Exercises on Wake Fields and Instabilities

Exercise 1:

Show that the impedance of an RLC parallel circuit is that of a resonant mode and relate R, L and C to Q, R_{s} and ω_{r}

Exercise 1:

Show that the impedance of an RLC parallel circuit is that of a resonant mode and relate R, L and C to Q, R_{s} and ω_{r}

$$
\begin{aligned}
& Z_{R}=R \quad Z_{C}=\frac{i}{\omega C} \quad Z_{L}=-i \omega L \\
& \frac{1}{Z}=\frac{1}{R}-i \omega C+i \frac{1}{\omega L}= \\
& \frac{\omega L-i \omega^{2} L C R+i R}{R \omega L}=\frac{1}{R}\left(1+i\left(\frac{R}{\omega L}-\omega C R\right)\right)= \\
& \frac{1}{Z}=\frac{1}{R}\left(1+i R \sqrt{\frac{C}{L}}\left(\frac{1}{\omega \sqrt{C L}}-\omega \sqrt{C L}\right)\right) \\
& \\
& \left(R_{S}=R \quad \omega_{r}=\frac{1}{\sqrt{L C}} \quad Q=R \sqrt{\frac{C}{L}}\right)
\end{aligned}
$$

Exercise 2:

Calculate the amplitude of the resonator wake field given $R_{s}=1 \mathrm{k} \Omega$, $\omega_{r}=5 \mathrm{GHz}, Q=10^{4}$

Calculate the ratio $\left|Z\left(\omega_{r}\right)\right| /\left|Z\left(2 \omega_{r}\right)\right|$ for $Q=1,10^{3}, 10^{5}$

Exercise 2:

Calculate the amplitude of the resonator wake field given $R_{s}=1 \mathrm{k} \Omega$, $\omega_{r}=5 \mathrm{GHz}, Q=10^{4}\left(\omega_{r} R_{s} / Q=5^{*} 10^{8} \mathrm{~V} / \mathrm{C}\right)$

$$
\begin{aligned}
& \text { Calculate the ratio }\left|Z\left(\omega_{r}\right)\right| /\left|Z\left(2 \omega_{r}\right)\right| \text { for } Q=1,10^{3}, 10^{5}|1-i 3 Q / 2| \\
& Q=1 \Rightarrow 1.8 \\
& Q=10^{3} \Rightarrow 1.5 \times 10^{3} \\
& Q=10^{5} \Rightarrow 1.5 \times 10^{5}
\end{aligned}
$$

Exercise 3: Beam Break Up

Consider a beam in a linac at 1 GeV without acceleration. Obtain the growth of the oscillation amplitude of the tail with respect to the head after 3 km if:

$$
\mathrm{N}=5 \mathrm{e} 10, w_{\perp}(-1 \mathrm{~mm})=63 \mathrm{~V} /(\mathrm{pC} \mathrm{~m}), \mathrm{L}_{\mathrm{w}}=3.5 \mathrm{~cm}, \mathrm{k}_{\mathrm{y}}=0.061 / \mathrm{m}
$$

Exercise 3: Beam Break Up

Consider a beam in a linac at 1 GeV without acceleration. Obtain the growth of the oscillation amplitude of the tail with respect to the head after 3 km if:

$$
\mathrm{N}=5 \mathrm{e} 10, w_{\perp}(-1 \mathrm{~mm})=63 \mathrm{~V} /(\mathrm{pC} \mathrm{~m}), \mathrm{L}_{\mathrm{w}}=3.5 \mathrm{~cm}, \mathrm{k}_{\mathrm{y}}=0.061 / \mathrm{m}
$$

$$
\left(\frac{\hat{y}_{2}-\hat{y}_{1}}{\hat{\mathrm{y}}_{1}}\right)=\frac{c N e W_{\perp}(z) L_{L}}{4 \omega_{y}\left(E_{0} / e\right) L_{w}}=180
$$

To preserve the beam emittance, it is necessary to have

$$
\left(\frac{\hat{y}_{2}-\hat{y}_{1}}{\hat{y}_{1}}\right) \hat{y}_{1} \ll 180 \times \hat{y}_{1} \ll \text { transverse beam size }
$$

This means that the beam must be injected onto the linac axis with an accuracy better than a fraction of a per cent of the beam size, which is difficult to achieve.

Exercise 4: Beam Break Up (2)

Consider the same beam of the previous exercise being now accelerated from 1 GeV with a gradient $\mathrm{g}=16.7 \mathrm{MeV} / \mathrm{m}$. Obtain the growth of the oscillation amplitude of the tail with respect to the head. With a constant acceleration, if $E_{f}=E_{0}+g L_{L} \simeq g L_{L}$, the expression is the same of that with constant energy by multiplying it by a factor

$$
F=\frac{E_{0}}{E_{f}} \ln \frac{E_{f}}{E_{0}}
$$

Exercise 4: Beam Break Up (2)

