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Disclaimer

This course is based on material from the JUAS course on non-linear
dynamics by Y. Papaphilippou from the previous years.

Parts of the slides were taken / inspired from the course on nonlinear
dynamics of R. Bartolini (John Adams Institute, 2017) and the one of
A. Wolski (Cockroft Institute, 2015).



" Outline

= Introduction — nonlinear effects from a single sextupole
= Hamiltonian of the nonlinear betatron motion

s Resonance topology and onset of chaos

s Resonances are everywhere — can we do something?

= Lattice optimization by tracking

= Applications — making use of resonances

x Summary
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“a, Outline

= Introduction — nonlinear effects from a single sextupole
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s T0 correct or control chromaticity in a storage ring we need
to install sextupole magnets

= Nonlinear elements such as sextupole magnets can have
significant impact on the particle motion (as we will see)

s To illustrate this, we start with a very simple example
Assume a circular machine built of identical cells

There is one sextupole per cell, which is located at a point where the
horizontal beta function is 1m, and the alpha function is zero (to control
chromaticity in both planes we would need at least 2 sextupoles)

The phase advance per cell can be tuned
We consider for the moment only horizontal motion (i.e. y=0)

We build a small simulation code to study the particle behavior in
phase space turn-by-turn
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v Example of a Simple Storage ring @

The map from the sextupole in one cell to the sextupole in the next cell
IS just a rotation in phase space (periodic linear transfer matrix with
beta=1 and alpha=0)

x s COS [by  SIN Uy x

D — SIN by COS Ly Do
The change in the horizontal momentum of a particle moving through
the sextupole is found by integrating the Lorentz force

L
B B 1
Ap, = — —Yd ith =% = —kyz? (assumingy =0
D /OBpS Wi Bp 223:( uming y = 0)

If the sextupole is short we can neglect the small change in the
coordinate x as the particle moves through the sextupole, in which
case we obtain (thin lens approximation)
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v Example of a Simple Storage ring @

The map for a particle moving through a short sextupole can be
represented by a “kick” in the horizontal momentum

X=X

1
Pz 77 Pz — §k2L£C2

For the moment we consider a machine with a single cell, for which
the map consists of the linear transfer map and one sextupole kick

We choose a fixed value of k,L and look at the effects of the maps for
different tunes (i.e. phase advances) of the machine

For each case we construct a phase space portrait by plotting x, p,
turn after turn for a range of initial conditions
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", Example of a simple storage ring @
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", Example of a simple storage ring @
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", Example of a simple storage ring @
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&, Some observations

m There are some interesting features in these phase space portraits
to which it is worth drawing attention:

For small amplitudes (small x and p,), particles trace out closed loops
around the origin: this is what we expect for a purely linear map.

As the amplitude is increased, there appear “islands” in phase space:
the phase advance (for the linear map) is often close to m/p where mis an
integer and p is the number of islands.

Sometimes, a larger number of islands appears at larger amplitude.

Usually, there is a closed curve that divides a region of stable motion
from a region of unstable motion. Outside that curve, the amplitude of
particles increases without limit as the map is repeatedly applied.

The area of the stable region depends strongly on the phase
advance: for a phase advance close to 211/3, it appears that the stable
region almost vanishes altogether.

It appears that as the phase advance is increased towards T, the
stable area becomes large, and distortions from the linear ellipse
become less evident.
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"~ Resonances

If we include vertical as well as horizontal motion, then we find that
resonances occur when the tunes satisfy

natQac + nyQy =T

where n,, n, and r are integers. The resonance is of order |n,| + [n

yl
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"a, Resonances

If we include vertical as well as horizontal motion, then we find that
resonances occur when the tunes satisfy

nazQw + nyQy =T

where n,, n, and r are integers. The resonance is of order |n,| + [n
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"s, Resonances
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If we include vertical as well as horizontal motion, then we find that
resonances occur when the tunes satisfy

na:Qw + nyQy =T

where n,, n, and r are integers. The resonance is of order |n,| + [n
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“a, Outline

s Hamiltonian of the nonlinear betatron motion
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Given a function H(x, p; t) (called the Hamiltonian), the equations of
motion for a dynamical system are given by Hamilton’s equations

dr; = OH
dt o
dpi . OH
dt O

In Hamiltonian mechanics, the “state” of a system at any time is
defined by specifying values for the coordinates x (or more generally q)
and the momentum p

