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Radiation and the lattice

� Synchrotron radiation will be treated in detail in 

later lectures, but it is useful to collect together 

those results that interest the lattice designer.

� ‘Dispersion invariant’ and ‘Radiation Integrals’:

where ΛΛΛΛ=1 for sector dipoles and ΛΛΛΛ=0 for 

rectangular dipoles.

� These are used to evaluate: α α α α = mom. compaction; 

Uγγγγ= energy loss/turn; = lattice damping const.; 

Jx, Jy, Js= damping partition nos; σσσσ, Ex=equilibria.
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Controlling the emittance

� The performance of a light source is largely 
determined by the horizontal beam emittance,
where the balance between excitation and damping 
depends on H(s), Dx(s), k(s) and ρρρρ(s), all of which 
depend totally on the lattice.

where

� We can reasonably assume that all the dipoles are 
identical rectangular bends (ΛΛΛΛ=0) with a bending 
radius ρρρρ0 and a constant gradient k0.  Note ΛΛΛΛ=1 for 
sector bends.  Furthermore, outside the dipoles ρρρρ = 
∞ reducing the contributions to the integrals to 
zero, so that, 

where L is the length of a dipole.
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Controlling the emittance continued

� Finally, if the dipole has no gradient, then

� Thus the smallest emittances in both (6.3) and (6.4) 
will be obtained by making the integral of H(s) in 
the dipole as small as possible.

� If the dipole has a gradient it helps if ρρρρ0 is large. 
There appears to be a conflict with Dx that needs to 
be small for the numerator in (6.3) and (6.4) and 
large for the denominator in (6.3), but this will be 
resolved later.

� For the evaluation of H(s),

� From Lecture 1 Eqn (1.19)

� Also from Lecture 1,
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Controlling the emittance continued

� Since we want zero dispersion in the straight 

sections and dispersion bumps between pairs of 

dipoles, we can put Dx(0) = D′ x(0) = 0 on the input 

side of the dipole. This fixes Dx and resolves the 

conflict mentioned earlier.

� For a horizontal bending dipole, for which we 

neglected the weak focusing term 1/ρρρρ2 , but keep k,

where k < 0 is focusing and k > 0 is defocusing.

Dx(s)

ββββ((((s))))

L

Dx(0) =  0

D′x(0) = 0

ββββ(0) (0) (0) (0) 

αααα(0)(0)(0)(0)

Dx, ββββ

s
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Controlling the emittance continued

� When k = 0, this quickly reduces to, 

� In this case, the dispersion invariant H(s) becomes,

and its integral through the dipole, 

� To find the minimum in H(s) (and hence the 

smallest emittance)
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Controlling the emittance continued

� The partial differentials yield 2 conditions for 

minimum H(s), Ref. [6.1],

� This is the principle used by Rena Chasman and 

Ken Green for the Double Bend Achromat that 

launched the 3rd generation of light sources.

� Note that the previous slides leave open certain 

side issues.  

� It should not be too difficult to extend this theory 

for dipoles with a finite dispersion at the entry.

� What effect would a focusing or defocusing 

gradient have?

� Is it possible to solve the complete problem using 

the full expressions for the matrix elements with 

finite dispersion at the entry?  
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Matching Chasman-Green Ref. [6.2]

� The smallest repeatable structure is the half 
superperiod: ( F D O F ). 

� The entry and exit planes are symmetry planes 
and the entry plane is dispersion free, so 

� The number of cells fixes the bending angle.

� The goal is to make ββββx and Dx as small as possible 
within the dipole.  Dx starts from zero and there 
is little margin for adjustment.  For ααααx and ββββx, 
there are intermediate matching conditions at the 
entry to the dipole.

� However, αααα = 3.873 is likely to be unstable, so 
relax this condition and try to reach 3.0.  The 
example on the next slide needs this refinement.

Input   0

output andInput    0
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=′=′==
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zxzx
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length Dipole549.1
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=
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Matching Chasman-Green 

continued

The above shows a possible solution found with 
WinAGILE.  The input ratio ββββz / ββββx is around 0.5, 
which is characteristic of one family of solutions.  
Other families with ββββz ≅≅≅≅ ββββx or much larger or 
smaller values are also possible.

� Note how ββββx is kept small inside the dipole.  It is also 
kept small inside the dispersion bump to ensure the 
ππππ phase advance to close the bump.

� Note WinAGILE also calculates the synchrotron 
radiation integrals, partition numbers, emittances
and lists the radiation from all elements and 
includes some insertion devices.
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w-Vector

� Global chromaticity schemes (Lecture 4) ensure 

beam stability and control of the working line.

� The ‘achromatic quadrupole’ (Lecture 4) 

provides a possibility for local chromatic 

correction. Unfortunately, this method lacks 

flexibility and is ineffective in regions of zero 

dispersion.

� The so-called w-vector offers a method for 

showing chromatic effects quantitatively and 

providing a tool for designing local compensation 

schemes Ref. [6.3].  Such schemes are especially 

needed for:

� Low-ββββ insertions since the innermost quadrupoles

are very strong and sit in a dispersion-free region.

