

JUAS 2019 – Exercise

 $\mu = \mu_0 \mu_r$ $\mu_0 = 4\pi \cdot 10^{-7} \text{ Vs/(Am)}$ $\mathcal{E} = \mathcal{E}_0 \mathcal{E}_r$ $\varepsilon_0 = 8.854 \cdot 10^{-12} \text{ As/(Vm)}$ $c_0 = 2.998 \cdot 10^8 \text{ m/s}$

1.) Cavities

Design a pillbox cavity. The E_{010} = TM₀₁₀ mode shall resonate at f_{res} = 2.95 GHz. The aspect ratio shall be a/h = 0.5.

- 1. What is the radius *a* of the cavity?
- 2. What is the height *h* of the cavity?
- 3. The 3 dB bandwidth of the unloaded resonance shall be 150 kHz, how big does the unloaded Q₀ of the cavity need to be?
- 4. What is the maximum tolerable surface resistance ρ of the cavity walls to get $Q_0 = 20000$.
- 5. What is the R/Q for this cavity geometry?
- 6. Derive the equivalent circuit parameters R, L and C for the cavity with $Q_0 = 20\ 000$ R/Q = 30and
- 7. The cavity is critically coupled to an RF power amplifier and driven by 50 W of input power on its resonant frequency. The loaded QL is 10 000. What is the stored energy WCAV in the cavity?
- 8. Determine the peak gap voltage V_{gap} ?
- 9. Operating the cavity in air, is "Kilpatrick" voltage breakdown a problem?

2.) Smith chart

Given in the table below are several impedances Z_N or reflection coefficients Γ_N , measured at specific frequencies.

They have been normalized already with the characteristic impedance Z_C = 50 Ω in the following way: Z_N = Z/Z_C

Point no.	P ₁	P ₂	P ₃	P ₄
Z _N or Γ _N	Z _N = 1	Z _N = 0.5 + 0.5j	 Γ_N = 0.45 arc(Γ _N) = -117°	Z _N = 0
f [GHz]	3.000	2.997	3.003	0.01

Point no.	P ₅	P ₆	P ₇	P ₈
Ζ _N or Γ _N	Z _N = 0.2 + 0.4j	Z _N = 0.2 - 0.4j	 Γ_N = 1 arc(Γ _N) = 0°	$ \Gamma_N = 0.49$ arc(Γ_N) = 52°
f [GHz]	2.994	3.006	-	-

- Mark all the points in the attached smith chart (including each point no.)
 Use your compass and the rulers at the bottom of the smith chart for the polar coordinates
- 2. Design a matching circuit. The point P_2 in the smith chart shall be matched to $Z_c = 50 \Omega$. Use only **one 50 \Omega transmission line** and **one series capacitor.** Draw the solution in the smith chart. Numerical answers are not needed.
- Draw a circle through the points P1 P6. This is the result of a S₁₁ measurement of a microwave cavity with a network analyser.
 Without is the result for a set of the result of the re

What is the resonant frequency f_{res} of the cavity? (Look it up in the table)

4. What is the unloaded Q_0 of the cavity?