Measurement of transverse Emittance

The emittance characterizes the whole beam quality, assuming linear behavior as described by second order differential equation.
It is defined within the phase space as: $\varepsilon_{x}=\frac{1}{\pi} \int_{A} d x d x^{\prime}$
The measurement is based on determination of:
either profile width σ_{x} and angular width $\sigma_{x}{ }^{\prime}$ at one location or σ_{x} at different locations and linear transformations.
Different devices are used at transfer lines:
> Lower energies $\boldsymbol{E}_{\boldsymbol{k i n}}<100 \mathrm{MeV} / \mathrm{u}$: slit-grid device, pepper-pot (suited in case of non-linear forces).
> All beams: Quadrupole variation \& 'three grid' method using linear transformations (not well suited in the presence of non-linear forces)

Synchrotron: lattice functions results in stability criterion
\Rightarrow beam width delivers emittance: $\quad \varepsilon_{x}=\frac{1}{\beta_{x}(s)}\left[\sigma_{x}^{2}-\left(D(s) \frac{\Delta p}{p}\right)\right]$ and $\varepsilon_{y}=\frac{\sigma_{y}^{2}}{\beta_{y}(s)}$

Outline:

$>$ Definition and some properties of transverse emittance
$>$ Slit-Grid device: scanning method
$>$ Quadrupole strength variation and position measurement
$>$ Summary

Excurse: Particle Trajectory and Characterization of many Particles

Plot: Wille

Excurse: Definition of Offset and Divergence

Horizontal and vertical coordinates at $s=0$:
$>\boldsymbol{x}:$ Offset from reference orbit in [mm]
$>x^{\prime}$: Angle of trajectory in unit [mrad]

$$
x^{\prime}=d x / d s
$$

Assumption: par-axial beams:

\boldsymbol{x} is small compared to $\boldsymbol{\rho}_{\boldsymbol{0}}$
$>$ Small angle with $\boldsymbol{p}_{\boldsymbol{x}} / \boldsymbol{p}_{s} \ll \mathbf{1}$
Longitudinal coordinate:
$>$ Longitudinal orbit difference: $\boldsymbol{l}=\boldsymbol{-} \boldsymbol{v}_{\boldsymbol{0}} \cdot\left(\boldsymbol{t}-\boldsymbol{t}_{\boldsymbol{0}}\right)$ in unit [mm]
$>$ Momentum deviation: $\boldsymbol{\delta}=\left(\boldsymbol{p}-\boldsymbol{p}_{\boldsymbol{0}}\right) / \boldsymbol{p}_{\boldsymbol{0}}$ sometimes in unit [mrad] $=[\%]$
For continuous beam: l has no meaning \Rightarrow set $l \equiv 0 \quad!$
Reference particle: no horizontal and vertical offset $\boldsymbol{x} \equiv \boldsymbol{y} \equiv 0$ and $\boldsymbol{l} \equiv 0$ for all s

Excurse: Definition of Coordinates and basic Equations

The basic vector is 6 dimensional: $\vec{x}(s)=\left(\begin{array}{c}x \\ x^{\prime} \\ y \\ y^{\prime} \\ l \\ \delta\end{array}\right)=\left(\begin{array}{c}\text { hori. spatial deviation } \\ \text { horizontal divergence } \\ \text { vert. spatial deviation } \\ \text { vertical divergence } \\ \text { longitudinal deviation } \\ \text { momentum deviation }\end{array}\right)=\left(\begin{array}{c}{[\mathrm{mm}]} \\ {[\mathrm{mrad}]} \\ {[\mathrm{mm}]} \\ {[\mathrm{mrad}]} \\ {[\mathrm{mm}]} \\ {[\% \mathrm{o}]}\end{array}\right)$
The transformation of a single particle from a location s_{0} to s_{1} is given by the Transfer Matrix R: $\quad x\left(s_{1}\right)=\mathrm{R}(\mathrm{s}) \cdot x\left(s_{0}\right)$
The transformation of a the envelope from a location s_{0} to s_{1} is given by the Beam Matrix $\sigma: \quad \sigma\left(s_{1}\right)=\mathrm{R}(\mathrm{s}) \cdot \sigma\left(s_{0}\right) \cdot \mathrm{R}^{\mathrm{T}}(\mathrm{s})$
6-dim Beam Matrix with decoupled hor. \& vert. plane: Beam width for
 the three coordinates: beam matrix:

$$
\begin{array}{cl}
x_{r m s}=\sqrt{\sigma_{11}} & \sigma_{11}=\left\langle x^{2}\right\rangle \\
y_{r m s}=\sqrt{\sigma_{33}} & \sigma_{12}=\left\langle x x^{\prime}\right\rangle \\
l_{r m s}=\sqrt{\sigma_{55}} & \sigma_{22}=\left\langle x^{\prime 2}\right\rangle
\end{array}
$$

Excurse: Some Examples for linear Transformations

The 2-dim sub-space $\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$ can be used in case there is coupling like dispersion $\boldsymbol{R}_{16}=(\boldsymbol{x} \mid \boldsymbol{\delta})=\mathbf{0}$ Important examples are:
$>$ Drift with length $\boldsymbol{L}: \mathbf{R}_{\text {drift }}=\left(\begin{array}{ll}1 & L \\ 0 & 1\end{array}\right)$
$>$ Horizontal focusing with quadrupole constant \boldsymbol{k} end effective length \boldsymbol{l} :
$\mathbf{R}_{\text {focus }}=\left(\begin{array}{cc}\cos \sqrt{k} l & \frac{1}{\sqrt{k}} \sin \sqrt{k} l \\ -\sqrt{k} \cdot \sin \sqrt{k} l & \cos \sqrt{k} l\end{array}\right) \quad \Rightarrow \mathrm{R}_{\text {focus }}^{\text {thin lens }}=\left(\begin{array}{cc}1 & 0 \\ -1 / f & 1\end{array}\right)$
$>$ Horizontal de-focusing with quadrupole constant \boldsymbol{k} end effective length \boldsymbol{l} :

$$
\mathbf{R}_{\mathrm{de}-\text { focus }}=\left(\begin{array}{cc}
\cosh \sqrt{k} l & \frac{1}{\sqrt{k}} \sinh \sqrt{k} l \\
\sqrt{k} \cdot \sinh \sqrt{k} l & \cosh \sqrt{k} l
\end{array}\right) \quad \Rightarrow \quad \mathrm{R}_{\text {de-focus }}^{\text {thin lens }}=\left(\begin{array}{cc}
1 & 0 \\
1 / f & 1
\end{array}\right)
$$

Ideal quad.: field gradient $\boldsymbol{g}=\boldsymbol{B}_{\text {pole }} / \boldsymbol{a}, \boldsymbol{B}_{\text {pole }}$ field at poles, \boldsymbol{a} aperture
\rightarrow quadrupole constant $k=|g| /(\boldsymbol{B} \rho)_{0}$
Thin lens approximation: $l \rightarrow 0 \Rightarrow k l \rightarrow$ const $\Rightarrow k l \equiv 1 / f$
\Rightarrow simple transfer matrix (math. proof by $1^{\text {st }}$ order Taylor expansion)

Definition of transverse Emittance

The emittance characterizes the whole beam quality: $\quad \varepsilon_{x}=\frac{1}{\pi} \int_{A} d x d x^{\prime}$
Ansatz:
Beam matrix at one location: $\quad \boldsymbol{\sigma}=\left(\begin{array}{ll}\sigma_{11} & \sigma_{12} \\ \sigma_{12} & \sigma_{22}\end{array}\right)=\varepsilon \cdot\left(\begin{array}{cc}\beta & -\alpha \\ -\alpha & \gamma\end{array}\right)$ with $\overrightarrow{\mathrm{x}}=\binom{x}{x^{\prime}}$ It describes a 2 -dim probability distr.