“Physics” consists of writing down a Hamiltonian

All Hamiltonian systems are “symplectic”: areas in phase space
are conserved as the system evolves even when the dynamics are
nonlinear. This important result is known Liouville’s theorem.
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"% Hamiltonian mechanics

It follows from Hamilton’s equations that the Hamiltonian itself is
conserved if the independent (“time-like”) variable does not appear
explicitly in the Hamiltonian:

dH OHdxr A OHdpy , OH
dt Oz dt Opg dt = Ot

Using Hamilton’s equations, we have

dH _OHOH OHOH OH _OH

dt ~ Ox Opy Opg Or T ot ot

If the Hamiltonian does not depend explicitly on t, then the
Hamiltonian is conserved

dH _ 0H _
dt ot

Non-linear effects, JUAS, January 2019
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In a lattice made from dipoles and quadrupoles the Hamiltonian reads
(in our usual coordinate system)

Dt Dy 2 k1(s)

H(s) > 200(s)2 | 2

(z® —y°)

Kinetic term dipoleterm quadrupole term
(quadratic in x and y!)

_ _ . p . p
where we have used the normalized momenta P = — and Dy = =

Po Po
The Hamiltonian consists of a kinetic term and a term for the vector

potential accounting for the magnetic fields

d OH
Using Hamilton’s equations flz _of and =2 = N (for x and y) we

find back Hill’s equations P ot

o= (l6) = ) 7=
Yy +ki(s)y=0
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Hamiltonian with nonlinear fields (I) @

The more general form of the Hamiltonian describing the motion of a
charged particle in the accelerator coordinate system with any order of
multipoles looks like this

. ]5:% +]§g2/ eA;

H(s) 5 o

We have only a longitudinal component of the magnetic potential, i.e.
A, since we restrict ourselves to pure transverse magnetic fields
(hard edge approximation), with the following multipole expansion:

. A T Re S (hy + i) )

S po 2p — (n+1)!

- M .

S ‘ ~ . (@)

7] B — 0As By + 1B, = Bopo Z(kn + Z]n) ( ol )

i x ay n=0 .

% o > . 1 anBy i = 1 0"B,

; By =——— " Bypo Ozm " Bopy Oy"
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", Hamiltonian with nonlinear fields (II) &Y

The Hamiltonian for the nonlinear betatron motion is then written like
this

2 2 2 M ..

P+ D x kn + 17 .

H = L y R n n n+1
2 27 T ez_ (n+1)!(x+zy)

We define H, the linear part (dependent only on dipoles and normal
guadrupoles)

px -|—py 72 k15132 — klyQ

H —

and V the nonlinear part dependent on the nonlinear multipoles

n—l—l
Vi(p ReZ[k s) + ijn(s )]< +2y Zana: y"

n>2 n>3

'/

short hand notation collecting terms
according to powers of x and y
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B N ormalizing linear part of Hamiltonian

We define a canonical transformation that reduces the linear part of
the Hamiltonian to a rotation

(z,p) = (J,9)

In detail
Jr = Yo + 20,0pg + Bop> linear Courant-Snyder invariant
¢, = —arctan (Bx% — ozx) — Z—:

This transformation reduces N

ellipses in phase space to ]
circles and the motion to a /7 — / 5

rotation along these circles & v

Non-linear effects, JUAS, January 2019
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- - € Z Y itk l4m o
‘/(J7 qﬁ; 3) — E Z Jx 2 Jy 2 @z[(Jk)¢x+(lm)¢y]

The complex coefficients hy, are called resonance driving terms
since they generate angle dependent terms in the Hamiltonian that
are responsible for the resonant motion of the particles (i.e. motion
on a chain of islands or on a separatrix)

The resonant driving terms are integrals over the circumference of the
accelerator of functions which depend on the s-location of the
multipolar magnetic elements

so+27mR

1 ‘|—k l—|— itk I+m il(i— s o s
P = PYExz2ETY <]j ) ( lm) / Viskirm(s) Be? (s) By 2 (s) elU=RIals)+Imm)dy ()] g

S0
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"=, Resonance driving terms (Il) X

The solution for the stable betatron motion can be written as a quasi
periodic signal (to first order in the multipole strengths)