� Light source cells because the two beams can 

present significantly different momenta depending 

on the ‘sawtooth’ mentioned in Lecture 3.

� We define new variables (for 1 plane at a time):
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w-Vector continued

where subscript 0 refers to the central orbit and 

subscript 1 to an off-axis orbit with momentum 

deviation ∆∆∆∆p/p.   K is the generalized focusing 

constant in the motion equation.

� The usual basic relations apply on each orbit 

including the equation (1.7) from Lecture 1:

and reducing the double differential in (1.7) gives

� We now have all the tools needed to differentiate B

and A with respect to s.  These manipulations are 

too lengthy to do here, but they are reasonably 

straightforward.
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w-Vector continued

� The following equations can be found:

� If follows that when ∆∆∆∆K = 0 (achromatic region):

� Thus A and B oscillate sinusoidally at twice the 

average betatron frequency in an achromatic 

region.

� The term ∆∆∆∆K holds all the achromatic errors 

between the two orbits.  When an error ∆∆∆∆K is 

encountered it manifests itself as a kick in A that 

can be evaluated from (6.10).  The disturbance to 

A and B propagate into the next achromatic 

section according to (6.11).

� Thus far the theory is exact!  
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w-Vector continued

� We now normalize A and B by ∆∆∆∆p/p and define 

new chromatic variables a , b and w as ∆∆∆∆p/p →→→→ 0. 

Note: WinAGILE calculates w=b+ja for the ∆∆∆∆p/p given 

by the user.  Make ∆∆∆∆p/p small to reach limiting value.

� Below are some examples of the w-vector in a 

FODO cell:  (a) Uncompensated, (b) With 

compensating sextupole gradients in the 

quadrupoles and (c) With the D-sextupole

making only a partial correction.
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w-Vector continued

� Before resorting to the computer to plot a and b

there are some thin lens approximations that can be 

useful and informative.  For thin lenses, ∆∆∆∆b = 0 and 

∆∆∆∆a at the lens (ψψψψ=0) and :

where k0 is the normalised quadrupole gradient and 

kn
1 the normalised sextupole gradient.

� The thin lens errors will then propagate as,

� Thus, it is possible to make a chromatic correction 

at a specific point with 2 sextupoles per plane.

Note K, k0 and k1
n change signs between planes.

The unaddressed problem is resonance excitation.  
We have no time in this lecture to study resonance 
correction schemes, but we will look at dynamic 
aperture, which is the ultimate performance check.
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w-Vector continued

� For a low-ββββ insertion in a collider

It is necessary to allow the chromatic error from 

the strong quadrupoles to propagate through the 

dispersion-free straight section to the arc.

� In the arc, a series of sextupoles can progressively 

step the error down to zero.  Try to design the 

series to reduce resonance excitation by having;

� An even number of sextupoles in each family,

� A betatron phase advance of ππππ/3 between units.

� The F sextupoles ββββx/ββββz should be equal for all 

members and be as large as possible.

� The D sextupoles ββββz/ββββx should be equal for all 

members and be as large as possible.

� See scheme below that starts with w = 0 at the 

crossing point.
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w-Vector continued

� For a cell in a light source

� The chromatic errors are generated inside the 

dispersion bump.  The dipole can also contribute if it 

has a built-in gradient.  

� The aims are to have zero error propagating into the 

long straight for the insertions and minimum error 

in the dipole where the high-brightness condition is 

applied.  

� In the closely packed cell of a light source, one has 

very little choice over where to place sextupoles.

� Plotting the w-vector will give a view of the 

chromatic errors and the effects of the sextupoles. 

� The resonance excitation can be calculated 

separately (routines in WinAGILE) and the overall 

effect can be also be evaluated by calculating the 

dynamic aperture.

Correction of a half a DBA cell.  Blue curves are open 

showing w-vectors entering straight section.  Red curves 

are closed and go to zero.

-20.00 20.000

b-x

-20.00 20.000

b-z

90.00000

-90.0000

a-x 90.00000

-90.0000

a-z

Horizontal w-vector, w=b+ja Vertical w-vector, w=b+ja
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Dynamic aperture

� The introduction of sextupoles into a lattice to 

correct chromaticity is usually the first major 

source of non-linearity and the first threat to the 

Dynamic Aperture.

� The Dynamic Aperture refers to the 4D surface 

limiting the region of long-term stability around the 

axis.  

� Theoretically, a lattice is stable for an infinite 

number of turns within the Dynamic Aperture, but 

as the oscillation amplitudes increase beyond this 

limit the ion will be stable for fewer and fewer 

turns.  This is described by the empirical formula 

for N turns,

� To find the Dynamic Aperture, increase the initial 

oscillation amplitude in regular steps and track for 

say 2’000 turns at each step until the first unstable 

position is found.  Repeat for 10’000 turns and 

20’000 turns.  With this data use equation (6.15) to 

extrapolate to the stability limit for an infinite 

number of turns and test with say 50’000 turns.

