Review of Special Relativity

This review is not meant to teach the subject,
but to repeat and to refresh, at least partially,
what you have learnt at university.
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Why was ,Special Relativity” needed?

Mechanical laws (Newton's laws) are the same for all
iInertial systems.

They are invariant under a Galilean transformation (G-T):
X'=x—-vt, y'=y, z'=z, t'=t
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Example: Man walking in train (S'), observer at rest (S).
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El.-mag. laws are not invariant under a G-T,
o’ 1§
ox> ¢’ ot

take e.g. the wave equation [ |®=0

it transforms (see appendix A1) to
0 1 v v §’
— — +2 O=0
[axrz C2at,2 CzaX,Z C28xlatl]

Moreover, el.-mag. laws predict the speed of light as equal

in all reference systems.
This contradicted the deep belief in a supporting media
(ether) for the waves. If there were an ether, ¢ would be

different in different reference systems.

Many experiments tried to prove el.-mag. theory wrong.
They all failed!
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Michelson-Morley interferometer experiment (188

7)

showed that ¢ is a constant and that there exists no
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Classical calculation

travel time from B to E' ct,=L+vt,
travel time from E' to B’ ct,=L—vt,
. . L 1
round trip travel time t=t +t,=y’ 2=, y=
L c Ji—(vic)
travel time B to C' ct,=y/L2+ (vt,)
round trip travel time t, :2t3:y2%:t”/y

Since t , =t,/y there should be interference between D'

and F'. But no interference was observed.
Conclusion: L, appears shorter than L, by 1/y

— Newton-Galileo concept of space and time
had to be modified
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Relativistic Kinematics

Einstein based his theory on two postulates:

1. All inertial frames are equivalent w.r.t. all laws of physics.
2. The speed of light is equal in all reference frames.

Consequence of 1% postulate:
Space is isotropic (all directions are equivalent)
Space is homogeneous (all points are equivalent)

Lorentz Transformation

Homogeneity of space and form-invariance of laws
under transformation require a linear transformation:
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ct'=a,ct+a, x+a,,y+a,z
X'=act+a, x+a,y+a;z
y'=ayct+a, x+a,y+asz
Z'=a,, Ct+ay x+a, y+a;z

Successive use of homogeneity and isotropy of space and the
constant speed of light determine all coefficients (see appendix
A2). The result is the Lorentz-Transformation (L-T):

ct'=y(ct—p x) y'=y
x'=y(x—pct)  z'=z, p=vic, y=1HW1-p’

The inverse Transformation is obtained by replacing primed
variables by unprimed and unprimed by primed and 3 by -3

ct=y(ct'+px’')  y=y’
x=y(x'+pct’) z=z"'
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We write the L-T as

ot '] y —yp 0 O]
x"|_|I=yp ¥y 0 Offx
y' 0 0 1 O0fy
-Z,- O O O 1 -Z-

y by 0 0

| =|PBY y 0 0

N 0 0 1 0

0 0 0 1

L™ is obtained by replacing B by -B.
L-T is an affine transformation. It preserves the rectilinearity
and parallelisme of straight lines.
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Consequences following from L-T

Time dilation:

Twoevents in S'att,’,t," and atlocationx,'=x,"'
appear attimes t,,t, in S

C(tz_tl):YC(tzl_tll)"'Yﬁ(xz'_xll)
> At=yAt’
TwoeventsinSatt, t,and atlocation x,=Xx,
appear attimes t', t', in S’
c(t,'—t,")=yc(t,—t,)—yB(x,—x,)
> At'=yAt
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Length contraction:
Adistance x,'—x,"' In S'measured in Satt =1,
Xz_X1:Y(X2'_X1')+Yﬁc(tzl_t1'):
Y<X2'_X1')+ YzﬁCz(tz_tl)_Y2[32<X2_X1):
Y(le_xll)_yzﬁz(xz_xl)

= Ax:%Ax'
Adistance x,—x, in Smeasured in S'att,'=t,’
XZ’_XI'ZY(Xz_Xl)_yﬁC(tz_tl):
Y(Xz_xl)_yzﬁcz(tzl_tl')_Yzﬁz(le_)ﬁ')
y(Xz—Xl)—yzﬁz(Xz'—Xl')

- Ax':%Ax
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Time intervals and distances depend on the motion of
the observer.

