Measurement of Beam Current T
BN LM TP . W

The beam current iIs the basic quantity of the beam.

> It this the first check of the accelerator functionality

> It has to be determined in an absolute manner

» Important for transmission measurement and to prevent for beam losses.

Different devices are used:

» Transformers: Measurement of the beam’s magnetic field
They are non-destructive. No dependence on beam energy
They have lower detection threshold.

»Faraday cups: Measurement of the beam’s electrical charges
They are destructive. For low energies only
Low currents can be determined.

»Particle detectors: Measurement of the particle’ s energy loss in matter
Examples are scintillators, ionization chambers, secondary e— emission monitors

Used for low currents at high energies e.g. for slow extraction from a synchrotron.

Generally: Beam instruments are mounted outside of rf cavities to prevent for

electro-magnetic interference from the high field; only inside cyclotrons some BI.

SN
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Pulsed LINACSs and cyclotrons used for injection
to synchrotrons with t

current A

— |

Beam Structure of a pulsed LINAC

J@,.g

se

pulse ~100 ]JS:

macro pulse period

macro pul
-

rf period
.

- g

-

bu/13gh CULT. Ibunch

mean curt. Iean
/

time

One distinguish between:

»>Mean current | ..

— long time average in [A]

»Pulse current 'pulse

— during the macro pulse in [A]

»Bunch current Iy, nch

— during the bunch in [C/bunch]
or [particles/bunch]

Remark: Van-de-Graaff (ele-static):

— no bunch structure
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Magnetic field of the beam and the ideal Transformer i

»Beam current of N, charges with velocity 3

art art magnetic field B
Ibeam =Qe- B = ge- ﬂC - at radius r:
> cylindrical symmietry B~
— only azimuthal component B [eg
= [ beam —
B - 0 ¢ e(p
21T

beam current |

Example: I =1pA, r =10cm = By,,= 2pT, earth B_ = 50uT

Idea: Beam as primary winding and sense by sec. winding.
— Loaded current transformer

11/15=No/Ny = 1o = 1N - lpegm

» Inductance of a torus of u, Torus to guide the magnetic field
| = £t N2 Tout
21 . L
» Goal of torus: Large induCtance L Ibeam I-|-I Vout
and guiding of field lines. e Lll?_l o

Definition: U = L - dl/dt

SN
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Passive Transformer (or Fast Current Transformer FCT) 9

Simplified electrical circuit of a passively loaded transformer:

beam Rp Ls simplified equivalent circuit
2008 A
Le G| R u()
I-source @ -
represenu
t) ]
torus inductance L = N focand
— ground
Avoltagesis measured: U=R I, =R /Nl =S * Lo
with S sensitivity [V/A], equwalent to transfer function or transfer impedance Z
Equivalent circuit for analysis of sensitivity and bandwidth
(disregarding the loss resistivity R, )
SN
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Bandwidth of a Passive Transformer

BN\ . T . W /O TRERSSE ™

Analysis of a simplified electrical circuit of a passively loaded transformer:

bean R, L, simplified equivalent circuit )
~ [ ] !j g}x--\_
X Lo/ Csly R ()
.::' c,— R [] [—-source @ 7
*-'i: N windings repre sents /
- . () v
torus inductance L — N htdﬂ
. _—_E . d
For this parallel shunt: Stott
1 1 1 ol
—=—+—+10Cg & Z =
Z ioL R AFipkTR - olIR a)RCS

» Low frequency o << R/L 75 iol

c

I.e. no dc-transformation < ,
» High frequency o >> 1/RCs: Z — l/ioCyq do Bandwidth _

. £ 2r lOW_R/L

i.e. current flow through Cg ; 2afyion 1 /RCy
> Working region R/L < o < I/RCy5: Z =R : l

i.e. voltage drop at R and sensitivity SSR/N. oo™ 01 50 1000 100000
No oscillations due to over-damping by low R =50 Q to ground. frequency 1 [Mliz]

SN
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Response of the Passive Transformer: Rise and Dr'oop Tlme i
BN\ WS T . maw /] RS ™
T|me domain description:
DI’OOp tlme-Tdroop: 1/( 27Z'f|ow) — L/R simplified equivalent circuit
Rise time: 7, = 1/( 2xfy;y, ) = 1/RCg (ideal without cables) o @ Le G| Rﬁ u()
Rise time: 7, = 1/(27 f5, ) = VLSC, (with cables) epresens T
R, : loss resistivity, R: for measuring.  TocanfV)
“— ground
A beam current beam bunch _
ost % Bunch train:
N . " beam current
pulse - : . Bandwidth _ ol i
tlm’e time g { % 0,8: :
A output volt. i e[ |
Tdroop = L/R g = ozl
: 08
‘ me 5 Moo o T g ooooe. e
- | Tfréquency f [MHZ}% 22;‘
=L C ' il
trise S 2% fiow | | 2% high osl baseline, A
=R/L | | =1/RC tme f

Baseline: Up,ge oc 1 - eXp(-t/ zyg0p)
positive & negative areas are equal

SN
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Example for Fast Current Transformer (GRS,

For bunch beams e.g. transfer between synchrotrons
typical bandwidth of 2 kHz < f< 1 GHz
< 1ns <t <200 ps is well suited

Example GSI type:

Inner / outer radius 70 /90 mm
Permeability 1.~ 103 for f < 100kHz
i, oc 1/f above 0 : / : ‘
Windings 10 - g & 200 mm
Sensitivity 4 V/A forR=50Q
Droop time T4, = L/R | 0.2 ms Fast extraction from GSI synchrotron:
Rise time 1,;,=/LsCs I ns | | | | | |
Bandwidth 2 kHz ... 500 MHz <% Beam: I
IEI 3_1010 N'?+
= L 300 MeV |
- g 100 eV/u FWHM=140ns
Numerous appllcatlon e.g.. =
» Transmission optimization 5 -
» Bunch shape measurement =
> Input for synchronization synchrotron 2

of ‘beam phase’
"] FCT —800 —400 —-200 O 200 400 600

time [ns]|

injection
"EESN
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Example for Fast Current Transformer  [GRSRESR=EEn

For bunch beams e.g. during accel. in a synchrotron
typical bandwidth of 2 kHz < f< 1 GHz
<10 ns < thinen < 1 usis well suited
Example GSI type:

Inner / outer radius 70 /90 mm
Permeability 1.~ 103 for f < 100kHz ,
u, oc 1/f above '
Windings 10 200 mm
Sensitivity 4 V/A forR=50Q

Example: U" from 11 MeV/u (f= 15 %) to 350 MeV/u

Droop time T4, = L/R | 0.2 ms o )
within 300 ms (displayed every 0.15 ms)

Rise time t,;,=/LsCs | 1 18 -

’]

-]
Bandwidth 2 kHz ... 500 MHz .
iy ] I T I f—
3 v =
[ W] — =
> v 72
~ 2 A0
5 g R e
) o 1 .
E [ L ! L L Q(E) 0 0.5 ) 1 L
0 N 60, 00\ NN time [us] 5
Revolutions in SISIS [10] injection extraction
SN
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'‘Active’ Transformer with longer Droop Time Q
Active Transformer or Alternating Current Transformer ACT:
uses a trans-impedance amplifier (1/U converter) to R ~0 Q load impedance i.e. a current sink
+ compensation feedback
— longer droop time z,,,,

Application: measurement of longer t > 10 us e.g. at pulsed LINACs

active transformer R, The input resistor is for an op-amp: R/A << R
= Tgroop = LI(R¢/A+R ) =L/R|
Droop time constant can be up to 1 s!

The feedback resistor is also used for range
switching.

An additional active feedback loop is used to compensate the droop.

SN
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'‘Active’ Transformer Realization

Active transformer for the measurement of long Inner / outer radius 30 /45 mm
t> 10 ps pulses e.g. at pulsed LINACs Permeability w,~ 105 for £ < 100kHz
u, oc 1/f above

Windings 2x10 crossed
Max. sensitivity 106 V/A with amplifier
Current resolution 0.2 ps for full BW
Droop 0.5 % per 5 ms
Rise time 200 ns

Bandwidth . [ 2kHz.. 1 MHz

ousing
e Frontend Electronic

4\

.
~IEEESN
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‘Active’ Transformer Measurement i

Active transformer for the measurement of long t > 10 us pulses e.g. at pulsed LINACs
Example: Transmission and macro-pulse Example: Multi-turn injection of a Ni26*
shape for Ni** beam at GSI LINAC beam into GSI Synchrotron, 5 ps per turn

30 | behind ion source | _,Lz e
i E 10 - Transfer Line 7
20 |- . ~ 08 i
B =]
10 - - = 0.6 -
8 04 .

— 0 e g
< 2 " behind charge separator | E 02 T
E‘ B | — 00 | | | | |
-‘: 3 | B _ I | I th [ u 1 I - I
E 2 L _ 315 i Synchrotron/,-i".rf e
L:_j. 1 B - . ,/ measurement
L o s e —— s :

50 | behind RFQ-LINA | % L i
15 — E\ stacking by multi—turn injection

1.0 . ACCT "0 i R S N N
0.5 - — 0 50 100 150 200 250 300
0.0 N s : Time [us]

o

source

200 400 600 synchrotron

time |[us]|
— Transformer are frequently

CCT used for operation.

extraction

ox

injection

RFQ —E— LINAC
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Shielding of a Transformer ~

R a8y
Task of the shield:

» The image current of the walls have to be bypassed by a gap and a metal housing.
» This housing uses p-metal and acts as a shield of external B-field
(remember: I, =1 pA, r=10cm = B, = 2pT, earth field B_,4, = 50 UT)

‘metal shield 1 . )
with high ||| signal : magnetic shield & transformer
.S 1mmage
permeability T Cu_ﬂ%m current bypass torus
1image torus
current \
. (|
p1pe
beam =
- 150 mm
ceramic
gap

Peter Forck, JUAS Archamps Beam Current Measurement




jU@S
Design Criteria for a Current Transformer

B\ " 4 AN 5. SR . . 0000 RN DR = 'l.!!'i*
Criteria:

1. The output voltage is U ac 1/N = low number of windings for large signal.
2. For a longer droop time, a large inductance L is required due to 7., = L/R:
L ocN? and L o g, (u, ~10° for amorphous alloy)

3. For a large bandwidth the integrating capacitance C, should be low 7., = VLC,
Depending on applications the behavior is influenced by external elements:
»Passive transformer: R =50 Q, 7, = 1 ns for short pulses

Application: Transfer between synchrotrons : 100 ns < t;;s. <10 ps
»Active transformer: Current sink by I/U-converter, 74,4, = 1 s for long pulses

Application: macro-pulses at LINACs : 100 ps <t 5 < 10 nn]lgtal hield | sl
General: permeabiliy image
» The beam pipe has to be intersected to prevent the image rorus L

