Transverse Beam Dynamics

JUAS 2019 - Tutorial 4 (solutions)

1 Exercise: Dispersion suppressor

In several straight sections of the accelerator, like the ones hosting RF cavities, extraction systems or other devices such
as detectors, it is preferable to have no dispersion 7(s) = n'(s) = 0. For example, in big colliders, such as the LHC,
where small spot sizes are required at the interaction points, the dispersion is reduced to zero at the detector positions.
The most common dispersion suppressors consists of two FODO cells of equal length L and equal quadrupole strengths.
Bending magnets are placed in the space between the quadrupoles with a different bending field in each FODO. Figure
below shows a typical dispersion suppressor.
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1. Considering two FODO cells with different total bend angles, 6, # 65, calculate the relation between the angles 6,
and 6, which must be satisfied to cancel the dispersion at the end of the lattice.

Hint:
For each FODO cell, Mropo = Mi/or - Mdipole - Mp - Mdipole - Mi/r, in thin-lens approximation we have the following 3 x 3
matrix:
L? L L L
1-& L(+&) f(+&)e
M, L= L L L? L L2 )
FODO J —ir (1—ﬁ) 1= 5p (1—w—32fz)9g
0 0 1
cosp  Psinp %(1+8Lf)9j
= i L L?
—=5F cosp ( _Q_szfQ)HJ
0 0 1
where 7 = 1,2 (1=first cell, 2=second cell).
The following condition must be satisfied:
0 o
0 = Msuppressor 0 (1)
1 1

where 7) is the initial dispersion (at the middle of the first focusing quadrupole). It can be demonstrated that for a
FODO lattice the dispersion has its maximum at the middle of the focusing quadrupole:
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with 8 = 01 4+ 05 the total bend in the suppressor.
Answer.

Performing the corresponding matrix multiplication yields

cos2u  fBsin2u D,

Msuppressor = —sin2p COS 2[1, D'z
0 0 1
where:
L2 L4
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. L? L
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Taking into account:
2 . 2 in g I
CosS U = 1— 78LF2; /BSIH/I =L+ Tlllﬁ and smp B = 74];2 (1 vy p)

the elements D, and D/ may also be written as

L L L?

Dy==(1+=2
=5 (1) [(3- 7)o e
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From the condition Eq. (1) we have
Mocos2p+ Dy =0

sin 2
—o BMJFD; =0

Substituting Eq. (2) in Eq. (5) one obtains:

L2 L2 8f2
(3-i) o= (-5 - )

L2 L2
(“M)%”2(‘wﬁ

In terms of phase advance p this can be written as:

where 61 + 65 = 0.



2. Obtain the relation between the angles for the cases of phase-advance per cell p = 7/3 and 7/2
Answer.
e For i = /3 — 4sin® £ =1 and therefore (using Eq. (6)) #; = 0 and 6, = 6. This corresponds to a dispersion
suppressor with missing magnets.

e For y=m/2 — 4sin® & = 2 and therefore §; = 05 = 0/2.

2 Exercise: Double-Bend Achromat (DBA) lattice

A Double-Bend Achromat (DBA) can be made from two dipoles with a horizontally focusing quadrupole between them.
The transfer matrix through the achromat is:

Mppa = Mpend Marits M1 27 M1 /o7 Marigt Mbend

Note that this magnet configuration does not produce vertical focusing, therefore it will not be enough to create a stable
lattice. A full DBA typically comprises additional quadrupole doublets before and after the bending section. For sake of
simplicity, we will neglect them.

1. Use the thin-lens approximation for quadrupoles and small-angle approximation for bends to find the dispersion in
the middle of the quadrupole. Write the focal length in terms of the drift and bend parameters.

Answer. Let us consider the 3 x 3 transfer matrices of each element of the lattice (using the thin lens approximation
and small angle approximation for the bending magnets) for the beam coordinates =, 2’and Ap/p:

1 0 0 1 L 0 1 0 0
Mpena=| 0 1 0 |, Maig=| 0 1 0 |, Mp= 3 10
0 0 1 0 0 1 0 01
Assuming the initial dispersion vector (10,79 1) = (0,0,1) and propagating it to the centre of the quadrupole:
Ne 0
0 | = Mo Marigt Myena | 0
1 1

Here we take into account that ’=0 at the centre of a quadrupole. After matrix multiplication we obtain:

e 11 L ) Lo i 0
1 0 0 1 1
Therefore, one obtains:
n. = L0
L
1-—=0=L=2
2 ~ 7 /

2. Show that the dispersion vanishes after the bend.

Answer. Propagate the dispersion vector from the centre of the quadrupole to the end of the lattice:

Nend Te
Nena | = MbenaMarigsMijor | 0],
1 1



Nend 1- % L 0 Me
/ _ 1

nend - _ﬁ 1 0 0
1 0 0 1 1

Taking into account L = 2f, we obtain:
Nend = (2f - L)G =0,

A S S _
nend_e 2f770_9 2f(2f0)_0

3. Compute the parameters L, f for a 10-meter long DBA which bends the beam by an angle of 1 radians. What is
the dispersion in the centre? Given a particle with 1% energy deviation, compute the displacement at the centre of
the cell.