2(n) — ipe(n) = /2J,e' Gt 0w0)
20 3" sjpam (20,) F (2,) 0T @rQunt dro) +m—1) (27 Qundy0)

Jjkim

. 1 h

—> solutions for stable betatron motion contain the driving terms

On the islands the betatron tunes satisfy a resonant condition of
type

Nz Qe +NyQy =1 (ng,n,) resonance

Non-linear effects, JUAS, January 2019
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"=, Resonance driving terms (Il X

Terms of type h;; are independ of Angle dependent terms excite
the angle. They produce detuning resonances creating fixed points
with amplitude to the lowest order in and island structures in phase
the multipolar gradient (resulting in space. E.qg. for the fourth order
a tune spread for a beam!) resonance (4,0)

V(J,¢;5) = % Z Z T3, hsu V(J,¢55) = %Jf;hzlooo@i[wx]

23‘?::7?136 2ll::791y

The dynamics with only detuning The phase space for the (4,0)
terms (amplitude dependent phase resonance looks like this

advance)

©

Non-linear effects, JUAS, January 2019
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so+27R

1 +k I+ # l+2m 1(g— S -m s
hjklm:W(?j )( zm) / Vi ko (s) BoF () B 2 () elli—Roe (o) 1=m)y ()] g
2

S0

Starting from the general definition of driving terms we substitute the
function that give the azimuthal distribution of the normal sextupoles

V(Z;5) = ba(s)(2” — 3ay?) = Vao(s)z° + Via(s)zy”

Sextupoles generate the following resonant driving terms (see
Guignard, Bengtsson)

Note:
from Vzg =——> N300 12100 m No detuning terms (in first order
resonances: (3,00 (1,0) of the sextupole strength) — they
are generated only in second
order

fromVy; —— h1020 hio11 1002 g pyre horizontal but no pure

resonances: (1,2) (1,0) (1,-2) vertical resonance terms (since
no skew sextupoles)

Non-linear effects, JUAS, January 2019
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&

V(;5) = ba(s) (" — 62°y” + y*) = Vao(s)a* + Vaa(s)2?y? + Vou(s)y"

In an analogous way we can see that the normal octupoles in the
circular ring generate the following resonant driving terms (see
Guignard, Bengtsson)

Note:

m Detuning terms (in first
order of octupole strength)

m Also pure vertical
resonances excited

from V, = haooo  h3100 h2200
resonances. (4,00 (2,0) (det.)

fromV,, —> hoo20 hi120 h2o11  hi111
resonances:. (2,2) (0,2) (2,0) (det.)

from Vo, = hooso hoo31r  hoo22
resonances. (0,4) (0,2) (det.)

Non-linear effects, JUAS, January 2019
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e,
N/

Let us consider the nonlinear Hill’s equation for the case of a linear
lattice where a single sextupole kick is added

g _ K(s) = — k
d82 + K(S)CE = 9 i <S> ,02(8) 1(8)
Use perturbative procedure and solve this equation by successive
approximations. The perturbation parameter ¢ is proportional to the
sextupole strength k,. We look for a solution of the type:

x(s) = 2o + €x1(s) + €2x2(s) + O(€?)

Substituting, ordering the contributions with the same perturbative
order we have

d2$0 d25131 2 d25€2
d32 -+ K(S)Q?O =0 d32 -+ K(S)ZCl = kQ(S)ZUO(S) d32

+ K(s)xo = 2ka(s)xo(s)x1(s)

order zero: &° first order: &! second order: &2
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2%, Sextupole excites 4t order resonance

At each step we are using functions already calculated at the previous
steps

20(8) = \/€28:(5) cos[p,(s) + ¢zo] Linear solution

Term generated by the 3
71(8) < Acos[2¢,(8) + ¢zo] order resonance; linear
with k, (first order)

Terms generated by the
xa(s) x C cos|[30(s) + ¢ro] + D cos|p,(s) + ¢ro] 4 order and 2" orqler

resonance; quadratic

with k, (second order)

The series obtained from the successive approximation are in general
divergent. However, the canonical perturbation method shows that
sextupoles can excite 4th order resonances in second order with
the sextupole strength k,

Non-linear effects, JUAS, January 2019
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“a, Outline

s Resonance topology and onset of chaos

Non-linear effects, JUAS, January 2019
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Regular motion near the center

For increasing amplitudes the
circles get deformed towards a
triangular shape until the
resonance condition is met