AteyAt' and Axc;—Ax'

(not standard equations!!)

Perpendicular dimensionsremain: Ay=Ay', Az=AZz'

Example: Length contraction, Michelson-Morley

Example: Muons created in upper atmosphere, v=0.994c,
v=9, travel a distance |.

Lifetime in restframe of muons

r' ,=15us 2  ['=450m
Lifetime on earth

T,,=yT' ,=13.5us - [=4km
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Transformation of velocity

A particle moving withvelocity 4 'in S ' has velocity tin S

U dX dX dt' (dX'_l_BC)dt': (U n V)dt'
Tt dt'dt % \dt’ gt YV T g
dt B dx’ Vv :
— =v(]+ —
dt! Y( Cdtr) Y< +C2 uX)
u,'+v u,' u,'
u,= Uy = , u,=

y
1+vu,'/c?” 7 y(1+wvu,'lc?) y(1+ vu,'/c?)

The inverse Transformation is obtained by replacing primed
variables by unprimed and unprimed by primed and 38 by -3.
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Example: Light aberration

A star appears on earth under an angle different
from its real position.

Earth at rest:

Earth moving with v:
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If the earth were at rest the light moves with

u' =—ccosd’, u',=—csmnd’

For the moving earth the velocity transforms to

- CCOSS_—CCOSS'—V
) 1+ P cos9’

u =—csin9=_csmg
g y(1+Bcos9’)

g sin$
2 1+ cos$9

9 sin9’ \/1 3 3’ 3’
Wy Cy(1+B)(1+cos9’) tan < tan

we obtain

Using tan

t

1+ 2
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Example: Doppler effect
Emitter T is moving with v, receiver R at rest.

Vv 3

9 S =—vcos(9)

A signal emitted at§, reaches R_ at time

tlzl_RxSlz :
C csin 9

A

I' . moves from S, to S, inan RF period T ,,.
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At S, it emitts a signal which reaches R_ at the time

|
t,=y1T . ,+—R S.=y T+ :
2Y00x3Y008m9

1 4 —vyT,cos9]

where T, has been dilated by y and
R_S,~R_S, for vI,<<R_S, has been used.

The RF period T experienced by R_ is
T=t,—t,=y(l1—PBcos9d)T,
therefore

f Ty _1 1-p

fo T y(1-Pcos®) 1—Pcos9
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3> ::—O -> L:E longitudinal Doppler effect
92%: ;—: 1—p> transverse Doppler effect
0

Example: Astronomy
Transverse Doppler « longitudinal Doppler (v =v )

f A [1— .
fO:KO:\/HE >  A>),, redshift

yields velocity of star: p=
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Transformation of acceleration

A particle moving with ¢ 'in S' and experiencing an

acceleration a' has an acceleration a in S

o _du, _du,dt’ d ULtV dt'
“dt  dt' dt  dt' 1+ wy ’X/(:2 dt

_ a'X

Y (1+wu' /%)
. a', - (w'//c’)a’,
T oyi(1+wu' et yiA(l+wu' )
o a’', - (w',/c)a’,

Z

v (1+wu' /¢’ y (1+wu' /c’)

Acceleration in an inertial system is possible !!
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Minkowski diagram

L—T:
ct=y(ct'+p x")
x=y(x'+pct')

Events E ‘(ct'=0,x'=1) and
E_'(ct'=1,x'=0) appear in S at
(ct=Py,x=y) and (ct=y,x=Py)

tan (§)=p

Shows the coordinates in S' for an
event E in S and vice versa.

Scale in S": a=1y*+ ﬁzyzz\/

cth ct'
4
< E,
(X "””f,fff 1 » X '
= § APy
) Y > X
1+ [32
1—ﬁ2
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Light pulse

Event E is a spherical light shell expanding in all directions
from position x=2 at time ct=2.