Answer.
L=5m

f=25m
D=L-0=5m
z=0D=001l*x5m=>5cm

3 Exercise: Chromaticity in a FODO cell

Consider a ring made of N, identical FODO cells with equally spaced quadrupoles. Assume that the two quadrupoles
are both of length [;, but their strengths may differ.

1. Calculate the maximum and the minimum betatron function in the FODO cell. (Use the thin-lens approzimations)

fr L 7o L fr

Answer. First we calculate the transfer matrix for a FODO cell (see figure). We start from the centre of the
focusing quadrupole where the betatron function is maximum. This exercise considers a general case where fr is
not necessarily equal to fp. Using the thin lens approximation for the FODO cell with drifts of length L we get the

following matrix:
M ( 1 0)(1 L)(l 0)(1 L)( 1 O)
u= 1 1 1
ce —am 1 0 1 7 1 0 1 —g5 1

1 1 L L?
( 1 1_1L(]TF_1‘4107]D—~_Lm112 12L+1f7D L )
ot ans) 1L~ tans)

Remember that, in terms of betatron functions and phase advance, the matrix of a FODO cell is given by:



cosli + asin sin
Meen = ( a s 5 K ) (8)

—ysinp cos |4 — asin pu
Since § has a maximum at the centre of the focusing quadrupole, then « = —f’/2 = 0, and we can also write:
cosp fBsinp
Mcell = ( 7312# cos [t )

Equating Eq. (7) to Eq. (9) we obtain:

L L L2
= —1-2sin?t
o fr 2fpfr 2

or

2sin? £ L L L

2 fr fo  2fpfr

. . . - sl . .92
Where we have applied the following trigonometric identity: cosy = 1 —2sin” §.
The maximum for the betatron function 8,4, occurs at the focusing quadrupole. Since Eq. (7) is for a periodic cell

starting at the centre of the focusing quadrupole, the mi5 component of the matrix gives us

(9)

L2
Bmazsinpg = 2L + —
Ip

Rearranging:
Bmaz = . Jo (10)

On the other hand, the minimum for the betatron function occurs at the defocusing quadrupole position. Therefore,
interchanging fr with —fp for a FODO cell gives:

oL — L2
Bmin = —— uf - (11)

. Calculate the natural chromaticities for this ring.

Answer. Let us remember the definition of natural chromaticity. The so-called “natural” chromaticity is the
chromaticity that derives from the energy dependence of the quadrupole focusing, i.e. the chromaticity arising only
from quadrupoles. The chromaticity is defined in the following way:

AQ

&= AP/P,

(12)

where AQ is the tune shift due to the chromaticity effects and AP/P, is the momentum offset of the beam or the
particle with respect to the nominal momentum py.

The natural chromaticity is defined as (remember from Lecture 4):

& = 3 P B k()ds (13)

Sometimes, especially for small accelerators, the chromaticity is normalised to the machine tune Q and defined also
as:



) AQ/Q

ey = — MQ%&

For this exercise, either you decide to use Eq. (13) or Eq. (15) it is fine! From now on let us use Eq. (13):
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471— cell
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i€{quads}

(15)

Here we have used the following approximation valid for thin lens:

B(s)k(s)ds ~ > Bikly)

cell i€{quads}

where we sum over each quadrupole 7 in the cell. In the case of the FODO cell we have two half focusing quadrupoles

and one defocusing quadrupole. Taking into account that (kl,); = 1/f;, we have:

Nce
v = Y Bilkly)

i€{quads}
1

o Ncell 7i _

- |:Bmaac (2f )+6mzn< fD) +Bmaz (ZfF):|
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NeewL |1 1 L

27rsmu {_ ]

+
fr fo frfp
Here we have used the expressions (10) and (11) for Sp4. and Brin-

3. Show that for short quadrupoles, if fr ~ fp,

Ncell 1%
p an 9"

Env ~ —

Answer. If fr ~ fp, we have

Ncell L2

2rsinp frfp
N,
S = — S Y

4msin & cos § 2

EnN = —

where we have used the trigonometric identity: siny = 2sin £ cos §
Considering Eq. (9), we have
L2
4 sin? B

2 frfp




which finally gives:

N,
ey~ — el gan B
T 2

Q.E.D.!