The separatrix (barrier between
stable and unstable motion)
passes through 3 unstable fixed
points

Unstable
fixed points

Separatrix
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Regular motion near the
center, with curves getting
more deformed towards a
rectangular shape

The separatrix passes through
4 unstable fixed points, but
motion seems well contained

Four stable fixed points exist
and they are surrounded by
stable motion (islands of
stability)

UFP

LLLLLLLLL
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Simulation of simple storage ring with a single octupole close to 4t
order resonance

Detuning with amplitude (linear in action)
Particles in the stable islands have tune locked to resonance
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Simulation of simple storage ring with a sextupole and an octupole
close to 3'9 order resonance

The amplitude detuning induced by the octupole can create stable
islands even for the 39 order resonance (if the resonance is weak
enough) — the tune of particles in islands is locked to the resonance
while particles at higher amplitudes do not meet the resonance
condition any longer - “stabilizing” effect)
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* Path to chaos

When perturbation becomes higher, motion around the separatrix
becomes chaotic (producing tongues or splitting of the separatrix)

Unstable fixed points are indeed the source of chaos when a
perturbation is added

Se-06
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Poincare-Birkhoff theorem states that
under perturbation of a resonance only an
even number of fixed points survives (half
stable and the other half unstable)

Get destroyed when perturbation gets
higher, etc. (self-similar fixed points)

Resonance islands grow and resonances
can overlap allowing diffusion of particles

2e-06

1.5e-06

le-06

5e-07 ¢

0 L

-5e-07

-le-06 r

-1.5e-06

-2e-06

-0.006

-0.004  -0.002 0.002  0.004 0.006

le-06

9.5e-07 BN

9e-07

8.5e-07

8e-07

7.5e-07

Te-07

-0.0006 -0.0004 -0.0002 0.0002 0.0004 0.0006



Non-linear effects, JUAS, January 2019

When perturbation grows, the resonance island width grows

Chirikov (1960, 1979) proposed a criterion for the overlap of two
neighboring resonances and the onset of orbit diffusion

n1-+no ni+nh

2 1 . 1 i
The distance between two resonances IS 6J; . = ( >
92 Hy(J)
dJ 2

The simple overlap criterion is
AJAn maz T Ajn’ max > 5jn,n’

Considering the width of chaotic layer and s2econdary Islands, the
“two thirds” rule applies AJ, ... + AT > g(sjm,

Ji=Jio

The main limitation is the geometrical nature of the criterion
(difficulty to be extended for > 2 degrees of freedom)

0.8x/211.0 i : i 0.6  0.8,/771.0



“a, Outline

s Resonances are everywhere —can we do something?

Non-linear effects, JUAS, January 2019

41



Non-linear effects, JUAS, January 2019

Resonances can be excited by nonlinear elements installed
intentionally (e.g. sextupoles for chromaticity correction) and / or by
unavoidable multipolar errors from magnet imperfections

Especially superconducting magnets can have strong multipolar errors
up to very high orders due to the finite size of the coils reproducing
only partially the cos-0 dependence of the current distribution
necessary to achieve pure dipole fields

TaABLE I

MEASURED MULTIPOLES IN THE MBP2N1 PROTOTYPE:
AVERAGE OF 18 MEASUREMENTS ALONG THE MAGNET AXIS.
Unirs oF 10*ATR, = 17 mm.

Collared Assembled After cryo

Ap.1 Ap.2 Ap.1 Ap.2 Ap.1 Ap2

a2 094 043 0.98 0.75 0.89 0.81
b2 -096 125 -548 573 499 513
a3 -0.11 029 -038 -001 -046 0.00
b3 208 271 8.09 8.68 8.17 8.71
a4 006 005 0.05 0.10 0.07 0.11
b4 -007 020 -066 075 -067 077
as -006 -005 -007 -002 -008 -0.02
b5 -0.63 -060 -069 -064 -076 -0.71
a6 003 003 0.02 0.03 0.02 0.03
b6 000 -001 -002 003 -003 003
a7 003 003 0.02 0.00 0.02 0.01
b7 0.65 0.70 0.57 0.61 0.58 0.61
b9 025 026 0.26 0.26 0.21 0.20
bll 073  0.73 0.63 0.62 0.63 0.62

Dipole I (#) =1, cos ¢
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+"%, What can we do about resonances? I@mj

The number of resonance lines in tune space is infinite: any point
In tune space will be close to a resonance of some order

Remember that the driving terms creating resonances are complex
numbers that are obtained by integrating contributions from individual
multipoles around the machine taking into account the phase advance.
By properly arranging these nonlinear elements around the machine
circumference, some resonance driving terms can be cancelled

Cancellation of resonance driving terms can be achieved by

1. Lattice periodicity or designing machine sections with symmetry (e.g.
arranging sextupoles in families with certain phase advances, ...)