The light reaches an observer at x=0 at the time ct=4 and
an observer at x'=0 at time ct'=2.

A
ct ot 4
i v=+C
4 - ra Light shell
2 2 _2 2
o2/ e X+ y“+ z°=(ct)
u_ 45 q_ 45° y=z=0 > ct==x
9L JOEAD g OEE -
E X.
w \ -
2 X
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Simultaneity

Events E1, E2 which are simultaneous
In S are not simultaneous in S'.

ct'’
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Example: Light flash in rocket

Rocket is moving with v (frame S'). Light flash is emitted at
the center and reaches the front and end detector at the same

time. In S the times are different.

Ct'
front detector

C |
-

end detector

in space craft: ct,'=ct, ’:%
on earth: ct Zl—+ vt ., ct ZZ——Vt, l—1 =y2l3—=ﬂ3—
[T T ey e e c e
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Time dilation: Length contraction:

B=0.42, 5=22.8°, y=1.1, a=1.2 3=0.42, 6=22.8°, y=1.1, a=1.2
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World-line (path-time diagram)

future

V=+C ct

excluded ,-45°

V=+C

excluded

a=45°

=-C past

V=-C
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Relativistic Dynamics

Based on two principles:

1. Conservation of linear momentum

2. Conservation of energy (E=mc?)

(P=mu)
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Moving mass

Because of E=mc® we choose as ansatz m=m(v)
and calculate the function m(v) by an experiment.

Inelastic collision between 2 identical particles:

In laboratory frame S: ®&— +—9@
m(Vv) m(v)

Composite particle at rest after ®

collision °
In rest frame S' of right particle: F“» O
m(u’) m,
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S moves with v to the right w.r.t. S".
The left particle has velocity u=v in the moving frame S
and u' in the rest frame S'.

Therefore
Cu+vy 2y u' 1—[32
u = 2 ?u= 2 1_(_) :< 2) (1)
1+vul/c 1+p C 1+
After collision composite particle moves ‘HV
with vin S'
M(v)
Conservation of momentum m(u')u':I\/l(v)v (2)

Conservation of energy m(u')02+ moczzM(v)C2 (3)
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From (1), (2), (3) after eliminating M

miu’ 1+ﬁ =y, m
(u')= h =Y, My (4)

Mass m(u')=y, m,

From (1), (2), (4)

2m,
M(v)= =yM, > M;=2ym,
—(vl/c)
Rest mass not conserved: M,—2m,=2m,(y—1)>0
E ., completely converted into mass:

2E, =2(E—E,)=2(ym,c’—m,c’)=M,c’—2m,c’
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Momentum

Force f==—"—=m,

dy, d 1

with — =
dt — dt\1—g.u/c> ¢

3 Mo

Force F=y} o0 (0-3)T+ y, m,3
C

f,u,a are in general not collinear!

Using f-U=vy, m,(U-&) one can solve for 3
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In linear motion (linac) with G=(u,,0,0), f=(f,,0,0),
a=(a,,0,0) itis
fx:Yf: m,a,
and one speaks of
longitudinal mass=y, m,

In circular motion (synchrotron) with f L3 it is
f=y,m,a

and one speaks of
transverse mass=y, m,
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Energy

A particle moves with U=(u,,0,0)and experiences
a force f .

Work done at path dx is
3 3 dux 3
dEk,.n:fXdX:yumoade:yumodt dx=y,m,u,du,
p.dP,
E..= mcuf(1 PeIRE =y, m,c’—m,c’=E—E,
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Power absorbed by the particle

_dEkin _d(m_mo) szdﬂcz
dt dt dt

dp _dm - du 1 dEy, - .
—= u+

b
I

The temporal change of E,, of abody ,or the power

it absorbs , is the scalar product of f and i, as in
classical mechanics.
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Example: Collider

1) 3.5 TeV head-on p-p collider

before collision e » <« 0
m(u) m(u)

composite particle at rest after ® M
0

Inelastic collision

transparency 28:
M,=2y,m, > E.,=M,c’=2y,m,c>’=7TeV

2) 3.5 TeV fixed target p-machine

In laboratory frame S e O
before collision

3

m(u)
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Vv \'

Center of mass frame S' (2p=0) o » <« O
moves to the right with v m(v) m(v)

While seen from S', S moves to the left with v.

