removed.

Let us assume that the tail oscillates with a frequency wy+Dwy, the equation
of motion becomes:

y2
'' +

ωy +Δωy
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the solution of which is

y2 (s) = ŷ1 cos
ωy +Δωy
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ŷ1 = ŷ2( )



by a suitable choice of Dwy, it is possible to fully depress the oscillations of
the tail.

y2 (s) = ŷ1 cos
ωy

c
s

!

"
#

$

%
&= y1 s( )

€ 

Δω y =
c2Ne2w⊥(z)
4ω yEoLw

The extra focusing at the tail can be obtained by:

• Using an RFQ, where head and tail see a different focusing strength.

• Creating a correlated energy distribution along the bunch which, because
of the chromaticity, induces a spread in the betatron frequencies. An energy
spread correlated with the longitudinal position is attainable with the
external accelerating voltage, or with the longitudinal wake fields.

c2Ne2w⊥(z)
4ωyΔωyEoLw

=1



Instabilities in Circular Accelerators



Longitudinal effects on beam dynamics

• Robinson instability (RF fundamental mode)
• Coupled bunch instability (HOMs)

• Potential well distortion è deformation of the longitudinal 
distribution
• Longitudinal emittance growth, microwave instability

Short range wake fields:

Long range wake fields:



Robinson instability of the RF fundamental mode

Let us consider the real part of the RF
fundamental mode, and a bunch with
revolution period T0. The bunch
spectrum has lines every ω0 (we
suppose the bunch as a point charge),
and its lost energy due to the mode is
proportional to the real part of the
impedance at hω0. If the bunch, during
the synchrotron oscillations, has an
increasing energy, and we are above
transition, its revolution period
increases and the frequency decreases.
If (hω0 > ωr), as in the figure, the resistance found by the beam is higher,
producing a higer energy loss, which reduces the energy increase giving a
stabilizing effect.

Re[Z(ω)]

ωωr hω0



Robinson instability of the RF fundamental mode

Longitudinal equations of motion of the bunch centre of mass, for constant 
energy in a circular machine, ignoring radiation damping

Combining the two equations, for small oscillation amplitudes, we obtain 
a second order linear differential equation 

with

dφ
dt

= −
hη
R0p0

ΔE d ΔE( )
dt

=
qVrf
T0

sinφ − sinφs( )

d 2Δφ
dt2

+ωs
2Δφ = 0 ωs

2 =
qVrf hηc

2 cosφs
2πR0

2E0
η cosφs > 0

Δφ = Δφmax cos ωst +θ0( )Solution

and



Robinson instability of the RF fundamental mode

By including also the wake field of 
the fundamental resonant mode 
(beam loading effect) the equation 
of motion becomes

αr =
eNpηhω0

ωs E0 / q( )T02
Re ΔZ[ ] Re ΔZ[ ] = Re Z hω0 +ωs( )− Z hω0 −ωs( )⎡⎣ ⎤⎦

Δφ = Δφmax exp −
1
2
αrt

⎡

⎣⎢
⎤

⎦⎥
cos ωst +θ0[ ]

Re[Z(ω)]

ωωr hω0

d 2Δφ
dt2

+αR
dΔφ
dt

+ωs
2Δφ = 0 hω0+ωshω0-ωs

damping/exciting term 
due to the resonant mode

Solution



LANDAU DAMPING

• There is a natural stabilising effect against the collective instabilities
called “Landau Damping”. The basic mechanism relies on the fact that if
the particles in a beam have a spread in their natural frequencies
(synchrotron or betatron), their motion can’t be coherent for a long time.

• The mechanism is in general triggered when an infinite set of identical
systems oscillates at different frequencies, spread over some range of
values. Under these conditions, if any periodic force has its frequency
within the considered range, the oscillation amplitude, averaged over all
the systems, instead of growing as one should expect, remains constant.

• Even if a periodic force pumps energy into the system, this energy is not
converted into an increase of the average oscillation amplitude: the
number of particles in resonance with the external force decreases with
time, so that the net contribution to the average oscillation amplitude
remains constant.



Relationship between transverse and longitudinal forces:

The transverse gradient of the longitudinal force is equal to the 
longitudinal gradient of the transverse force

“Panofsky-Wenzel theorem”.

  

€ 

∇⊥F// =
∂
∂ z

F⊥

∇⊥w// =
∂
∂ z

w⊥

Appendix
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