2. Add sufficient multipole correctors to control driving terms

Non-linear effects, JUAS, January 2019

43



Non-linear effects, JUAS, January 2019

- Lattice periodicity

Consider a machine built of a number of identical cells. If a particular
resonance is excited or suppressed depends on the resonance
harmonic and the periodicity. In fact, the dynamics of a machine with P
iIdentical cells and tune of Q is the same as the one of a single sector
with tune Q/P.

Let’'s have a look what happens in our simple storage ring when we
iIncrease the number of cells but adjusting the phase advance per
cell such that the overall tune remains unchanged. At the same time
we compute the resonance driving term contribution for each sextupole
of the machine and plot it together with the phase space obtained from
tracking
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By imposing a periodicity P in the lattice (i.e. building a machine from
P identical cells) the resonance condition becomes

Ny Qe +nyQQy = 1P

Resonances for which rxP is integer - systematic
If r<xP is NOT integer the driving term cancels - non-systematic

periodicity P=2 periodicity P=3
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1200F

Advanced Light Source design lattice periodicity: 12

Measurement of beam Synchrotron light beam spot
loss as function of tune Uncorrected optics Corrected optics
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D. Robin, C. Steier, J. Safranek, W. Decking, “Enhanced performance of
the ALS through periodicity restoration of the lattice,” proc. EPAC 2000. 48
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N/N0

SPS (hadron machine) has design lattice periodicity of 6

Some indication for the strength of individual resonance lines can be
Inferred from the beam loss rate during dynamic tune scans, i.e. the
derivative of the beam intensity at the moment of resonance crossing

Sextupole resonances can be clearly identified although they
should be suppressed by lattice periodicity ... but SPS has no
Individual quadrupoles to restore optics functions distortions

Measured losses during tune scan Measured loss rate in 2D scan
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The Low Energy lon Ring (LEIR) at CERN is a small ion accumulator
with lattice periodicity < 2 (optics perturbations due to e-cooler distort

2 fold symmetry)

Many resonances observed in measurements

Sources for some resonances not clear and presently under study (e.g.
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Compensation of individual resonance

If a resonance is sufficiently weak, one can try to globally minimize the
corresponding resonance driving term

A pair of multipole correctors that are ~orthogonal in the corresponding
resonance driving term is needed to cover all phases. Ideally these
multipole correctors are installed in regions with zero / low dispersion in

order not to change the (non-linear) chromaticity

Note: A setting of multipole correctors that compensate a given

resonance might unfortunately excite other resonances

Example: phase space reconstructed from measured turn-by-turn
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Resonance compensation at LEIR @

Brute force technique: sweep tune through resonance and observe
beam loss for different settings of pair of multipole correctors

2 sextupole corrector acting on
h1020 resonance driving term
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'Resonance compensation at PSB @

PSB is a machine with 4 rings and periodicity 16

Each ring has a stack of multipole correctors (quadrupoles, sextupoles
and octupoles, all normal and skew!) with appropriate phase advances

Allows to compensate various resonances around the working point
(actually needed because tune spread is large due to space charge)
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= Lattice optimization by tracking

Non-linear effects, JUAS, January 2019
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. T
A S,

.. Dynamic aperture

The most direct way to evaluate the non-linear dynamics performance
of a ring is the computation of Dynamic Aperture (short: DA)

Particle motion due to multi-pole errors is generally non-bounded, so
chaotic particles can escape to infinity

This is not true for all non-linearities (e.g. the beam-beam force)

Need a symplectic tracking code to follow particle trajectories (a lot of
Initial conditions) for a number of turns (depending on the given
problem) until the particles start getting lost. This boundary defines the
Dynamic aperture

As multi-pole errors may not be completely known, one has to track
through several machine models built by random distribution of
these errors

One could start with 4D (only transverse) tracking but certainly needs
to simulate 5D (constant energy deviation) and finally 6D (synchrotron
motion included)
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¥ (mm)

"= Dynamic Aperture plots

Dynamic aperture plots show the maximum initial values of stable
trajectories in x-y coordinate space at a particular point in the lattice,
for a range of energy errors

The beam size can be shown on the same plot

Generally, the goal is to allow some significant margin in the design —
the measured dynamic aperture is often smaller than the predicted
dynamic aperture

Y (mm)
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&

@erreﬂ from measured loss data)

Simulations: IC 1=2x107
. . IC1=4x10" .
During LHC design phase,

DA target was 2x higher than
collimator position, due to
statistical fluctuation, finite
mesh, linear imperfections,
short tracking time, multi-
pole time dependence, ripple
and a 20% safety margin

Good knowledge of the
model led to good
agreement between
measurementsand e e TR TR
simulations for actual LHC o 2 4 gx [Um:iﬂ] 10 12 14

E.Mclean, PhD thesis, 2014
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MOGA —Multi Objective Genetic Algorithms are being used to optimise
linear but also non-linear dynamics of electron storage rings

Use knobs quadrupole strengths, chromaticity sextupoles and
correctors with some constraints

Target ultra-low horizontal emittance, increased lifetime and high
dynamic aperture

Non-linear effects, JUAS, January 2019
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s Frequency Map Analysis (FMA) is a numerical method which
springs from the studies of J. Laskar (Paris Observatory)
putting in evidence the chaotic motion in the Solar Systems

= FMA was successively applied to several dynamical systems

Stability of Earth Obliquity and climate stabilization (Laskar, Robutel,
1993)

4D maps (Laskar 1993)
Galactic Dynamics (Y.P and Laskar, 1996 and 1998)

Accelerator beam dynamics: lepton and hadron rings (Dumas, Laskar,
1993, Laskar, Robin, 1996, Y.P, 1999, Nadolski and Laskar 2001)
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% NAFF algorithm

When a quasi-periodic function f(t) = q(t) + ip(t) in the complex
domain is given numerically, it is possible to recover a quasi-periodic

Non-linear effects, JUAS, January 2019

approximation N
ft) =) ape™

In a very precise way over a finfig- time span several orders of
magnitude more precisely than simple Fouriertécthniques

This approximation is provided by the Numerical Analysis of
Fundamental Freqguencies — NAFF algorithm

The frequencies and complex amplitudes are computed through
an iterative schemg ay
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vo)*1.00

(v—

(v vg)*1.D9

In the vicinity of a resonance the system behaves like a pendulum

Passing through the elliptic point for a fixed angle, a fixed frequency (or
rotation number) is observed

Passing through the hyperbolic point, a frequency jump is observed
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" Building the frequency map @

Choose coordinates (x;, y;) with p,=p,=0

Numerically integrate the phase trajectories through the lattice for
sufficient number of turns

Compute through NAFF Q, and Q, after sufficient number of turns

Plot them in the tune diagram
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. Frequency Map for the ESRF

14.50
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)
> 14.40

14.35

All dynamics represented in two plots (Frequency Map / Diffusion Map)

Regular motion represented by blue colors

Resonances appear as distorted lines in frequency space (or

curves in initial condition space)

Chaotic motion is represented by red scattered particles and defines
dynamic aperture of the machine

FMA shows also nicely the detuning with amplitude
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&

Large tune footprint
and DA reduction due
to “long range beam-
beam” forces
(electromagnetic field of
other beam in
interaction region)

DA clearly improved
when compensating
long range beam-
beam with a wire

S. Fartoukh et al.,
PRSTAB, 2015

Non-linear effects, JUAS, January 2019
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" Experimental frequency maps

&

Frequency analysis of turn-by-turn data of beam oscillations produced

by a fast kicker magnet and recorded on a Beam Position Monitor

Reproduction of the non-linear model of the Advanced Light Source
storage ring and working point optimization for increasing beam lifetime
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= Applications — making use of resonances

Non-linear effects, JUAS, January 2019
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%%, Where resonances can be of use @

s Resonances can be exploited to extract the beam in a
controlled way

Many physicists would like to have a continuous flux of particles to
perform experiments with high energy (~low intensity) particles.
Resonant slow extraction using 3 order resonance is widely used to
create a “spill” of the order of seconds, i.e. the beam is extracted over
many thousands of turns.

