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Overview of electro-magnetic technology as used in particle
accelerators considering normal-conducting, iron-dominated
electro-magnets (generally restricted to direct current situations)
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Main goal is to:
* create a fundmental understanding in accelerator magnet technology

* provide a guide book with practical instructions how to start with the
design of a conventional accelerator magnet

* focus on applied and practical design aspects using ‘real’ examples
* introduce finite element codes for practical magnet design
* present an outlook into magnet manufacturing, testing and measurements

Not covered:
— permanent magnet technology
— superconducting technology
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. and tnere will e a Special CAS on Normal-Conducting Magnets in auturrn 2020

(see: https://cas.web.cern.ch/)
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Lecture 1 Monday 18.2. (10:45 — 12:15)

Introduction & Basic principles

Why do we need magnets?
Basic principles and concepts
Magnet types in accelerators

Lecture 2 Monday 18.2. (14:00 — 15:00)

Magnet production, tests and measurements
Magnetic materials
Manufacturing techniques
Quality assurance & tests

Lecture 3 Monday 18.2. (15:00 — 16:00)
Analytical design

What do we need to know before starting?
Yoke design

Coil dimensioning

Cooling layout

Cost estimation and optimization
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E Lecture 4 Tuesday 19.2. (15:00 — 16:00)
S Applied numerical design

Building a basic 2D finite-element model
Interpretation of results
Typical application examples

Tutorial Tuesday 19.2. (16:15 — ??7?)
Case study (part 1)

Students are invited to design and specify a ,real’ magnet
Analytical magnet design with pencil & paper

Mini-workshop Wednesday, 20.2. (9:00 — 12:00)
Case study (part 2)

Computer work
Numerical magnet design

Exam Thursday, 14.3. (9:00 — 10:30)
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e Why do we need magnets?

* Magnet technologies

* Basic principles and concepts
* Field description

 Magnet types and applications

Archamps, 18. — 20. Feb. 2019
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Vlagnetic units
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|IEEE defines the following units:

* Magnetic field:

— H(vector) [A/m]

— the magnetizing force produced by electric currents
* Electro-motive force:

— e.m.f.or U [V or (kg m?)/(A s3)]

— here: voltage generated by a time varying magnetic field
*  Magnetic flux density or magnetic induction:

— B|(vector) [T or kg/(A s?)]

— the density of magnetic flux driven through a medium by the magnetic field

— Note: induction is frequently referred to as "Magnetic Field”

— H Band urelates by: 5= uH
e Permeability:

— H=HoHy

— permeability of free space y,= 4 m 107 [V s/A m]

— relative permeability u, (dimensionless): t;. = 1; t.,, > 1000 (not saturated)
* Magnetic flux:

— ¢ [Wbor (kg m?)/(A s?)]

— surface integral of the flux density component perpendicular trough a surface
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Normal-conducting accelerator magnets

Normal-conducting magnets:
4800 magnets (50 000 tonnes) are installed in the CERN
accelerator complex

Superconducting magnets:

10 000 magnets (50 000 tonnes) mainly in LHC
Permanent magnets:

150 magnets (4 tonnes) in Linacs & EA A
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guide the beam to keep it on the orbit
focus and shape the beam

orentz’s force: F =q(E +V x B)

Normal-conducting accelerator magnets

—_

— for relativistic particles this effect is equivalent if E =CB
— if B=1Tthen £=3-108 V/m(!)

THE PRINCIPAL MACHINE COMPONENTS Rt atng CAVITY
OF THE LEP ACCELERATOR . f)) ) )7

Focusing MAGNET

1ent magnets provide (in general) only constant magneti

Archamps, 18. — 20. Feb. 2019
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In 1873, Maxwell published "Treatise on Electricity and Magnetism" in which he
summarized the discoveries of Coulomb, Oersted, Ampere, Faraday, et. al. in four
mathematical equations:
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Gauss‘ law for electricity:

ERE-— - § E.qgai-4
o _ oV &g
Gauss‘ law of flux conservation:
‘;7. Eg o () :f E§ '(jzi — ()
oV
Faraday‘s law of induction:
B B o _ .
) VxE=—— {E-dé:—dip}i B-dA
5 at oA dt dt A
8 Ampere’s circuital law:
j B N
VxB =, J + e, o §B-ds = [ uod - dA+— [ 116, E - dA
§ ot oA A dt A

JUAS 2019
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Normal-conducting accelerator magnets

for electricity:

law of flux conservation:
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V-B

ay‘s law of induction:
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Maxwell & Ampere:

Vx H = i
ot

Normal-conducting accelerator magnets

,»An electrical current is surrounded by
a magnetic field”

Cartoon by B.Tousche
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,Right hand rule” applies
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Magnetic circuit =

© Thomas Zickler, CERN

Normal-conducting accelerator magnets

esent the magnetic field
e the current direction

Archamps, 18. — 20. Feb. 2019
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Normal-conducting accelerator magnets
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Magnetic circuit

he electrical current

. - “iron-dominated ma
agnetic flux
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Magnet tecnnologies
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[ Magnets ]
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[ Permanent magnets ]

' Electro-magnets

Superconducting ]

Normal-conducting ]

