
Exercises on Space Charge



Exercise 1
Compute the transverse space charge forces and the incoherent tune
shifts for a cylindrical beam in a circular beam pipe, having the
following longitudinal distributions: parabolic, sinusoidal modulation,
Gaussian.
Evaluate also the tune spread (max tune shift – min tune shift)
produced by the space charge forces with the same distributions.
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a) Parabolic bunch (q0 = Ne)
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b) Sinusoidal modulation (λ0 =Ne/l0)

ΔQmax at kzz = 2nπ( ) = −
ρx
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c) Gaussian bunch (q0 = Ne)

ΔQmax at z = 0( ) = −
ρx
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longitudinal plane (�, �E).
Particles sitting at the edges of the bunch, in Figure 4.2 left, are located close to the bare tune
in the necktie, as shown in Figure 4.2 right. In this longitudinal region, in fact, the beam line
density is smaller with respect to the center of the bunch, therefore also the s. c. de-tuning is
small.

Figure 4.2: Left: the longitudinal phase-space (�, �E) scatter plot of the bunch (grey). The
particles with small transverse amplitudes, at the longitudinal edges of the bunch, are in �E
color-code. Right: in color the position of those particles in the global tune footprint (in gray).
The black dot is the bare tune.

Particles that sit longitudinally in the center of the bunch (see Fig. 4.3 left) experience a large
s. c. de-tuning and are located far with respect to the bare tune in the necktie (see Fig. 4.3
right). This because the line density has a peak at � = 0.
The shape of a coloured “boomerang” is recognizable in Fig. 4.3 right: the dispersion brings
the particles off-center in the horizontal direction, causing a more vertical de-tuning. For this
reason the particles cover mainly the bottom-right part of the necktie. The chromaticity, negat-
ive in both planes in this example, generates a de-tuning which is opposite to the s. c. one for
�E<0. For �E>0, instead, the de-tunings go in the same direction (see Section 4.3).

Figure 4.3: Left: the longitudinal phase-space (�, �E) scatter plot of the bunch (grey). The
particles with small transverse amplitudes, around � = 0, are in �E color-code. Right: the
position of those particles in the global tune footprint. The black dot is the bare tune.
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Longitudinal phase-space 
(Δ!, ΔE) scatter plot of 
the bunch tune footprint. 
The black dot is the bare 
tune. Particles at the edges 
of the bunch have tunes 
close to the bare tune in 
the necktie. 
Indeed, in this longitudinal 
region, the beam line 
density is smaller with 
respect to the centre of the 
bunch, therefore also the 
space charge detuning is 
small. 

(Courtesy of V. Forte, ‘Performance 
of the CERN PSB at 160 MeV with 
H- charge exchange injection’, PhD 
thesis, Université Blaise Pascal, 
Clermont-Ferrand, France, 2016)



Exercise 2
Compute the transverse space charge force and the incoherent tune
shift for a cylindrical beam in a circular beam pipe, having a bi-
Gaussian longitudinal and transverse distribution.
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Defocusing  transverse  self  induced  forces  produced  by  direct  space 
charge in case of uniform (left) and Gaussian (right) distributions. 

If the transverse distribution is not uniform, we can still apply 
Gauss’s and Ampere’s laws (example in the exercises).
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If the charge distribution is Gaussian but with different !" and !# (not
cylindrical geometry), it is still possible to obtain the transverse electric field.
The expression is known as Bassetti-Erskine formula: M. Bassetti and G.A.
Erskine, “Closed expression for the electrical field of a two-dimensional Gaussian charge”,
CERN-ISR-TH/80-06 (1980).

with the complex error function w(z) given by

NB: here Q is the line density. 
In the limit !" → !# the above electric field is the one that we have obtained previously 



This complicated expression is highly non-linear. It is however possible to
obtain a simple expression in the linear approximation which gives
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As for the cylindrical symmetry case, there are also magnetic fields associated
with the electric fields, so that the transverse force is

1",/ ≈
3
45 !",/

and, as in the previous cases, it is possible to obtain the incoherent tune shift
(but remember that we are in the linear approximation).



Exercise 3
Evaluate the dependence of the longitudinal and transverse
space charge force with z at fixed r (e.g. << σr) for the bi-
Gaussian distribution
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Exercise 3
Evaluate the dependence of the longitudinal and transverse
space charge force with z at fixed r (e.g. << σr) for the bi-
Gaussian distribution
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Exercise 4
Compute the longitudinal space charge force of a transverse uniform
cylindrical beam in a circular perfectly conducting beam pipe



Exercise 4
Compute the longitudinal space charge force of a transverse uniform
cylindrical beam in a circular perfectly conducting beam pipe
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Exercise 5
Compute the longitudinal space charge forces for a cylindrical beam
in a circular beam pipe, having the following longitudinal
distributions: parabolic, sinusoidal modulation, Gaussian
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Compute the longitudinal space charge forces for a cylindrical beam
in a circular beam pipe, having the following longitudinal
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Exercise 6
Compute the incoherent betatron tune shift of a uniform proton beam
inside two perfectly conducting parallel plates



Exercise 6
Compute the incoherent betatron tune shift of a uniform proton beam
inside two perfectly conducting parallel plates
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