- current
flow of the image current through the torus . Rp—
» The torus is made of 25 um isolated flat ribbon PP eam -
spiraled to get a torus of ~15 mm thickness, -
to have large electrical resistivity ;ggﬁmic @
» Additional winding for calibration with current source

EESN
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The Artist’ View of Transformers i
\ LA TN L W [ RS T

The active transformer ACCT The passive, fast transformer FCT

Cartoons by Company Bergoz, Saint Genis

= M
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The dc Transformer ‘;a.
BN O A T . W /7 TEESSE ™
How to measure the DC current? The current transformer discussed sees only B-flux changes
The DC Current Transformer (DCCT) — look at the magnetic saturation of two torii.

modulation ["\J 1 kHz modulation ]
» Modulation of the primary windings I I
forces both torii into saturation —md <
twice per cycle torus / Leam
. . ——
» Sense windings measure the beam RS | _,_, RN
modulation signal and cancel each other.
. . I
» But with the I, the saturation is T T comp
sense sense
shifted and I, IS not zero , \
. . sensin demodulator
» Compensation current adjustable d | driving de-voltage | /
until 1, is zero once again | measured current
compens ation compensation current
(53 ¢
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The dc Transformer B,

without beam current
torus 1

torus 2

B j
Bsat 1 ek S s A Y
BN A~ N\ N /—\ /
\ ,"' - / -
' ' \_/ \_/ time H
_Bsat_‘ “““ SR SV Meenas
B with beam current
B ) { Aty torus 1 torus 2 beam add to modulating field
sat | ; R bl | g m———- ,
A ALK LD 4
" ,'; 1 ;" “ time beam substract from
Bt N . modulating field
' AL down sum of both fields
» Modulation without beam:
modulation [’\U 1 kHz modulation J

typically about 1 kHz to saturation — no net flux

» Modulation with beam:

saturation is reached at different times, — net flux

» Net flux: double frequency than modulation
» Feedback: Current fed to compensation winding

for larger sensitivity

» Two magnetic cores: Must be very similar.

Peter Forck, JUAS Archamps

16

beam

sensing

compensation

demodulator
driving de—voltage /

measured current

compensation current

(49 |
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The dc Transformer Realization i
B\ S T Y 7 RS ™
Example: The DCCT at GSI synchrotron P L —
(designed 1990 at GSI): 2 cores mouygted _ (two types)

|

La g @ S

.- ‘-yrg A
Torus radii r,= 135 mm r,=145 mm r—am=

Torus thickness d =10 mm _ nJ I ’ 1
Torus permeability W, = 10° , L [ 'y a { l ) =

41 il | d I - |
Saturation Bet =0.6T =
inductance

Number of windings | 16 for modulation & sensing

12 for feedback
Resolution 1M am = 2 HA
Bandwidth Af =dc .... 20 kHz

Rise time constant .. =10 s magnetic shield @200 mm flange

Temperature drift 1.5 pA/eC

Recent commercial product specification (Bergoz NPCT):
Most parameters are comparable the GSI-model

Temperature coefficient 0.5 pA/°C
Resolution ~ 10 pA (i.e. not optimized)
()
Peter Forck, JUAS Archamps 17 Measurement
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Measurement with a dc Transformer T
Example: The DCCT at GSI synchrotron:
= Observation of beam behavior with 20 us time resolution — most important operation tool.
Example: U3+ accelerated from
11. 4 MeV/u (B = 15.5%) to 750 I\/IeV/u (ﬂ 84 %) Important parameter:

Elﬁ | upper flat top | Detection threshold: 1 pA
E (= resolution)
10 ¢ 1 .

E acceleration extraction | Bandwidth: dc to 20 kHz

]

5 5 | Rise-time: 20 ps

5 s s - .

%, Injection | Temperature drift: 1.5 pA/°C
— F | | T | | . .
2 15 | —> compensation required.
ks
210 -]
2 DCCT

0,
9 Ud ) synchrotron

c
-5 00 | 1 | 1 ] 1 | 1

a 1 2 3 4 ) 3]
time since injection [s]
injection  extraction
(40
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Design Criteria and Limitations for a dc Transformer -.
B\ " .S T W RS T
Careful shielding against external B A

fields with x-metal.
» High resistivity of the core material
to prevent for eddy current
= thin, insulated strips of alloy. H
» Barkhausen noise due to changes of Weiss domains
= unavoidable limit for DCCT.
» Core material with low changes of x, due to temperature and stress
= low micro-phonic pick-up.
» Thermal noise voltage U,ss = \/4kBT ‘R-f
= design for only required bandwidth f, low input resistor R preferred.

» Preventing for flow of secondary electrons through the core

= need for well controlled beam centering close to the transformer.
= The lowest measurable current: = 1 pA for DCCT

~ 30 pA for FCT with 500 MHz bandwidth
~ 0.3 pA for ACCT with 1 MHz bandwidth.

(4570
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The Artist’ View of Transformers i
\ LA TN L O [ RS T

The active transformer ACCT The Fast Transformer FCT

Company Bergoz

SN
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Measurement of Beam Current ' %
BN , S .

The beam current is the basic quantity of the beam.

> It this the first check of the accelerator functionality

> It has to be determined in an absolute manner

» Important for transmission measurement and to prevent for beam losses.

Different devices are used:

» Transformers: Measurement of the beam’s magnetic field
They are non-destructive. No dependence on beam energy
They have lower detection threshold.