. Design the FODO cell such that it has: phase advance p = 90 degrees, a total length of 10 m, and a total bending
angle of 5 degrees. What are Binaz, Bmin> Dmazs Pmin?

Answer. Lattice parameters: L = 10 m, § = 5 degrees= 0.087266 rad, f = %% =3.535 m

Maximum and minimum betatron functions:

Maximum and minimum dispersion:

LO(1+isink) f L LO(1—3sing) f L
Dppow = ——2""27 — 2 (4f4+ 2 ) 0 =0.59060 Dppin = ———2" "2/ — 2 [ 4f_— = |§=0.28207
4sin2% I ( f+ 2> m, T f 5 m

. Add two sextupoles at appropriate locations to correct horizontal and vertical chromaticities. (hints: use 1 sextupole
for the horizontal plane and 1 for the vertical plane; do not consider geometric aberrations).

Answer. By locating sextupoles with strength K, > 0 where 3, is large and 3, is small, we can correct the
horizontal chromaticity with relatively little impact on the vertical chromaticity. Similarly, by locating sextupoles
with K, < 0 where 3, is large and 3, is small, we can correct the vertical chromaticity with relatively little impact
on the horizontal chromaticity. See figure below.

sextupole sextupole
quadrupole |, dipole  quadrupole l dipole

-

Let us assume the case of a FODO lattice where fr = fp = f. Then the natural chromaticity of this FODO cell is
given by the expression (exercise 1.3):

1
¢y ~ ——tan £
s 2
For =90 it is {; ~ —1/7 in both horizontal and vertical plane. Therefore, we need to adjust the strength of the

sextupoles to cancel this chromaticity:

*% [KQFDmamBmam + KQDszanln] = *l

T T

where Kop = kopls is the normalised integrated strength of the sextupole located near the focusing quadrupole,
and Ksp = kopls the normalised integrated strength of the sextupole near the defocusing quadrupole (with I the
effective length of the sextupole). For an effective cancellation of the chromaticity in both planes, usually Kop > 0
and Ksp < 0. Substituting the values for the maximum and minimum dispersion and betatron function in terms of
the total length of the lattice L and the focal length of the quadrupoles f, one obtains the following expression:

2 2
e 2) (5 a0 2) (- 5]
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Considering the same absolute value for the strength of the sextupoles, Kop = —Ksp = K, we can write then:

1
iKSLfQ =—
4 T
The strength of the sextupole is given then by:
4
K= —=
3Lf0

Then, substituting all the numerical values for the lattice parameters:
Kop = 0.865 m~2
Ksp = —0.865 m—2

. If the gradient of all focusing quadrupoles in the ring is wrong by +10%, how much is the tune-shift with and without

sextupoles?

Answer.

If the gradient of the focusing quadrupole has and error of 10%, then the corresponding quad. strength error is also
10%. We calculate the number of cells of a ring made of these FODO cells, N.;; = 72 cells, and then we calculate
the total tune-shift in both planes:

AQI = LVcell AKifmam =9.78
AQy = Neey 255 min — 1,68

When the sextupoles correct for the chromaticity, the particles have, in principle, no tune-shift with energy. In real
machines, one wants to have a non-zero residual chromaticity to stabilise the beam against resonant imperfections.

Exercise: Low-Beta Insertion

Consider the following low-beta insertion around an interaction point (IP). The quadrupoles are placed with mirror-
symmetry with respect to the IP:

The beam enters the quadrupole with Twiss parameters 8y = 20 m and oy = 0. The drift space has length L = 10

Determine the focal length of the quadrupole in order to locate the waist at the IP.
What is the value of 5*7

What is the phase advance between the quadrupole and the IP?



Solution.

We get a system of equations:

multiplying them:
_ AR AN I
1_<ﬁ°(l 7) +ﬁo> (%+%)

Fo Bo/ (B3 —4L?) + 55
2L

and solving for f:

from which one finds:
f=20m
and substituting back into one of the equations in the system:

BIP = 10 m.

The phase advance can be computed remembering that

u B2 (cos s + ag sin ) V/BsBosin 1),
0—=s = (ap—as) cos s —(1+apas) sin g Bo

VB-Bo 5> (cosths — agsin )

Trace (M) = g = <\/§+ ﬁ) cos Ay

1 3 1
5 50 arccos (2 21213) egrees
5 TVE

In this case, ag = ap =0,

Ap = arccos

N W

Alternatively, given that the system:

M=Q-D-D-Q

_ 2L 2L
M= o % T
7T 7

AL

1 1
€08 Alltwice = iTrace (M) = iTrace <2 — f) =0

Apigwice = 90 degrees = Ap = 45 degrees

is indeed periodic, one can say:



