Practical example MedAustron: ion therapy facility near Vienna/Austria ebg MedAustron Providing beam energies from 120 to 400 MeV/u for carbon ions (C^{6+}) and from 60 to 220 MeV for protons ### 16 synchrotron bending magnets: - Bending angle: 22.5° - Bending radius: 4.231 m - Field ramp rate: 3.75 T/s - Max. current*: 3000 A - Overall length: < 2 m - Field quality: $\frac{\Delta \int B \cdot dl}{\int B \cdot dl} = 2 \cdot 10^{-4}$ #### Magnet aperture: - Horizontal GFR: ±60 mm - Vertical GFR: ±28 mm - Vacuum chamber thickness: 5 mm #### Requested: - Max. required B = ? - Excitation current NI = ? - Number of turns N (per pole) = ? # Beam rigidity & Flux density Beam rigidity ($B\rho$) [Tm]: $$(B\rho) = \frac{1}{qc}\sqrt{T^2 + 2TE_0}$$ - max. beam energy: _____ MeV/u for _____ - particle charge number $q = \underline{\hspace{1cm}}$ - kinetic beam energy (per nucleon) $T = \underline{\hspace{1cm}}$ eV - particle rest mass (per nucleon) $E_0 = \underline{\hspace{1cm}} eV$ $$B\rho =$$ _____Tm Dipole bending field B[T]: $$B = \underline{\hspace{1cm}}$$ T $$B = \frac{(B\rho)}{r_{M}}$$ # Aperture & Ampere-turns ### Magnet aperture: Vertical GFR: ____ mm Vacuum chamber thickness: ____ mm Tolerances for installation: _____ mm Insulation thickness: _____ mm Total aperture height: ____ mm Excitation current (= magneto-motive force): $$NI_{(per pole)} = \frac{Bh}{2\eta\mu_0}$$ Efficiency η = 99% ## **Current & Number of turns** ## Current / [A]: - $-I_{max}$ power converter: 3000 A - I_{nom} magnet: _____ A (leave ____ % margin) ### Number of turns N (per pole): $$- N =$$ ____A ## Current density j [A/mm²]: - Cooling water available → water cooled coils - Assumption for reasonable economic design: $j = 5 \text{ A/mm}^2$