The value of emittance is:

$$
\varepsilon_{x}=\sqrt{\operatorname{det} \boldsymbol{\sigma}}=\sqrt{\sigma_{11} \sigma_{22}-\sigma_{12}^{2}}
$$

For the profile and angular measurement:

$$
\begin{aligned}
& x_{\sigma}=\sqrt{\sigma_{11}}=\sqrt{\varepsilon \beta} \text { and } \\
& x_{\sigma}^{\prime}=\sqrt{\sigma_{22}}=\sqrt{\varepsilon \gamma}
\end{aligned}
$$

Geometrical interpretation:
All points \boldsymbol{x} fulfilling $\boldsymbol{x}^{\boldsymbol{t}} \cdot \boldsymbol{\sigma}{ }^{\boldsymbol{- 1}} \cdot \boldsymbol{x}=\mathbf{1}$ are located on a ellipse
$\sigma_{22} x^{2}-2 \sigma_{12} x x^{6}+\sigma_{11} x^{62}=\operatorname{det} \sigma=\varepsilon_{x}^{2}$

The Emittance for Gaussian Beams

The density function for a 2-dim Gaussian distribution is:

$$
\begin{aligned}
& \rho\left(x, x^{\prime}\right)=\frac{1}{2 \pi \epsilon} \exp \left[-\frac{1}{2} \vec{x}^{T} \sigma^{-1} \vec{x}\right] \\
& =\frac{1}{2 \pi \epsilon} \exp \left[\frac{-1}{2 \operatorname{det} \sigma}\left(\sigma_{22} x^{2}-2 \sigma_{12} x x^{\prime}+\sigma_{11} x^{\prime 2}\right)\right]
\end{aligned}
$$

It describes an ellipse with the characteristics profile and angle Gaussian distribution of width

$$
\begin{aligned}
& x_{\sigma} \equiv \sqrt{\left\langle x^{2}\right\rangle}=\sqrt{\sigma_{11}} \text { and } \\
& x_{\sigma}^{\prime} \equiv \sqrt{\left\langle x^{\prime 2}\right\rangle}=\sqrt{\sigma_{22}}
\end{aligned}
$$

and the correlation or covariance

$$
\operatorname{cov} \equiv \sqrt{\left\langle x x^{\prime}\right\rangle}=\sqrt{\sigma_{12}}
$$

For $\mathbf{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ it is $\mathbf{A}^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$
assuming $\operatorname{det}(\mathbf{A})=a d-b c \neq 0 \Leftrightarrow$ matrix invertible

The Emittance for Gaussian and non-Gaussian Beams

The beam distribution can be non-Gaussian, e.g. at:
$>$ beams behind ion source
$>$ space charged dominated beams at LINAC \& synchrotron

Covariance

$>$ cooled beams in storage rings

General description of emittance

 using terms of 2-dim distribution: It describes the value for 1 standard derivationFor discrete distribution:

$$
\begin{aligned}
\langle x\rangle \equiv \mu=\frac{\iint x \cdot \rho\left(x, x^{\prime}\right) d x d x^{\prime}}{\iint \rho\left(x, x^{\prime}\right) d x d x^{\prime}} & \left\langle x^{\prime}\right\rangle \equiv \mu^{\prime}=\frac{\iint x^{\prime} \cdot \rho\left(x, x^{\prime}\right) d x d x^{\prime}}{\iint \rho\left(x, x^{\prime}\right) d x d x^{\prime}} \\
\left\langle x^{n}\right\rangle=\frac{\iint(x-\mu)^{n} \cdot \rho\left(x, x^{\prime}\right) d x d x^{\prime}}{\iint \rho\left(x, x^{\prime}\right) d x d x^{\prime}} & \left\langle x^{\prime n}\right\rangle=\frac{\iint\left(x^{\prime}-\mu^{\prime}\right)^{n} \cdot \rho\left(x, x^{\prime}\right) d x d x^{\prime}}{\iint \rho\left(x, x^{\prime}\right) d x d x^{\prime}} \quad\langle x\rangle=\frac{\sum_{i, j} \rho(i, j) \cdot x_{i} x^{\prime}{ }_{j}}{\sum_{i, j} \rho(i, j)}
\end{aligned}
$$