The left particle has velocity v in S' and it is (transp. 12)
u—v

V= =
l1—uv/c

b= TR, =Ly,

u

This yields

ECM:2Yon:\/2(1+ YU)EOZ

=yJ2(E,+ E)E,=81GeV (E ,,=938MeV)
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Energy-momentum equation and diagram

Ezz(mcz)zz(mocz)zyzz(moc ) <11 ﬁﬁ >+B =E +(pC)2
_—\/ (m,c)’+p°, mass —less particle: E=|p|c
E‘/c §=\/(m06)2+1‘92
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Since conserved quantities are plotted, arrows can be
added like vectors.

All interactions are allowed in which energy-momentum
vectors a, b after interaction add to vector s.

‘ E_ \/(muc)z + p2

C
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Example: Photon absorption by a particle at rest

y 2nd

E/c g excited state
s+ lst
,

ground state

Absorption only for composite
particles with excited states.

D

AE>E
difference in recoil of particle
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Example: Pair annihilation

(b) (a) (c) (d)
©

e e
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4-\ectors

Normal, 3-dimensional vectors are defined by a linear trans-
formation. They are invariant against translation and rotation

of the coordinate system.

Similar we define 4-vectors by the Lorentz-Transformation:
Any quadruple which transforms with an L-T is a 4-vector.

Let us define a contra- and a covariant 4-vector:

contravariant X"=(X", X', X*, X°)
covariant X, =(X,,—X,,—X,,— X,
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Using Einsteins summation rule the scalar product is
X" X =X" X, = X' X, = X*X,—X*X,=X"X",
It is invariant under an L-T.

In general:

The scalar product of any two 4-vectors is L-T invariant.

A'B.=A"B’,

Position 4-vector

The quadruple
X'=(ct, x, v, z)
transforms with an L-T and is called position 4-vector
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Velocity 4-vector

ax"
w__
U dt

find a quantity with dimension of time and which is invariant.

IS not a 4-vector, since dt is not invariant. Try to

An event which moves by (dx, dy, dz) in dt has the Lorentz
iInvariant space-time interval ds

ds’=adX" dX,=(cdt)*—dx*—dy’—dz*=dX "dX ',

We write

1 dx* dy® dz’ \/ 2%
ds=cdty/1— + + —)=cdty{/1—(—) =
\/ c’ <dt2 dt’ dtz) <c)

dt

zcy—zcdt >  dit=ydrt
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Now, drt is the time interval an observer moving with v would
measure. It is shorter than in any other reference system and is
called proper time. It is Lorentz invariant (Lorentz scalar). Using 1
instead of t, we get the velocity 4-vector

UM_dX“_dX“ dt ~(c, dx dy dz>dt
dt dt dt dt “dt 'dt 'd=
=y(c,v,,v,,v,) =

U'U.,=yc [1—1—2(vi+ v+ v,)]=c’
C

U"is not a measurable quantity. dX" is space-time distance
between two events in one frame, while dr is time increment in
a different frame in which both events take place at the same
location.

But U" helps to facilitate calculations.

Example: Man in aircraft and on ground
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Energy-momentum 4-vector

A particle with m, moves in S with t=(u,,0,0)
u
EZYUmocz’ pXZYUmOuX:E_;
c

In S' it's velocity, energy and momentum are

Sl 1 =y, y(1-p,B)

X 2 Yu—
1—u vic’ Ji—(u 'lc)

-

E' E
C ZYU'mOCZY(C__Bpx)
[ [ E [ [
p,' =y, mu,=y(p,—B=—), p,'=p,=0, p,'=p,=0

C

In general, P"=(E/c,p,,p,,p,) transforms with L-T
and is called energy-momentum 4-vector.
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1. Derivation of energy momentum equation:

Ina frame where momentum does not vanish:
P'P,=(Elc)'—p,—p,—p,=(Elc)—p’
In a frame with vanishing momentum:
P"P' =(E,/c)

P‘P=P"P' = E'=Eg(pc)
2. Derivation of Planck's hypothesis E=hv
A photon with energy E' in S' travels in -x' direction

,_ E' E E'’ : 1-B E’
e - =» —= —
o= L EoyElapp=BED )

Frequ. Doppler shift (transp. 17, 6=180°): V:\/:E v' (2)
E E’

(1) devided by (2): v ——;=const.=h

v’
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3. Inelastic collision:

before collision D - < @

after collision m '—u>

Energy, momentum conservation:

Ea+ Eb:EC’ 5a+ ﬁb:ﬁc
~ Pi-l- Pg:Pg .(Pau+ Pbu:PCM)

P PaM+ ZPngM"' P\ PbM: P PCM

JUAS 2019: Review Special Relativity
H. Henke

45



Rest frames for (a), (b), (c) (E/c=m c):

Pzpau:(m0a0>2’ Pszu:(rnObC>2

Pt PCu:(rnOcC)2
Laboratory frame:

PM_(yamOaC yamOauafo O)

P,= (meOb —YpMy Uy, 0, O)
ZPszu_2YameOamOb(C +U,U,)

(2), (3) substituted in (1)

. 2 2 o 1 uaub
My =4 My, + My, + mOamObYaYb( +02

)

(3)

=My, + My,

Rest mass of particle (c) is larger than the rest masses

of (a) and (b).
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4. Absorption of a photon by an atom at rest

before absorption Y >~ O
E

b
Oa

after absorption Moc @ u’

see example 3: P§P3M+ ZPZPbM'" PszM:PﬁPCM (1)

rest frame of (a) and (c)

Pt=(m, c,0,0,0), P!=(m,.c,0,0,0)

E hv h
photon (b) frame P%:(C_blpbx:oa()):(cv ,CV 0)
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PP =(m,

aw

PEPCu:(mO

a

c), PyP,,=0
c), PLP,,=myhv (2)

C

(2) substituted in (1):

(mOaC>2+ szaC Z_V-l- O:(rnOCC)2

2

hv hv
mOC:\/mga-'- 2m0aT:m0a 1+2
C m,,C

a
2 2 2
Ifm,c>hv > m, c'~m, c+hv

Rest energy of particle (c) equals rest energy of
particle (a) plus photon energy.
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5. Compton effect (photon scattered at electron)

before collision Y > < 0 €
E =hv E =ym ¢’
p_=hv/c p, =ymyv
EC=hv'
pc=\hvl/C Vy\
after collision /6
Q»/Ed, P,

Energy, momentum conservation:
P+ P, =P+ P, (1)

Scalar product of (1) with itself —
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P, PaM+ 2P:Pbu+ P, PbM:P‘g PCM+ 2P, Pdu+ PS,PG,M

for photons: PP, =P.P, =0
in rest frames of (b), (d): P,P,,=P4P,,
substituted in (2): PP, =P,P,,

multiplication of (1) with Pcpand use of (3):

P:PCM-I_ P%PCMZPSPCM-I_ PZPCu:PszM

in laboratory frame:

P::<h\/ ’hV ’0,0)
C C

Pz:(ymOCl_ymOVJ()aO)
P%:<hv ’_hv cos9,hv
C C C

sin$,0)
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substituted in (4):

2
(g) vv'(1+ cos®)+ ym,hv'(1—Bcosd)=

=ymyhv(1+p)
v 1+ p
V' 1—Bcos%+ (1+cosS)E_/E,

Electron at rest, 3=0, 6=180°-¢ (forward scattering):
' 1

A% .
= useof v=c/\ yields
V' 1+ (1—cosq)hv/m,c’ 4
L (1—cos) Compton equation
m,c
27 - =2,42.107"m Compton wavelength
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Astronomy: Microwave background radiation with Eaz10'3 eV
is scattered at high energy electrons y»10°