Consider the same beam of the previous exercise being now accelerated from 1 GeV with a gradient $\mathrm{g}=16.7 \mathrm{MeV} / \mathrm{m}$. Obtain the growth of the oscillation amplitude of the tail with respect to the head. With a constant acceleration, if $E_{f}=E_{0}+g L_{L} \simeq g L_{L}$, the expression is the same of that with constant energy by multiplying it by a factor

$$
F=\frac{E_{0}}{E_{f}} \ln \frac{E_{f}}{E_{0}}<1
$$

In this case $E_{f}=1+16.7 * 3000=51.1 \simeq 50.1$ so the factor is

$$
F=0.078 \rightarrow\left(\frac{\hat{y}_{2}-\hat{y}_{1}}{\hat{y}_{1}}\right)=180 * 0.078=14
$$

Acceleration is helpful to reduce the instability

Exercise 5: Evaluate the energy lost per unit length by a charge due to the longitudinal wake field of the space charge and compare it with the longitudinal space charge force in $\mathrm{r}=0$

Exercise 5: Evaluate the energy lost per unit length by a charge due to the longitudinal wake field of the space charge and compare it with the longitudinal space charge force in $\mathrm{r}=0$

$$
\begin{aligned}
\frac{w_{/ /}}{L}= & \frac{d w_{/ /}(z)}{d s}=\frac{1}{4 \pi \varepsilon_{0} \gamma^{2}}\left(1+2 \ln \frac{b}{a}\right) \frac{\partial}{\partial z} \delta(z) \\
& \frac{d U(z)}{d s}=-e \int_{-\infty}^{\infty} \frac{d w_{/ \prime}\left(z^{\prime}-z\right)}{d s} \lambda\left(z^{\prime}\right) d z^{\prime}= \\
& -\frac{e}{4 \pi \varepsilon_{0} \gamma^{2}}\left(1+2 \ln \frac{b}{a}\right) \int_{-\infty}^{\infty} \frac{\partial}{\partial z^{\prime}} \delta\left(z^{\prime}-z\right) \lambda\left(z^{\prime}\right) d z^{\prime}= \\
& =-\frac{e}{4 \pi \varepsilon_{0} \gamma^{2}}\left(1+2 \ln \frac{b}{a}\right) \frac{\partial \lambda(z)}{\partial z}
\end{aligned}
$$

Exercise 6: Evaluate the energy spread (U_max-U_min) of a Gaussian bunch of RMS length σ due to the longitudinal wake field of the space charge in a structure of length L

Exercise 6: Evaluate the energy spread (U_max-U_min) of a Gaussian bunch of RMS length σ due to the longitudinal wake field of the space charge in a structure of length L

$$
\begin{gathered}
\lambda(z)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{z^{2}}{2 \sigma^{2}}} \quad \frac{\partial \lambda(z)}{\partial z}=-\frac{z}{\sqrt{2 \pi} \sigma^{3}} e^{-\frac{z^{2}}{2 \sigma^{2}}} \\
U(z)=-\frac{e L}{4 \pi \varepsilon_{0} \gamma^{2}}\left(1+2 \ln \frac{b}{a}\right) \frac{\partial \lambda(z)}{\partial z}=\frac{e L}{4 \pi \varepsilon_{0} \gamma^{2}}\left(1+2 \ln \frac{b}{a}\right) \frac{z}{\sqrt{2 \pi} \sigma^{3}} e^{-\frac{z^{2}}{2 \sigma^{2}}} \\
\frac{\partial U}{\partial z}=0 \Rightarrow z= \pm \sigma \\
U_{\max }-U_{\min }=2 U_{\max }=\frac{2 e L}{4 \pi \varepsilon_{0} \gamma^{2}}\left(1+2 \ln \frac{b}{a}\right) \frac{1}{\sqrt{2 \pi} \sigma^{2}} e^{-\frac{1}{2}}
\end{gathered}
$$

Exercise 7: Evaluate the energy lost by a charge inside a uniform beam of length \mathbf{l}_{0} due to the longitudinal wake field of a pill box cavity of length g at high frequency $\omega \gg c / b$ (diffraction model), with a pipe radius b.

$$
w(z)=\frac{Z_{0} c \sqrt{2 g}}{2 \pi^{2} b} \frac{1}{z^{1 / 2}}
$$

Exercise 7: Evaluate the energy lost by a charge inside a uniform beam of length \mathbf{l}_{0} due to the longitudinal wake field of a pill box cavity of length g at high frequency $\omega \gg c / b$ (diffraction model), with b the pipe radius

$$
\begin{aligned}
& w(z)=\frac{Z_{0} c \sqrt{2 g}}{2 \pi^{2} b} \frac{1}{z^{1 / 2}} \\
& \quad U(z)=-e \int_{-\infty}^{\infty} w_{/ \prime}\left(z^{\prime}-z\right) \lambda\left(z^{\prime}\right) d z^{\prime}= \\
& \quad=-\frac{e q Z_{0} c \sqrt{2 g}}{l_{0} 2 \pi^{2} b} \int_{z}^{l / 2} \frac{d z^{\prime}}{\left(z^{\prime}-z\right)^{1 / 2}}=-\frac{2 e q Z_{0} c \sqrt{g\left(l_{0}-2 z\right)}}{l_{0} 2 \pi^{2} b}
\end{aligned}
$$