$$
\text { covariance }:\left\langle x x^{\prime}\right\rangle=\frac{\iint(x-\mu)\left(x^{\prime}-\mu^{\prime}\right) \cdot \rho\left(x, x^{\prime}\right) d x d x^{\prime}}{\iint \rho\left(x, x^{\prime}\right) d x d x^{\prime}}
$$

and correspondingly for all other moments

The Emittance for Gaussian and non-Gaussian Beams

The beam distribution can be non-Gaussian, e.g. at:
$>$ beams behind ion source
$>$ space charged dominated beams at LINAC \& synchrotron

Covariance

$>$ cooled beams in storage rings

General description of emittance

 using terms of 2-dim distribution:It describes the value for 1 stand. derivation
For Gaussian beams only: $\varepsilon_{r m s} \leftrightarrow$ interpreted as area containing a fraction f of ions:
$\varepsilon(f)=-2 \pi \varepsilon_{r m s} \cdot \ln (1-f)$

Care:

No common definition of emittance concerning the fraction f

Emittance $\boldsymbol{\varepsilon}(\boldsymbol{f})$	Fraction \boldsymbol{f}
$1 \cdot \varepsilon_{r m s}$	15%
$\pi \cdot \varepsilon_{r m s}$	39%
$2 \pi \cdot \varepsilon_{r m s}$	63%
$4 \pi \cdot \varepsilon_{r m s}$	86%
$\boldsymbol{8} \pi \cdot \varepsilon_{r m s}$	98%

Outline:

$>$ Definition and some properties of transverse emittance
$>$ Slit-Grid device: scanning method scanning slit \rightarrow beam position \& grid \rightarrow angular distribution
$>$ Quadrupole strength variation and position measurement
$>$ Summary

The Slit-Grid Measurement Device

Slit-Grid: Direct determination of position and angle distribution.
Used for protons with $E_{k i n}<100 \mathrm{MeV} / \mathrm{u} \Rightarrow$ range $R<1 \mathrm{~cm}$.

Slit: position $\boldsymbol{P}(\boldsymbol{x})$ with typical width: 0.1 to 0.5 mm
Distance: typ. 0.5 to 5 m (depending on beam energy 0.1 ... 100 MeV)
SEM-Grid: angle distribution $\boldsymbol{P}\left(\boldsymbol{x}^{\prime}\right)$

Slit \& SEM-Grid

Slit with e.g. 0.1 mm thickness
\rightarrow Transmission only from $\boldsymbol{\Delta x}$.
Example: Slit of width 0.1 mm (defect)
Moved by stepping motor, 0.1 mm resolution

Beam surface interaction: e^{-}emission
\rightarrow measurement of current.
Example: 15 wire spaced by 1.5 mm :

Each wire is equipped with one I/U converter different ranges settings by $\boldsymbol{R}_{\boldsymbol{i}}$
\rightarrow very large dynamic range up to 10^{6}.

Display of Measurement Results

The distribution of the ions is depicted as a function of
$>$ Position [mm]
$>$ Angle [mrad]
The distribution can be visualized by
$>$ Mountain plot
$>$ Contour plot
Calc. of $2^{\text {nd }}$ moments $\left\langle\boldsymbol{x}^{2}\right\rangle,\left\langle x^{2}\right\rangle \&\langle x x\rangle$
Emittance value $\varepsilon_{r m s}$ from

$$
\varepsilon_{r m s}=\sqrt{\left\langle x^{2}\right\rangle\left\langle x^{\prime 2}\right\rangle-\left\langle x x^{\prime}\right\rangle^{2}}
$$

Problems:

$>$ Finite binning results in limited resolution

\rangle Background \rightarrow large influence on $\left\langle x^{2}\right\rangle,\left\langle\boldsymbol{x}{ }^{2}\right\rangle$ and $\langle\boldsymbol{x} \boldsymbol{x}\rangle$
Or fit of distribution i.e. ellipse to data
\Rightarrow Effective emittance only

Beam: $\mathrm{Ar}^{4+}, 60 \mathrm{KeV}, 15 \mu \mathrm{~A}$
at Spiral2 Phoenix ECR source.
Plot from P. Ausset, DIPAC 2009

The Resolution of a Slit-Grid Device

The width of the slit $\boldsymbol{d}_{\text {slit }}$ gives the resolution in space $\boldsymbol{\Delta x}=\boldsymbol{d}_{\text {slit }}$.
The angle resolution is $\boldsymbol{\Delta} \boldsymbol{x}^{\prime}=\left(d_{\text {wire }}+2 r_{\text {wire }}\right) / \boldsymbol{d}$
\Rightarrow discretization element $\boldsymbol{\Delta x} \cdot \boldsymbol{\Delta} \boldsymbol{x}^{\prime}$.
By scanning the SEM-grid the angle resolution can be improved.
Problems for small beam sizes or parallel beams.

Hardware

For pulsed LINACs: Only one measurement each pulse \rightarrow long measuring time required.

Result of an Slit-Grid Emittance Measurement

Result for a beam behind ion source: $>$ here aberration in quadrupoles due to large beam size

$>$ different evaluation and plots possible
$>$ can monitor any distribution

Low energy ion beam: \rightarrow well suited for emittance showing space-charge effects or aberrations.

Outline:

$>$ Definition and some properties of transverse emittance
$>$ Slit-Grid device: scanning method scanning slit \rightarrow beam position \& grid \rightarrow angular distribution
$>$ Quadrupole strength variation and position measurement emittance from several profile measurement and beam optical calculation
$>$ Summary

Excurse: Particle Trajectory and Characterization of many Particles

Plot: Wille

Excurse: Conservation of Emittance

Liouville's Theorem:

The phase space density can not changes with conservative e.g. linear forces.
The beam distribution at one location s_{0} is described by the beam matrix $\sigma\left(s_{0}\right)$
This beam matrix is transported from location s_{0} to s_{1} via the transfer matrix

$$
\boldsymbol{\sigma}\left(s_{1}\right)=\mathbf{R} \cdot \boldsymbol{\sigma}\left(s_{0}\right) \cdot \mathbf{R}^{T}
$$

6-dim beam matrix with decoupled horizontal, vertical and longitudinal plane:

	σ_{11}	σ_{12}	0	0	0	0	Horizontal	Beam width for the three
	σ_{12}	σ_{22}	0	0	0	0	beam matrix:	coordinates:
	0	0	σ_{33}		0	0	$\sigma_{11}=\left\langle x^{2}\right\rangle$	$x_{r m s}=\sqrt{\sigma_{11}}=\sqrt{\left\langle x^{2}\right\rangle}$
	0	0	σ_{34}	σ_{44}	0	0	$\sigma_{12}=\left\langle x x^{\prime}\right\rangle$	$y_{r m s}=\sqrt{\sigma_{33}}=\sqrt{\left\langle\boldsymbol{y}^{2}\right\rangle}$
	($\begin{aligned} & \text { 0 } \\ & 0\end{aligned}$	0	0	0		σ_{56} σ_{66}	$\sigma_{22}=\left\langle x^{\prime 2}\right\rangle$	$\boldsymbol{l}_{r m s}=\sqrt{\sigma_{55}}=\sqrt{\left\langle\boldsymbol{l}^{2}\right\rangle}$

Emittance Measurement by Quadrupole Variation

From a profile determination, the emittance can be calculated via linear transformation, if a well known and constant distribution (e.g. Gaussian) is assumed.