3~0, 1+p~2,
1 1
B:\/l__z -> 1—BN >
Y 2y
v' 4y’ E,

~ ~=2, E,=hv, E,=yE,
V 1+4Y2Ea/Eb Ea b Y 0

> E_=hv'=~yE_,=y511keV

Dramatic increase of photon energy !
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Acceleration 4-vector

We use again the proper time 1 and dy /dt from transp. 29

q_dU _dU" dt _
dt dt dt
_, 9y d
_yu[dt (C,UX,Uy,UZ)+ yudt (C,UX,Uy,UZ)]
4
Yu (= =\( o =
=Y (53 (c,0)+ ¥}(0,3)
AYA — Yg (—» -\2 4 2 1
=2 (@E) -yl ()

U" and A" are perpendicular > U"A,=0
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For A" the same remarks are valid as for U". But it is useful
to calculate the proper acceleration a.

In an instantaneous rest frame S' of a particle: u'=0, Y =1:

A"=(0,a), AMA' =—a° (2)

Linear acceleration, tl|a, and useof (1),(2):

2

2 6p2 2 4 2 6 .3
A _yuﬁua +YUa _YUa - OL_Yua

The same result follows from transp. 18 with u’ =0, v=u

_a X 9 r _ 3
ax_ 3 a x_OL_YUax
Yu
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Incase of circular motion,u_La, itfollows from (1),(2):
2 4 2

a=y,a - oc:yf,a

Which is identical to the result from transp. 18 for uX'=uy'=O
and v=u, l.e. a'y In an instantaneous system S'

r

a :a—y > a' :O(:yza
y yi y u-—y
r
y'
S’ X
T
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Frequency-wavenumber 4-vector

Plane wave: E:EOsin(mt—l?-F), k:iJT :(CD

Phase at a fixed position must be the same for all reference
systems (c=c'):
d=wt—k-F=ot—(k x+k, y+k,z)=0'
® can be written as
K'X,=K" X",
with the frequency-wavenumber 4-vector K* and X"
K'=(% k ,k, k,), X'=(ct,x,y,2z)

C BAD'CRANS/

Since E=hv=hw and E=pc for photons, it is p=hw/c=hk and
E
PM:(C—, pXprJ pz):hKM
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6.Doppler effect

K'=(", k,, k, k)=, g)cosi} C—smS 0)

L-T of K" yields frequency in S'

[ 7

o B 0w . 6V
C =yl BCOSS)C ? (D_y(l—ﬁcos?r) (1)
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and the wave number in S'

’

k =2 ®
X T g cosd'=y(— |3+c059)c
K, = W =% 5in 9 k,'=0 (2)
Y C c ’ ‘
using tan9:81119 together with (1) and (2):
1+ cos9
tan9 :SIH9 \/Hﬁtan— > tani
2 y(1-p)(1+cos?) VI-P 2

The wave appears under a smaller angle in S than in S',
see transp. 14.
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Charge-current 4-vector

Going from S to S' charge must be conserved
dx

Podxdydz=p'dx"dy'dz", dx’zy—, dy'=dy, dz'=dz
> PEYLPo

Moving charge density: P=Y,Po

Current density: j=pli=y,p,U

Then

J'=(0C, jx,Jy, J)=Yupe(C Uy Uy u,)=p, U
Is the charge-current 4-vector, since p_ is a Lorentz scalar
and U" a 4-vector.
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Power-force 4-vector (Minkowski force)

Ansatz with proper time t for a particle moving with u:
dP" _dP" dt _ L dE dp, dp, dpz)

pr=9r _ —
dt _dt dt *“‘cdt 'dt 'dt ’dt
dE dEk 7 -
— In:f°
dt  dt Y
I =
F'=y,(=T0,f,,f,.f)

F" is the power-force 4-vector, since P" is a 4-vector and 1
a Lorentz scalar.

With F¥ and A" one gets the relativistic Newton's 2nd law:

F'=m, A"
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Remarks

Again, for linear and circular motion Newton's
relativistic law gives the results we had on the
transps. 30, 54, 55 (see appendix A3).