»Faraday cups: Measurement of the beam’s electrical charges

They are destructive. For low energies only
Low currents can be determined.

» Particle detectors: Measurement of the particle’s energy loss in matter
Examples are scintillators, ionization chambers, secondary e— emission monitors
Used for low currents at high energies e.g. for slow extraction from a synchrotron.

SN
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Bethe Bloch formula: -
(simplest formulation)

Semi-classical approach:

> Projectiles of mass M collide beam, charge Z,
>

with free electrons of mass m
. _ mass M )
» If M >> m then the relative energy transfer is low €, massm

= many collisions required many elections participate

copper

,0-ray’

proportional to electron density n, = % P
t

— low straggling for the heavy projectile 1.e. ‘straight trajectory’
» If projectile velocity g~ 1 low relative energy change of projectile (y is Lorentz factor)
» | is mean ionization potential including kinematic corrections | #Z, -10 eV for most metals

» Strong dependence an projectile charge Z as oc Z, 2

Constants: N, Advogadro number, r, classical e- radlus, m, electron mass, ¢ velocity of light

SN
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Bethe Bloch formula: - dE
dx
E -1
max E
Range: R = I 4B e
7 dx

with approx. scaling Rec E . 17

]dE,«"dx per nucleon [eV/(u nm)]

Numerical calculation

with semi-empirical model e.g. SRIM
Main modification Z, — Z® (E,;,)
= Cups only for

E,i, <100 MeV/u due to R <10 mm

range in copper [mm

Peter Forck, JUAS Archamps

Source <€ >N

.‘_..-"‘
/IIIIIIJJ | lIIlII_j_l NI RRRIT il

/7

~ -
-
e = — "

~ . 1
LINAC, Cyel. “~ "~

lIllJI [ |

1 10 100 1000 10000
rgy per nucleon [MeV/u]

0]
.
m =
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Excurse: Secondary Electron Emission by Ion Impact i
_ S g WL T . W 7 RS TN

Energy loss of ions in metals close to a surface:

Closed collision with large energy transfer: — fast e with E,; >> 100 eV
Distant collision with low energy transfer — slow e~ with E,;, < 10 eV

— ‘diffusion’ & scattering with other e™: scattering length L, ~#1 - 10 nm

— at surface ~ 90 % probability for escape

Secondary electron yield and energy distribution comparable for all metals!

= Y =const. * dE/dX (Sternglass formula) Different targets:

S
x Mg 12 Aorset
44% ® Al I3 Aarset
sAL1 I3 Hil
- 0 Fe 26 Aarset
e \ c 3 sNi 28 Agiiia
—] $-ra = oCu 29 Hill
beam y s_ oMo 42 Hil
) (B} - a Ay 79 Aarset
o —— vPb 82 Aarset
n ¢Pb 82 Hill
- c
e« S
)
O
D Lo
-« LIJ .9_
L.~ 10 nm =i
S
5 1 I T T N W I 1 |
4 2 3 4 5 678910 20 30
From E.J. Sternglass, Phys. Rev. 108, 1 (1957) E-Proton Energy in Mev

(4
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Excurse: Secondary Electron Emission by Ion Impact i

BN\ L T . W O TRERSSE ™

Energy loss of ions in metals close to a surface:

Closed collision with large energy transfer: — fast e with E,;, >> 100 eV

Distant collision with low energy transfer — slow e with E,;, < 10 eV

— ‘diffusion’ & scattering with other e™: scattering length L, ~#1 - 10 nm

— at surface ~ 90 % probability for escape

Secondary electron yield and energy distribution comparable for all metals!

= Y =const. * dE/dX (Sternglass formula)

observation (P:1050 0.10 .
angle

: . 0.07
0.5 MeV H*—=C (5pg/em?)

0.09

10.06
0.08 |-

0.07 | 7/ \
006 [ 1%° 1

0.05 |

— most electrons
Ein <20eV

e
=]
&

dY, /dE (electron / proton ) eV

beam

o
o
5

integrated yield —————= |

e
o
=]

0.04 |

003} |

e
o
(X

-«

d2Y,_ /dEd® (electron /proton) eV rad

L.~ 10 nm 0.02 |
0.01 -
0.00 . L . [
. 5 10 15 20
From C.G. Drexler, R.D. DuBois, Phys. Rev. A 53, 1630 (1996 Enorey (oV)
“%-
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Faraday Cups for Beam Charge Measurement i

BN\

\ i,

The beam particles are collected inside a metal cup

N | B\

The cup is moved in the beam

— The beam’s charge are recorded as a function of time. pass — destructive device

negative HV north yoke

aperture J- south permanent magnet
- [/U—converter
~ 50mm! \
be&b i B e —trajectory ( (
? lu
| Y f vacuum
— |
T E e —emission cong \ — air

Currents down to 10 pA with bandwidth of 100 Hz!

Magnetic field:
To prevent for secondary electrons leaving the cup

and/or

Electric field:
Potential barrier at the cup entrance.

perm. magnet

HV electrode |

Peter Forck, JUAS Archamps 26
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Realization of a Faraday Cup at GSI LINAC 79.