$>$ Measurement of beam width

$$
x_{\max }^{2}=\sigma_{11}(1, k)
$$

matrix $\mathbf{R}(\boldsymbol{k})$ describes the focusing.
$>$ With the drift matrix the transfer is

$$
\mathbf{R}\left(k_{i}\right)=\mathbf{R}_{\mathrm{drift}} \cdot \mathbf{R}_{\mathrm{focus}}\left(k_{i}\right)
$$

$>$ Transformation of the beam matrix

to be determined

coordinate x

$$
\boldsymbol{\sigma}\left(1, k_{i}\right)=\mathbf{R}\left(k_{i}\right) \cdot \boldsymbol{\sigma}(0) \cdot \mathbf{R}^{\mathbf{T}}\left(k_{i}\right)
$$

Task: Calculation of $\sigma(0)$
at entrance s_{0} i.e. all three elements measurement:
$\mathbf{x}^{2}(\mathbf{k})=\sigma_{11}(1, \mathbf{k})$

Measurement of transverse Emittance

$>$ The beam width $\boldsymbol{x}_{\text {max }}\left(s_{1}\right)$ at s_{1} is measured \Leftrightarrow matrix element $\sigma_{11}\left(\boldsymbol{1}, \boldsymbol{k}_{\boldsymbol{i}}\right)=\boldsymbol{x}_{\text {max }}^{2}\left(\boldsymbol{k}_{i}\right)$
$>$ Different focusing of quadrupoles $\boldsymbol{k}_{\boldsymbol{1}}, \boldsymbol{k}_{2} \ldots \boldsymbol{k}_{\boldsymbol{n}}$ are used $\Rightarrow \mathbf{R}_{\text {focus }}\left(\boldsymbol{k}_{\boldsymbol{i}}\right)$
$>$ After the drift the transfer matrix is $\mathbf{R}\left(\boldsymbol{k}_{\boldsymbol{i}}\right)=\mathbf{R}_{\text {drift }} \cdot \mathbf{R}_{\text {focus }}\left(\boldsymbol{k}_{\boldsymbol{i}}\right)$
$>$ Task: Calculation of beam matrix $\sigma(0)$ at entrance s_{0} (matrix elements give orientation)
$>$ The transformation of the beam matrix is: $\sigma\left(1, k_{i}\right)=\mathbf{R}\left(k_{i}\right) \cdot \sigma(0) \cdot \mathbf{R}^{\mathbf{T}}\left(k_{i}\right)$
\Rightarrow Result: Redundant system of linear equations for matrix elements $\sigma_{\mathrm{ij}}(0)$

$$
\sigma_{11}\left(1, k_{1}\right)=R_{11}^{2}\left(k_{1}\right) \cdot \sigma_{11}(0)+2 R_{11}\left(k_{1}\right) R_{12}\left(k_{1}\right) \cdot \sigma_{12}(0)+R_{12}^{2}\left(k_{1}\right) \cdot \sigma_{22}(0) \text { focusing } k_{1}
$$

$$
\sigma_{11}\left(1, k_{n}\right)=R_{11}^{2}\left(k_{n}\right) \cdot \sigma_{11}(0)+2 R_{11}\left(k_{n}\right) R_{12}\left(k_{n}\right) \cdot \sigma_{12}(0)+R_{12}^{2}\left(k_{n}\right) \cdot \sigma_{22}(0) \text { focusing } k_{n}
$$

$>$ To have an error estimation at least three measurements must be done
Assumptions: $>$ Constant emittance, in particular no space-charge broadening
$>$ Only elliptical shaped beam distribution is considered
$>$ No misalignment, i.e. beam center equals center of the quadrupoles
$>$ If not valid: A self-consistent algorithm can be used .