Transformation of electromagnetic fields

Lorentz force f=q(E+UxB)

Power-force 4-vector

F“—yu( fu,f,,f,f,)=y,q(—EU,E+TxB)

o
-
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In components

=1 (o E, E, E,|lyc]
F'l_a|Ex 0 B, —cB, ly,u,|_-a
F*| C|E, —cB, 0 cB, || y.,u,| €
F E cB, —cB, 0 |ly,u,

With the Lorentz-transformation from S to S'
and the inverse transformation

y =py 0 0 Y Py
=By y 00 =By Y
) 0 0 1 0 B 0 0

0 0 0 1 0 0

~

oS = O O

_—o O O
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Fr=LF=1rTu=TLT L 'u"=2T"U"
C C C

o E, y(E,~vB,)  y(E,+vB))
- 0 V(eBPE,) —y(oB+PE)| ()
-~ |y(E,~vB,) —y(cB,-BE,) 0 cB,

Y(E,+vB,)  y(cB,+BE,) —cB, 0

'Fo,- 0 E,' E, E, -Yu'C 1

gl q E, 0 cB," —cB," ||y, u,’ ZQT'U'M (2)
F>'| ¢|E,' —cB,” 0  ¢B,'||y,u,'| ¢

\F'| |E,” ¢B,” -cBS 0 |y,u,’
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Comparing (1) with (2) we obtain:

E ’x:Ex
E ’yZY(Ey_VBz)

E',=y(E,+VvB,)

which can be written as

B'x:Bx
B'yzy(By+ —2Ez)

H. Henke
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7. Uniformly moving charge

Point charge q at rest in origin of &'

—>' q
E'=
4TCEO(X’2+y,2+Z’2)

0o}
1
-

—(x",y',z'),

The point P=(0,a,0) in S has coordinates P'=(-vt',a,0) in S',

yielding
— 1 ’ q ’
E',(t')= —vt',a,o
P( ) 4TEEO(V2t'2+ aZ>3/2< )
Transformation of t': ¢t '=y(ct—Bx)=yct for x=0
E'(t)= d (—vyt,a,o)
P 3/2 Yi,d,

R 4ne0(vzy2t2+ a’)
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Transformation of fields

EPx:EPx’) BPx:O

' — v ’
EPy:yEPy ) BPy__yC_2EPZ

/ —_— V /
Ep=YEp", BPZ—"'YC_QEPy

=1 q
E _ \t)= —vvt,ya,O
P( ) 4neo(y2v212+ a2)3/2( Y Y )
B, t)= 0,0,y —=a
P< ) 4J_E€O(y2v2t2+ a2)3/2< yc2 )
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Appendix

Variables which depend on several other variables
transform as

A1

oX.'
0 — e ;s X,ZX,(XI',XQ',X3',...)
OX; G 0X; 0X;

this yields for the G-T of the waveequation

0 _0x'g _0t'g _o o _o
oX oOx o0x' ox ot' ox'’ ox? ox"
0 :@X'a +5l"8 :_Va 40
ot ot ox' ot ot' ox' ot'

2 2 2 2

ot ox'" 8x'6t'+at'2

2 12 vy v o _
_ _ 2 O=
[axl2 CZatIZ CzaX'2+ CZaX'ﬁt'] O

JUAS 2019: Review Special Relativity 68
H. Henke



A2 Lorentz- Transformation

ct'=a,ct+a, x+a,y+a,;z
x'=a,ct+a, x+a,y+a,;z
y'=ayct+a, x+a,,y+a,z (1)
z'=a,,ct+a, x+a,,y+a,;z

Successive use of homogeneity and isotropy of space:

a,=ai=0 eventsaty=+y, or z=+z, have to take place at
equal times in S'
a,,=a,,=0 origin, x=y=z=0, has to stay on x'-axis
a,=a;=a, =ays=ay =a;=>0
x-,X'- and y-,y'- and z-, z'-axis should stay parallel
a,,=as, because cylindrical symmetry requires equal
transformation of y and z
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Due to the relativistic principle the inverse L-T follows from replacing

the primed by unprimed variables, the unprimed by primed variables
and v by -v. Therefore

y':azz(v>y, y:azz(_v)y' with azz(v):azz(_v)zl
since y=y' for v — 0. (1) is thus simplified to

ct'=a,ct+a, x, x'=a,ct+a, x

y'=y, z'=z (2)