( ) ( ) )15.6(
log
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StableStable 
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b
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Dynamic aperture continued

� In theory, the Dynamic Aperture is a complete shell 

in 4D phase space, so the starting conditions used to 

probe the stability are not critical.

� Although the 4D shell has a complex shape, we would 

like to ascribe a single value to this object and it is 

customary to use the radius of the equivalent 4D 

sphere in phase space.  However, finding the true 4D 

volume of the Dynamic Aperture is not trivial, but 

equally it is not critical, so we can use the 4D 

emittance which is relatively easy to evaluate.   

� Example:
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Möbius lattice

We may use the idea of the Möbius lattice in the 

Mini-workshop.  Möbius is basically a coupling 

problem and there are 3 methods for handling 

coupling:

� Treat the coupling as a perturbation

BUT this is no good for Möbius which requires 100% 

coupling.

� Use the so-called Sigma Matrices

Since they are widely used and important to know, 

they will be described in the next few slides.

� Use the Teng-Edwards formulation

This is less well-known, little used and the theory is 

advanced and too long to be explained here.  However, 

we can still try using the method. 

We note that:

� WinAGILE computes all 3 methods.

� When the Teng-Edwards coupling angle is zero, the 

normal modes degenerate into the familiar Twiss

modes.

� For weak coupling, the u and v modes (known as the 

nearly-horizontal and nearly-vertical modes) will be 

close to the Twiss modes.

� In general the u and v modes contain horizontal and 

vertical components and appear as tilted 4D ellipsoids.
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Sigma matrices

� The σσσσ - matrix formalism makes 
statistical averages over the beam 
distribution.  It also provides statistical 
definitions for the Twiss functions.  

� Let u be a vector containing the 
transverse phase-space co-ordinates of a 
particle.  The statistical averages that 
describe a distribution of particles in 
phase space are then contained in the co-
variance σσσσ-matrix defined as,

Definition of σσσσ-matrix,
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Sigma matrices continued

� In equation (6.16),  the <…> brackets indicate the 

estimators for the expectation values for the 

moments of the N particles in the beam.

� Note that tacitly we have slipped into a formalism 

that accepts transversely coupled beams.

� Note that in (6.16), the matrix elements [1,1] and 

[3,3] give the 1-sigma beam width and 1-sigma 

beam height respectively throughout the lattice 

even in the presence of coupling.
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Sigma matrix transfer rule

� To derive the transformation properties of 
the σσσσ - matrix , let M represent the usual 
lattice transfer matrix, or a rotation 
matrix, such that,

� The use of this linear transformation with 
the definition of the σσσσ - matrix (6.16) and 
the standard relation  (a.b)T = bT.aT gives

Transfer rule,

� Thus the σσσσ - matrix at one point in a lattice 
can be transmitted to any other point and 
this includes lattices with sections rotated 
about their axes and sections with 
coupling.

12 uMu =

( ) T
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T

11
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11

2

T

222 MuuMMuMuuu
32143421
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σ ===
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σσσσ-matrix motion invariant

� Assuming         exists, consider,  

Evaluate W at two positions related by

� With (6.18) and (a b c)-1 = c-1 b-1 a-1,

� After substitution

W is the sigma invariant,

(6.19)                   1T uuW −= σ

1−σ
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σσσσ-matrix for an uncoupled beam

� Consider an uncoupled beam. 

� The invariant Wuc is formed as before,

(6.21)      
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σσσσ-matrix for an uncoupled beam 

continued

� Thus, for an uncoupled beam the 
invariant, Wuc, separates into two 
independent invariants, Wx and Wz.

This can also be written as,
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Twiss and σσσσ-matrices

� When the beam is uncoupled, it is sufficient to 

consider just one transverse plane.  The derived 

invariant for the x-plane from (6.22) is,

� This is strongly reminiscent of the Courant & 

Snyder motion invariant  defined in Lecture 1 in 

equation (1.16).

� With the help of an expression called the

statistical emittance,

the invariant Wx (6.22a) can be normalized and 

rewritten as,
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Twiss and σσσσ-matrices continued

� By comparison with (1.16), the Twiss functions 
can be defined statistically as,

� It can be quickly verified that these definitions 
satisfy the Twiss relationship,

and that the statistical emittance is equivalent to 
the one-sigma emittance.

� Finally, the bridge between the σσσσ - matrix and the 
Twiss functions is completed by writing the σσσσ -
matrix for an uncoupled beam in terms of the 
Twiss functions,

The above could be considered as an alternative 
derivation and definition of the Twiss parameters.

See also Refs [6.4] and [6.5].
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Summary

� This introduction to machine design has covered 

many of the basic concepts plus some more 

specialized topics for the mini-workshop.

� Of course, there are still topics that we have not 

had time to treat: collimation, slow resonant 

extraction for medical beams, space charge, non-

linear resonances, stochastic and electron cooling, 

rf matching, rf trapping and so on.

� The CD-ROM (included with these lecture notes) 

contains the lectures and a full-featured lattice 

program for the interactive design of rings and 

transfer lines. There is a user guide, an on-line help 

and some demonstration files.  

� My best wishes for the rest of the course.