Measurement of transverse Emittance

Using the 'thin lens approximation' i.e. the quadrupole has a focal length of f :
$\mathrm{R}_{\text {focus }}(\boldsymbol{K})=\left(\begin{array}{cc}\mathbf{1} & \mathbf{0} \\ -\mathbf{1} / \boldsymbol{f} & \mathbf{1}\end{array}\right) \equiv\left(\begin{array}{cc}\mathbf{1} & \mathbf{0} \\ \boldsymbol{K} & \mathbf{1}\end{array}\right) \Rightarrow \mathrm{R}(\boldsymbol{L}, \boldsymbol{K})=\mathrm{R}_{\text {drift }}(\boldsymbol{L}) \cdot \mathrm{R}_{\text {focus }}(\boldsymbol{K})=\left(\begin{array}{cc}\mathbf{1}+\boldsymbol{L} \boldsymbol{K} & \boldsymbol{L} \\ \boldsymbol{K} & \mathbf{1}\end{array}\right)$
Measurement of the matrix-element $\sigma_{1 \mathbf{1}}(\mathbf{1}, \boldsymbol{K})$ from $\sigma(1, K)=\mathbf{R}(K) \cdot \sigma(0) \cdot \mathbf{R}^{\mathrm{T}}(K)$

Example: Square of the beam width at ELETTRA 100 MeV e ${ }^{-}$Linac, YAG:Ce:

Focusing strength $\mathrm{K}\left[\mathrm{m}^{-1}\right]$
G. Penco (ELETTRA) et al., EPAC'08

For completeness: The relevant formulas

$$
\begin{aligned}
\sigma_{11}(1, K)= & L^{2} \sigma_{11}(\mathbf{0}) \cdot K^{2} \\
& +2 \cdot\left(L \sigma_{11}(\mathbf{0})+L^{2} \sigma_{12}(\mathbf{0})\right) \cdot K \\
& +L^{2} \sigma_{22}(\mathbf{0})+\sigma_{11}(\mathbf{0}) \\
\equiv & a \cdot K^{2}-2 a b \cdot K+a b^{2}+c
\end{aligned}
$$

The three matrix elements at the quadrupole:

$$
\begin{aligned}
& \sigma_{11}(0)=\frac{a}{L^{2}} \\
& \sigma_{12}(0)=-\frac{a}{L^{2}}\left(\frac{1}{L}+b\right) \\
& \sigma_{22}(0)=\frac{1}{L^{2}}\left(a b^{2}+c+\frac{2 a b}{L}+\frac{a}{L^{2}}\right) \\
& \varepsilon_{r n s} \equiv \sqrt{\operatorname{det} \sigma(0)}=\sqrt{\sigma_{11}(0) \cdot \sigma_{22}(0)-\sigma_{12}^{2}(0)}=\sqrt{a c} / L^{2}
\end{aligned}
$$

The 'Three Grid Method' for Emittance Measurement

Instead of quadrupole variation, the beam width is measured at different locations:

The procedure is:

$>$ Beam width $x(i)$ measured at the locations s_{i}
\Rightarrow beam matrix element

$$
x^{2}(i)=\sigma_{1 I}(i) .
$$

$>$ The transfer matrix $\mathbf{R}(i)$ is known. (without dipole a 3×3 matrix.)

- The transformations are:

$$
\sigma(i)=\mathbf{R}(i) \cdot \sigma(0) \cdot \mathbf{R}^{\mathbf{T}}(i)
$$

\Rightarrow redundant equations:

coordinate x beam matrix: (Twiss parameters) $\sigma_{11}(0), \sigma_{12}(0), \sigma_{22}(0)$ to be determined
\Rightarrow Result: at least equations for elements $\sigma_{\mathrm{ij}}(0)$

Results of a 'Three Grid Method' Measurement

Solution: Solving the linear equations like for quadrupole variation or fitting the profiles with linear optics code (e.g. MADX, TRANSPORT, WinAgile).

Example: The hor. and vert. beam envelope and the beam width at a transfer line:

Assumptions: $>$ constant emittance, in particular no space-charge broadening
$>100 \%$ transmission i.e. no loss due to vacuum pipe scraping
$>$ no misalignment, i.e. beam center equals center of the quadrupoles.

Summary for transverse Emittance Measurement

Emittance measurements are very important for comparison to theory.
It includes size (value of $\boldsymbol{\varepsilon}$) and orientation in phase space ($\sigma_{i j}$ or $\boldsymbol{\alpha}, \boldsymbol{\beta}$ and $\boldsymbol{\gamma}$)
i.e three independent values $\varepsilon_{r m s}=\sqrt{\sigma_{11} \cdot \sigma_{22}-\sigma_{12}}=\sqrt{\left.\left\langle x^{2}\right\rangle \cdot\left\langle x^{\prime 2}\right\rangle-<x x^{\prime}\right\rangle^{2}}$

Low energy beams \rightarrow direct measurement of x - and x^{\prime}-distribution
$>$ Slit-grid: movable slit $\rightarrow \boldsymbol{x}$-profile, grid $\rightarrow \boldsymbol{x}$ '-profile
> Variances exists: slit-slit, slit-kick, pepperpot method

All beams \rightarrow profile measurement + linear transformation:

$>$ Quadrupole variation: one location, different setting of a quadrupole
$>$ 'Three grid method': different locations
$>$ Assumptions: $>$ well aligned beam, no steering
$>$ no emittance blow-up due to space charge.
Important remark: For a synchrotron with a stable beam storage, width measurement is sufficient using $x_{r m s}=\sqrt{\varepsilon_{r m s} \cdot \beta}$

Appendix GSI Ion LINAC: Emittance Measurement Devices

Slit Grid Emittance: Standard device, total 9 device
Pepper-pot Emittance: Special device, total 1 device
Transfer to Synchrotron

All ions, high current, $5 \mathrm{~ms} @ 50 \mathrm{~Hz}, 36 \& 108 \mathrm{MHZ}$ º SIS

$$
\begin{gathered}
120 \mathrm{keV} / \mathrm{u} \\
\beta=0.016
\end{gathered}
$$

$1.4 \mathrm{MeV} / \mathrm{u} \Leftrightarrow \boldsymbol{\beta}=0.054$

Excurse: Definition of Coordinates

$\%$

The basic vector is $\mathbf{6}$ dimensional: $\vec{x}(s)=$
$\vec{x}(s)=\left(\begin{array}{c}x \\ x^{\prime} \\ y \\ y^{\prime} \\ l \\ \delta\end{array}\right)=\left(\begin{array}{c}\text { hori. spatial deviation } \\ \text { horizontal divergence } \\ \text { vert. spatial deviation } \\ \text { vertical divergence } \\ \text { longitudinal deviation } \\ \text { momentum deviation }\end{array}\right)=\left(\begin{array}{c}{[\mathrm{mm}]} \\ {[\mathrm{mrad}]} \\ {[\mathrm{mm}]} \\ {[\mathrm{mrad}]} \\ {[\mathrm{mm}]} \\ {[\% \mathrm{o}]}\end{array}\right)$

The transformation
from a location s_{0} to s_{1} is given by the Transfer Matrix R

Remark: At ring accelerator a comparable (i.e. a bit different) matrix is called \mathbf{M}
$\left(\begin{array}{llllll}R_{11} & R_{12} & R_{13} & R_{14} & R_{15} & R_{16} \\ R_{21} & R_{22} & R_{23} & R_{24} & R_{25} & R_{26} \\ R_{31} & R_{32} & R_{33} & R_{34} & R_{35} & R_{36} \\ R_{41} & R_{42} & R_{43} & R_{44} & R_{45} & R_{46} \\ R_{51} & R_{52} & R_{53} & R_{54} & R_{55} & R_{56} \\ R_{61} & R_{62} & R_{63} & R_{64} & R_{65} & R_{66}\end{array}\right) \cdot\left(\begin{array}{c}x_{0} \\ x_{0}{ }^{\prime} \\ y_{0} \\ y_{0}{ }^{\prime} \\ l_{0} \\ \delta_{0}\end{array}\right)$