A light pulse propagates on a spherical shell and the space-time
interval

(Ct!)Z_X12_y12_z12:<Ct>2_x2_y2_z2 (3)
IS invariant. Substituting (2) into (3) and comparing coefficients gives

2 2 _ 2 2 _ _
l—a,+aj,=0, 1+a,—aj; =0, 8,08;,— 808y, =0 (4)

These are 3 equations for 4 unknowns. The 4™ equ. follows from the
motion of the origin (x=y=z=0) in §', x'=-v t', and using (2)
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ct'=a,ct, —vt'=a,ct = am:—(‘ffaoo
Inserting (5) into (4) determines all 4 unknowns and the final

solution is

r

ct'=y(ct—Bx), x'=y(x—pct), y'=y, z'=z

A3 Linear and circular motion derived by means of power-
force 4-vector and the relativistic 2" Newton's law.

Linear motion, Gi=(u,,0,0), f=(f,,0,0) of a particle:

F“:yu(:‘?f u,,f,,0,0)

X7 X7 X7

The rest frame of the particle, u,'=0, moves with v=u, and

one obtains

F'=yf,, Fl'=f",
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With the acceleration 4-vector
Al'=a, A=y'a,
it follows from the relativistic Newton's law
f'=mya,, fX:y3mOaX

In circular motion, f-U=0, with the instantaneous,
tangential velocity U=(u,.,0,0) and acceleration a,

F'=v(0,0,f ,0)

9 yJ
Now we have
2 __ 20 '
F =y fy, F —fy
and for the acceleration
A''=q Alzyzay

=a,,
Again using the relativistic Newton's law
f,"=mya,, f,=ym,a,

Both results correspond to the ones on transp. 30, 54, 55.
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Obligatory homeworks

Experience has shown that not all students have learned
,opecial Relativity” at university. Therefore, you receive the
lecture notes ahead of the course, so that you can prepare
yourself. The exercises are obligatory and will be collected
at the beginning of the course.

JUAS 2019: Review Special Relativity 74
H. Henke



If nothing else is stated, S is the fixed lab-frame
and S' moves with v in x-direction.

Exercise 1

Prove that the scalar product of any two 4-vectors
A"and B" is Lorentz invariant.

Exercise 2

Prove the relativistic 2" law of Newton F*=m A" by
comparing the components of the left and right side.
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Exercise 3

A space craft travels away from earth with 3=0.8. At a
distance d= 2.16+10°km a radio signal from earth is
transmitted to the space craft. How long does the signal
need to reach the space craft in the system of the earth?
Solve it by using a 2-dimensional (ct,x) diagram.

Exercise 4

Acharge q is at rest. Att=0 an electric field E_is turned on.

Calculate the velocity in two different ways:
1) In the laboratory frame S.

2) By using the constant acceleration a=q E /m_in the
instantaneous rest frame S'.
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Exercise 5
A particle moves in S with velocity t=(0,u,0) and
experiences a force f=(0,f,0). What is the force f' in S'?
Use the transformation of u and L-T of F".

Exercise 6

An electron with velocity u collides with a proton at rest.
After the collision a photon (bremsstrahlung) is emitted
and the electron and proton are moving together with u'.
What is the energy of the emitted photon?

. . _ u .
before collision e O - ® »p

- 2 = —_— 2 -
Ea VurnOeC ’pa YurnOel"I Eb rnOpC ’ pb_O

6\ Y E=hv, pc=hv/c

¥ _ 2
Ed _Yu'(m0e+m0p)c » Py

after collision
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Exercise 7

A point charge g moves with velocity v parallel to a current
carrying wire. Calculate the force on the charge in its rest
frame S' by transforming the e.-m. fields.
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