Resonant multi-turn extraction (MTE) was invented to transfer the
beam over 5 turns from the PS to the SPS at CERN with minimal
losses based on exciting a 4™ order resonance.

Resonant fast extraction is based on excitation of the half integer
resonance by octupoles and a fast discharge of a quadrupole that
pushes the particle tune onto the resonance so that they are extracted
on a few ms.

Non-linear effects, JUAS, January 2019
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le3 px
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Closed orbit bump to bring beam close to septum

Sextupole magnets excite 3" order resonance. Large tune spread (e.g. from
chromaticity and not octupoles since we do not want to stabilize the particles)
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le3 px

40 |- .

20

20

40

Septum wire

60 1 1
—20 0 20 40 60 80

®x [mm]

Closed orbit bump to bring beam close to septum

Sextupole magnets excite 3" order resonance. Large tune spread (e.g. from
chromaticity and not octupoles since we do not want to stabilize the particles)

AQ (distance to resonance) small — large amplitude particles close to separatrices
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le3 px

_ED | | | | . | |

6[} T T T T T T

Circulating (red, £30) and extracted (blue) horizontal beam envelopes
A0 F ] and aperturesin the LSS2 extraction region.

02—
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20k ' . .

Septum wire
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Closed orbit bump to bring beam close to septum

Sextupole magnets excite 3" order resonance. Large tune spread (e.g. from
chromaticity and not octupoles since we do not want to stabilize the particles)

AQ (distance to resonance) small — large amplitude particles close to separatrices

AQ small enough that largest amplitude particles are unstable and follow separatrix
with increasing amplitude - particles jump the septum and are extracted
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le3 px

_ED | | | | | |

; Circulating (red, £30) and extracted (blue) horizontal beam envelopes
40 - 1 and apertures in the LSS2 extraction region.
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Closed orbit bump to bring beam close to septum

Sextupole magnets excite 3" order resonance. Large tune spread (e.g. from
chromaticity and not octupoles since we do not want to stabilize the particles)

AQ (distance to resonance) small — large amplitude particles close to separatrices

AQ small enough that largest amplitude particles are unstable and follow separatrix
with increasing amplitude - particles jump the septum and are extracted

As AQ approaches zero, particles with very small amplitude are extracted 73
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s Continuous Transfer (=non resonant multi-turn extraction) of
high-intensity beams from CERN PS to SPS in use since 1973

Drawback of high beam loss during the
process due to physical slicing of the
beam on septum

Issues with machine activation (radiation)
due to losses

s Resonant Multi-Turn Extraction (MTE) proposed in 2001 to
reduce losses at PS-to-SPS transfer M. Giovannozzi et. al

MTE based on concepts of non-linear beam dynamics (Crossing of a
stable 4th order resonance and particle trapping inside islands) to
perform a “magnetic splitting” of the beam to avoid losses on septum

Unigue extraction process, has never been done elsewhere

Used in routine operation for transfer of fixed target beam since 2015
75



Resonant multi-turn extraction

1) program non-linear elements to

appropriate values to excite resonance IV_“" ~ _P‘;Tlﬂdlg.::
(sextupole + octupole) 1 E“‘“m:r‘:ﬂ;m )
2y ramp horizontal tune across the ?“ ......... ], 1
resonant value 2 04r 102
3) decrease current in the elements while 02F {:w
Increasing the tune Y R YR F

Cyele time [s)

4) extract the beam once islands are
sufficiently separated: 4 machine turns

for the islands + 1 turn for the core M. Giovannozi,
A. Huschauer et al.
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= Summary

6T0Z Arenuer ‘SYNC ‘S108)8 Jeaul-UoN



4

®, Summary

Non-linear elements create detuning with amplitude and excite
resonances

Appearance of fixed points (periodic orbits) determine the topology of
the phase space

Perturbation of unstable (hyperbolic points) opens the path to chaotic
motion

Resonances can overlap enabling the rapid diffusion of orbits
Individual resonances can be compensated (to some extent)

Need numerical integration (tracking) for understanding impact of non-
linear effects on particle motion (dynamic aperture)

Frequency map analysis is a powerful technique for analyzing particle
motion in simulations but also in real accelerator experiments

Resonances can be used for beam extraction

Non-linear effects, JUAS, January 2019
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