— ;L /

— vacuum chamber —

beam .
o= > 1n

The Cup is moved Faraday Cup
into the beam pass. @60 mm

vacuum flange — t)ut_

here 150 mm

bellow flange CTHTT ]

COMPress lon electrical

for movement movement feed—through
bellow

pneumatic
drive

Cup:

source
beam stopped

RFQ —E— LINAC
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Secondary Electron Suppression: Electric Field

RN a0
A ring shaped electrode is used
at the entrance of Faraday Cup:

Typical voltage 100 to 1000 V

uegame HV north yoke
h permanent magnet
aperturg’ |\ sout £
?i \"T I/U—converter path z
1 50min ! ' -
1 I
bean:l : i B e —trajectory : 3_
1] [
| 1! W
v ] [l U
i\ ,’ Y vacuum | |
[
\

\ / e elll'lISSIOIl COon f

perm. magnetj|

S potential on central axis for -1 k\V@electrode
;400 '
300 — .

)
=
=1
I
|

neg. potential
=
=
I
|

%

26 46 b‘b 8b 100
Result: path z [mm]
here: potential at center ~ 35 % of applied voltage
L sl Courtesy of J. Lat:;c;,;G‘SI
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Secondary Electron Suppression: Magnetic Field

0.275

Co-Sm permanent magnets within the yoke =

and the calculated magnetic field lines. o
The central field strengthis B ~#0.1 T. "
N BERSME I EEE44 / | | B e NN e
negative HV norf [\ YOke e e :
aperture | soufh \permanent magnet T L
[ 1 } : I/U—converter SRR P
~50mm| 0 B :
beam T P e N A G I A o o
! 2 Nerajectoryy 4 L N | s e s N ow N v ey
o P ~-magnets
- v ~=-north-pole
T S 117 south pole
,,,,,,,,,,, S
Yoke of soft iron ——s i permanent magnets
J

magnets: |
north pole #
south pole !

Courtesy of J. Latzko, GSI
GSN
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The Artist' View of Faraday Cup - ?.

-
) '«J
-

A DJ ’

Parpesse To recogaioe. sad encouta ge
i ative L )
O fiekd of wvelersies  Sean

ntTeTreaton

Avnd The | Cwp Asand
ud.dolﬂ%':cdo

» S
———l o

Company Bergoz

G5
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Energy Loss of Electrons in Copper & Faraday Cups of e- i
BN LA T . WmOw

Collisional loss by Bethe-Bloch formula dE/dx |, o f(E,;,) - Z; is valid for all charged particles.
However, radiation loss dE/dx |4 by Bremsstrahlung (i.e. y-rays of some MeV) dominates

for energies above E,;, > 10 MeV with the scaling dE/dX |,,4 < E,i, - Z?2.

Moreover, e shows much larger longitudinal and transverse straggling.

Fxnmple of a Paraday cup for 60 MeV Electrons

E‘ Yipele-Vernmuent Muagnets ,-""'l-m”"”’-'”'_-""'""‘:"'_'"_‘:""-‘_"::':' et
S [ electrons in copper / e ) P Soppoe > >

o 100 3 — ——- total loss —'-..__.v,%’?. Shay ‘gma/

s ?\ — - —-- collision loss (Beth BIOCh) Eimiitiieg Apertore m //1 %

g 10 £ N — - radiation loss o : T Tk 3

E 3 N« (Bremsstrahlung) 4 - -
~ \ Py 4 _
- \"'i .’_/ ---------- 4 / Ingubalien

o 1 L — e 2 / —Ing
E / =% oof i ’_‘_,_I\’,[ln'&ﬂﬂc.‘ill]'.']w
b / . ‘ \\\_:,’ & ;/ J—Jl"ixvc[.'ulmmi't
o [ / o S N ' '
~ 0'1 3 - / o - '
2 3 e -source LINAC synch. - ~

° <> % >< % 2

73 bl A bored (1
= 0.001 0.01 0.1 1 10 100 1000 1000C ' g - ? <

electron energy E__ [MeV] . S &
Minimum of Bethe-Bloch dE/dx |, Al stopper: Stopping of e~ gently in low-Z material
~ 2 — . .
roughly at Ey;, ~ myc?=511keV (restmass)  pp_shield: Absorption of Bremsstrahlungs-y
1
<P =90% andy = ~ 2
B V= — Used as beam dump

GSH
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Energy Loss of Electrons in Copper & Faraday Cups of e- I

Y J \
Collisional loss by Bethe-Bloch formula dE/dx |, o f(E,;,) - Z; is valid for all charged particles.
However, radiation loss dE/dx |4 by Bremsstrahlung (i.e. y-rays of some MeV) dominates
for energies above E,;, > 10 MeV with the scaling dE/dx |,,4 < E,;, - Z{%.

Moreover, e- shows much larger longitudinal and transverse stragglin

Exmuaple ol o Faraday cup lor ﬁﬂ'_J\-’iu\gElcctrum

-

i oV ernesent BMagnets

Anithieg Apertare

[ —Ingubalion
/ f - Dlovabic soppe

// — Fixed support

Al stopper: Stopping of e~ gently in low-Z material
Faraday Cup at ALBA used as beam dump Pb-shield: Absorption of Bremstrahlungs-y
From U. Iriso (ALBA) = Used as beam dump

GSN
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Measurement of Beam Current

The beam current is the basic quantity of the beam.

> It this the first check of the accelerator functionality

> It has to be determined in an absolute manner

» Important for transmission measurement and to prevent for beam losses.

Different devices are used:

» Transformers: Measurement of the beam’s magnetic field
They are non-destructive. No dependence on beam energy
They have lower detection threshold.

»Faraday cups: Measurement of the beam’s electrical charges

They are destructive. For low energies only
Low currents can be determined.

» Particle detectors: Measurement of the particle’s energy loss in matter
Examples are scintillators, ionization chambers, secondary e— emission monitors
Used for low currents at high energies e.g. for slow extraction from a synchrotron.

SN
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Low Current Measurement for slow Extraction i
BN
Slow extraction from synchrotron: lower current compared to LINAC,
but higher energies and larger range R >> 1 cm.

» Particle counting:

5 Particle detector technologies for ions of 1 GeV/u, A = 1 cm?:
max: r = 10° 1/s

i U=92 .

» Energy loss in gas (IC): : SCL
min: Iy, ~ 1 pA . '
max: lg. ~ 1 pA 0

» Sec. e— emission: 20

. S

min: I, = 1 pA Ie 10 | il

» Max. synch. filling: © :
Space Charge Limit (SCL). Ei;
O
-

Z IIIlII
p:1 . .|?.|.\ .|9.| .|1|'.||'..|13
10 10" 10° 10'10
\] Scint., IC & SEM Particles per second

injection extraction

SN
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Example of Scintillator Counter .-.

B WA T . WO RS ™
Example: Plastic Scintillator i.e. organic fluorescence molecules in a plastic matrix

Here: BC 400 (emission 4., = 420 nm, pulse width =~ 3 ns + cable dispersion, size )
Advantage: any mechanical from, cheap, blue wave length, fast decay time
Disadvantage: not radiation hard

Particle counting: Photomultiplier — discriminator — scalar — computer

Shield e
' / LED Scmt1|llato:r
Housing )
nES o ; = . |
: ] light
Base PMT [ , X
- - NE
= e 2
1’ Photomultiplier BC400 Scintillator
gain: 10° 75 X 75 mm?
rise time 1.9 ns 1 mm thickness
max. average count rate 3-106 1/s
SN
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Low Current Measurement: Particle Detectors i
BN O LA T L W [ REETSE T

Electronic solid state amplifier have finite noise contribution

Theoretical limit: U 4 = \/4k5 ‘R-Af-T
Signal-to-Noise ratio limits the minimal detectable current
Idea: Amplification of single particles with photo-multiplier, sec. e multiplier or MCPs

and particle counting typically up to ~ 10° 1/s
P J P yup voltage divider with resistors R

Scheme of a photo-multiplier: HVI - '_Elzd —
» Photon hits photo cathode — /o N | ——
hoton readout
» Secondary electrons are jelectro UslV
[
acc. to next dynode 4U ~ 100V @500

__ photo cathode
> Typ. 10 dynodes = 10° fold amplification

Advantage: no thermal noise
due to electro static acceleration
Typical 1V signal output

G5
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Properties of a good Scintillator i
BN\ . T W 7 TREESE ™
Properties of a good scintillator: Analog pulses from a plastic sc. with a low
> Light output linear to energy loss current 300 MeV/u Kr beam.
» Fast decay time — high rate g1
» No self-absorption 23':1';?(,]
A

» Wave length of fluorescence sz 1

350 nm < 4 <500 nm e 4015

» Index of refractivity n ~ 1.5
— light-guide

. A
> Radiation hardness o
e.g. Ce-activated inorganic

are much more radiation hard.

Pulsd high distriblition N(U)

The scaling is 20 ns/div and 100 mV/div.

SN
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Monitoring of Slow Extraction “
Slow extraction from a synchrotron delivers countable currents

Example: Comparison for different detector types:
25 T T T T T T T

dc—transformer-
stored current

DCCT

_128: ’ | | | |C= | ’ -
h extracted beam ]

synchrotron

ac
o]
o

| LA L B L

IC &
Scint.

1.9: ’ | | ! Sc’intill’ator’ . injection  extraction

extracted beam%

o]
| IR DL B L

0.0 0.5 1.0 1.5 2.0
time [s]

Parameters: dc-transformer inside the synch., ionization chamber and scintillator

for a 250 MeV/u Pb®"* beam with a total amount of 10° particles.
G
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Ionization Chamber (IC): Electron Ion Pairs |

BN\ W 2 . W T
Energy loss of charged particles in gases — electron-ion pairs — low current meas.
. dE Example: GSI type:
Isec _W ' dx AX- Ibeam

e 1on] ion e

I+ HV

gas filled volume I |
beam
e

e 1on] 1one

x A

matalized foil I qec
-

current measurement /@l—

W-value Gas | Ionization Pot. | W-value GS| realization:
is the average energy | He 24.5eV | 42.7¢V | 5 Energy calculation dE/dx with SRIM or LISE
for one e -ion pair: | N 155eV | 364V | 3 Current measurement via

o, 125eV | 322eV current-to-frequency converter IFC

Ar 15.7eV | 263eV

CO, 13.7e¢V | 33.0eV

SN
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Secondary Electron Monitor (SEM): Electrons from Surface
BN WL TR L W 7 RSl TR

For higher intensities SEMs are used.

Due to the energy loss, secondary e~ are emitted from a metal surface.
The amount of secondary e~ is proportional to the energy loss

| Y —dE |
sec — I~ " Ibeam
dx |
|I
+HV
el beam
.’-__ b

metal plates

I SE€C

)
current measurement —I—

It is a surface effect:

— Sensitive to cleaning procedure
— Possible surface modification by radiation

Example: GSI SEM type:

juas o

Material Pure Al (99.5%)
# electrodes 3
Active surface 80 x 80 mm 2
Distance between electrodes 5 mm
Applied volatage + 100
CO, 13.7eV

Advantage for Al: good mechanical properties.

Disadvantage: Surface effect!
e.g. decrease of yield Y due to radiation

= calibration versus IC required to reach 5%.

Sometimes they are installed permanently in front of an experiment.

Peter Forck, JUAS Archamps
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P. Forck et al., DIPAC’97
GSH
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Summary for Current Measurement i
BN WL T L RS T
Current is the basic quantity for accelerators!

Transformer: — measurement of the beam’s magnetic field
» magnetic field is guided by a high u toroid
> types: passive (large bandwidth), active (low droop)
and dc (two toroids + modulation)
> lower threshold by magnetic noise: about Iy, > 1 HA
» non-destructive, used for all beams
Faraday cup: — measurement of beam’s charge
> low threshold by I/U-converter: 1.5y > 10 pA
> totally destructive, used for low energy beams
Scintillator, — measurement of the particle’s energy loss
IC, SEM: » particle counting (Scintillator)
» secondary current: 1C from gas ionization or SEM sec. e~ emission surface
» no lower threshold due to single particle counting
» partly destructive, used for high energy beams

GSH
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Appendix: GSI Heavy Ion Research Center i

B\ .S TR . W |/ TRERSSE T™
German national heavy ion accelerator facility in Darmstadt

Accelerators:

Acceleration of all ions

LINAC: up to 15 MeV/u

Synchrotron: up to 2 GeV/u

Research area:

» Nuclear physics ~ 60 %

» Atomic physics ~ 20 %

» Bio physics (e.g. cell damage)
incl. cancer therapy ~ 10 %

» Material research ~ 10 %

Extension by
international FAIR facility

ustria

GSl is one of 18 German large scale research centers.

"E5SNX
Beam Current Measurement
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Appendix: The Accelerator Facility at 6SI i

BN O @

lon Sources: w '

all elements - >’

Synchrotron, Bp=18 Tm
Enax D 4.7GeV
U: 1GeV/u
Achieved e.g.:
Ar'8t: 1.1011
U28+: 3.1010
U73+: 1.1010

UNILAC

UNILAC: allionsp—-U :
3-12 MeV/u, 50 Hz, max. S ms
Up to 20 mA current

Atomic & Plasma Physics
Radiotherapy
Nuclear Physics

44
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Appendix: Beam Instruments at GSI Accelerator Facility - 3

BN\ - Y IS T
Synchrotron: Current: 2 DCCT, 1 ACCT, 1 FCT

w Profile: 1 SEM-Grid, 1 IPM, 1 Screen
lon Sources: ) J Position: 16 BPM

all elements / Tune, mom. spread: 1 Exciter + BPM

1 Schottky

UNILAC

Transport Lines:
Current: 8§ FCT
15 Part. Detec.
Profile: 10 SEM-Grid
26 MWPC
18 Screens
Position: 8 BPM

LINAC:
Current: 52 transformers, 30 Faraday-Cups
Profile: 81 SEM-Grids, 6 BIF

Position & phase: 25 BPM

Trans. emittance: 9 Slit-Grid, 1 pepper-pot
Long. emittance: 3 devices of different type

45



(Q_) Faraday Cup: for low current measurement and beam stop, total 30

"

Transformer ACCT: for current measurement and transmission control
total 52 device
They are used for alignment and interlock generation

Transfer to
Synchrotron

F{ P
All ions, high current, 5 ms@50 Hz, 36&108 MHz 10 SIS 1 @é— -9

MEVVA *5:?
¢ Foil,Stripper
'V'UC'S 50 m > Alvarez DTL (
—o=&
PIG \ |
\ §
Gas Strlpper 11.4 MeV/u o
2.2 keV/u p=0.16
B = 0.0022 Constructed in the 70th, Upgrade 1999,

120 keV/u
B=0016 14 MeViuop=0.054
SN

Peter Forck, JUAS Archamps 46 Beam Current Measurement

further upgrades in preparation



Peter Forck,

Important parameters of SIS-18

Appendlx 6SI Heavy Ton Synchr'otr'on Over'vuew
N

Ion (2)

192 (ptoU)

Circumference

216 m

Inj. type

Multiturn

Injection energy 11 MeV/u
Max. final energy ~ 2 GeV/u
Ramp duration 0.1 - 1.5s

Acc. RF

0.8 - 5 MHz

Harmonic

4 (= # bunches)

Bunching factor

0.4 — 0.08

Beam current

10 pA to 100 mA

JUAS Archamps

commissioning 1991

= 2
& {..‘.s.

Beam Current Measurement



Appendix: GSI Heavy Ion Synchrotron: Current Measurement
BN EVEREY T B N

' ACCT: injected current
0.01...1 MHz

N DCCT: circulating current

Important parameters of SIS-18

8 Ion (2) 1 - 92 (ptoU) 0... 10 kHz
12 Circumference 216 m * FCT: bunch structure
: Inj. type Multiturn S 0.01... 500 MHz
iniec Injection energy 11 MeV/u 6
. J Max. final energy ~ 2 GeV/u extrac- (Z) Faraday Cup: beam dump
@ Uon Ramp duration 0.1 51.5s i
1 Acc. RF 0.8 - 5 MHz ‘
Harmonic 4 (= # bunches) i
7
Bunching factor 0.4 — 0.08
Beam current 10 pA to 100 mA
5 10m
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Appendix: 3" Generation Light Sources i
Soleil, Paris, E =25GeV,C= 354 m

electron™

3d Generation Light Sources:
Synchrotron-based

with Egjectron = 1---8 GeV
Light from undulators & wigglers, dipoles,
with E, < 10 keV (optical to deep UV)

Users in:
> Biology

(e.g. protein crystallography)
» Chemistry

(e.g. observation of reaction dynamics)
» material science

(e.g. x-ray diffraction)
» Basic research in solid state and atomic physics
Unique setting: intense, broad-band light emission (monochromator for wavelength selection)
National facilities in many counties, some international facilities.

SN
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Appendix: The Spanish Synchrotron Light Facility ALBA 9

B\ S T . W O TREESSE T
3rd generatlon Spanish national synchrotron Ilght faC|I|ty In Barcelona

-
—

‘. T Beamllnes: up to 30

= f G S o on energy: 3 GeV

Top-up injection

Ny - @  Storage ring length: 268 m

— Ry, Max. beam current: 0.4 A
e — ' Commissioning in 2011

Toulouse
.

Mar
Andorr; Ta

Ao
L o
_ A4 e ~ ‘» :
- 2 ' - ; : Zéra’g‘o_a @
2 . T Barc¥lona
i < OrtO { ‘ % T 't,
= b v\ e O 3
i—: ( " Madrid ¢
e - X , n R
Portugal “Espana_, o
o <

Lisboa * 3 (Spain) e
000 ¥ _ g

e

Yo -
Sevilla

s Malaga
Gibraltar,

: NN . - ;
e e o ¢
bu Yo 1.5 heT O ’ Sy =]

Talk by Ubaldo Iriso: at DIPAC 2011, adweb.desy.de/mpy/DIPAC2011/html/sessiOn.htm

- see also www.cells.es/Divisions/Accelerators/RF _Diagnostics/Diagnostics —
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U@S
Appendix: The Spanish Synchrotron Light Facility ALBA: Overvnew’

BN .S T . W /RSN T
3"d generation Spanish national synchrotron light facility in Barcelona

Layout:

Beam lines: up to 30
Electron energy: 3 GeV
Top-up injection

Storage ring length: 268 m
__ Max. beam current: 0.4 A
LIN Commissioning in 2011

Booster 1

Storage Ring:

From U. Iriso, ALBA
GBS
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Appendix: The Synchrotron Light Facility ALBA: Current Meas. @

BTS
2 FCT

Beam current:
SO Amount of electrons
==/ o '7 accelerated,
/ transported and stored
N NG » Several in transport lines
18 g‘” "‘1& > One per ring
1

gl FCT X

= pccr M

rcup O

T | QCE:M g 3 BCM %, FCT: Fast Current Transformer
J DCCT: dc transformer

ey FCUP: Faraday Cup

1Ecup ‘@1l  Abbreviation:

i/ [z AE: Annular Electrode
kN vy i BCM: Bunch Charge Monitor
\\ ¥ 1DCCT 27

Remark:
e W X@ e »;'_,,.;;f’ AE: Annular Electrode
e = . i.e. circular electrode acting
- yb? 7 | like a high frequency pick-u
From U. Iriso, ALBA = Ji TTEGLEnTY pIEE-tp

SN
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Energy Loss of Ions in Copper i
2
7 2.2 pn2
Bethe Bloch formula: - 95 _ 4N rm.c2. 2t p, - 2P| |n 2MeCVB" _ 5o
Ale''e t 2
dx Yii I
’E\ 100 gy
Emax —1 ; ( )
_ dE <
Range: R = — | dE 510
dx =
0 < . .
= . -
= LINAC, Cyel. N S e
with approx. scaling Rec ., 178 = 20urce, S~
S 000 T
s i ohvsi T 100 ST
This is an atomic physics process: g 19 ——- o
1. Projectile ions liberates fast electrons éé 1? _____ Ar //f;,/’
2. Thermalization by collisions g — U L
H = 0.1 E /,//
with further electrons 5 001 L 5
3. Transfer of energy to lattice (phonon) 5 0.001 /;//
= heating of target 0.0001 D™= Tl R s
0.0l 0.1 1 10 100 1000 10000
energy per nucleon [MeV/u]
SN
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Faraday Cups for high Intensity Ion Beam — Surface Heating  j
The heating of material has to be considered, given by the energy loss.

The cooling is done by radiation due to Stefan-Boltzmann: P, = €& T+

Example: Beam current: 11.4 MeV/u Arl%* with 10 mA and 1 ms beam delivery
Beam size: 5 mm FWHM — 23 kW/mm?, P, =450 kW total power during 1ms delivery
Foil: 1 um Tantalum, emissivity £=0.49

peak

Temperature mc_rease: | 5000 h |
T > 2000 °C during beam delivery 5
o 1500 ff :
Even for low average power, =
_ $ 1000
the material should 2
: s !
survive the peak power! g 900
O | |

.00 .02 .04 .06 .08 .10
time [s]

G
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High Power Faraday Cups ' %
BN A
Cups designed for 1 MW, 1 ms pulse power — cone of Tungsten-coated Copper

P P P i Connecting
Bismuth for high melting temperature and copper for large head conductivity. Flangswith
| Feed
Throughs
Faraday Cup
60 mm Cover
vacuum flange Dipole
150 mm Magnet
System
bellow _
. Stopping
compression " Electrodes
for movement

i Cooling
pn_eumat'C System with Z60mm
drive Cooling beam
Channels
Tungsten
Surface HV
(1mm) Suppressor
Copper Block
GSN
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