

Practical example

MedAustron: ion therapy facility near Vienna/Austria

ebg MedAustron

Providing beam energies from 120 to 400 MeV/u for carbon ions (C^{6+}) and from 60 to 220 MeV for protons

16 synchrotron bending magnets:

- Bending angle: 22.5°
- Bending radius: 4.231 m
- Field ramp rate: 3.75 T/s
- Max. current*: 3000 A
- Overall length: < 2 m
- Field quality: $\frac{\Delta \int B \cdot dl}{\int B \cdot dl} = 2 \cdot 10^{-4}$

Magnet aperture:

- Horizontal GFR: ±60 mm
- Vertical GFR: ±28 mm
- Vacuum chamber thickness: 5 mm

Requested:

- Max. required B = ?
- Excitation current NI = ?
- Number of turns N (per pole) = ?

Beam rigidity & Flux density

Beam rigidity ($B\rho$) [Tm]:

$$(B\rho) = \frac{1}{qc}\sqrt{T^2 + 2TE_0}$$

- max. beam energy: _____ MeV/u for _____
- particle charge number $q = \underline{\hspace{1cm}}$
- kinetic beam energy (per nucleon) $T = \underline{\hspace{1cm}}$ eV
- particle rest mass (per nucleon) $E_0 = \underline{\hspace{1cm}} eV$

$$B\rho =$$
_____Tm

Dipole bending field B[T]:

$$B = \underline{\hspace{1cm}}$$
 T

$$B = \frac{(B\rho)}{r_{M}}$$

Aperture & Ampere-turns

Magnet aperture:

Vertical GFR: ____ mm

Vacuum chamber thickness: ____ mm

Tolerances for installation: _____ mm

Insulation thickness: _____ mm

Total aperture height: ____ mm

Excitation current (= magneto-motive force):
$$NI_{(per pole)} = \frac{Bh}{2\eta\mu_0}$$

Efficiency η = 99%

Current & Number of turns

Current / [A]:

- $-I_{max}$ power converter: 3000 A
- I_{nom} magnet: _____ A (leave ____ % margin)

Number of turns N (per pole):

$$- N =$$
____A

Current density j [A/mm²]:

- Cooling water available → water cooled coils
- Assumption for reasonable economic design: $j = 5 \text{ A/mm}^2$