Coil dominated Iron dominated Coil domind
B<11T B<2T B<1T

Iron dominated
B<2T

Archamps, 18. — 20. Feb. 2019
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H (D P Juas
INA Mlagnetic circuit
g <
o
=32 kA /=32 kA
Bcentre= 0.09T Bcentre= 080T

Component: BMOD
0.0 1.0

The presence of a magnetic circuit can increase the flux density in the magnet
aperture by factors

Archamps, 18. — 20. Feb. 2019

Note: the asymmetric field distribution is an artifact from the FE-mesh
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Relative permeability pr

Perreability

sheet steel

/u = /u0/ur

ility: correlation between F'”’;gf"s“y

c field strength A/ and magnetic

cast steel

cast iron

sity B

Measured steel permeabilities

| | | Field intensity (H)

Cockerill Magnetil

- . = Stabocor1200-100 A (0/90)
— - - Stabocor M270-50 A (0/90) |

— — = Stabocor 800-65 AP

Low carbon steel

Ferro-magnetic r

high permeabili

but not const

0.8 1.0 1.2

Magnetic Induction [T]
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)\ Excitation current in a dipole
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Ampere’s law fﬁ .dl =NI and B=uH

© Thomas Zickler, CERN
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leadsto NI = §

assuming, that 5 is constant along the path.

A
If the iron is not saturated: —>>——
:uair /uiron
Bh
then: Nl(per sole) 2—
0

Archamps, 18. — 20. Feb. 2019
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Normal-conducting accelerator magnets
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== with iron (constant permeability)

400 500 600

Excitation current NI [kA]
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Reluctance and saturation
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Similar to electrical circuits, one can define the ‘resistance’ of a
magnetic circuit, called ‘reluctance’:
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Ohm'’s law: » Hopkinson’s law:
NI
D Ay

M

Voltage drop U[V]

Resistance R;[Q]

Current /[A]

El. conductivity o [S/m]
Conductor length /;[m]
Conductor cross section A, [m?]

Magneto-motive force N/[A]

Reluctance R,,[A/Vs]

Magnetic flux @ [Wb]

Permeability u [Vs/Am]

Flux path length in iron /,,[m]

Iron cross section 4,, [m?]
(perpendicular to flux)

..but: p;.. is in general not constant!

Archamps, 18. — 20. Feb. 2019
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A4 Reluctance and saturation

2 /=32kA /=64 kA [=32kA m) /=64 kA

Tg" BCEI]ITG' B 0'09 T BCEHZTE > O°18 T BCEHZTE - 0'80 T BCEHtFé‘ B 1'30 T

il

oS

Component: BMOD
0.0 1.0 2.0

— I

Increase of B above 1.5 T iniron requires non-proportional increase of
Iron saturation (small g, ) leads to inefficiencies
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Normal-conducting acc

JUAS 2019

Archamps, 18. — 20. Feb. 2019

\

—Z

/

oduction- —Magnet

eluctance and saturatic

Joint Universities Accelerator School

2ep yoke reluctance small by providing sufficie

iron cross-section!




on — Basic principles — Mag

juas

Joint Universities Accelerator School

a
¥
Q)
-
Q
®
Q
-
Q.
v
Q
U
3
=

B = poH +J = o1, H

Normal-conducting accelerator magnets
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/g/ =&=without iron

=&=with iron (constant permeability)

=&=with iron (non-linear)

400 500 600 700 800

Excitation current NI [kA]
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Steel hysteresis

© Thomas Zickler, CERN

B(H) as a function of the field strength
creasing and decreasing excitation

Normal-conducting accelerator magnets

Flux density
(B)

Remanent field (
H=0—-> B=5.

T
/ Coercivity or coe
Fedinensty )y B=0—> H=H,

Ly

(a) Hard material (b) Soft material

Archamps, 18. — 20. Feb. 2019
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@ Residl

In a continuous ferro-magnetic core (transformer) the residual field is
determined by the remanent field 5.,
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In @ magnet core (gap), the residual field is determined by the
coercivity H.

Assuming the coil current /=0: §ﬁ-a = Iﬁgap'ai-F jﬁc .dl =0

gap yoke

|
Bresidual - _ILlOHC .

g
De-gaussing cycle
)

03 0 20 400 60 1000 1200

A Demagnetization cycle! 18 s )

B[T]

Archamps, 18. — 20. Feb. 2019
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N rield description
=
gsé How can we conveniently describe the field in the aperture?
é - atany point (in 2D) z = x + iy = re'?®
780 - for any field configuration
§ - regardless of the magnet technology A
Rmax
B
Rief B
r
@ g

Solution: multipole expansion, describing the field within a circle of validity with scalar coefficients

co n—1
B,(2) + iBy(2) = Z(Bn +iA,) <sz)
n=1 re
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© Thomas Zickler, CERN

For radial and tangential components of the field the series contains sin and cos terms
(Fourier decomposition):
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g A n—-1 y A B(p E
B.(r,¢) = Z ( B ) |Bp, sin(ne) + Ay cos(ng)]
n=1 =/ B,
=\ r
By(r,0) = ) [B, cos(n) — Ay sin(ne)]
Rref i
n=1 >
X

This 2D decomposition holds only in a region of space:

— without magnetic materials (. = 1)

— without currents \ /

— when B, is constant

ref

/ \ e

max

Archamps, 18. — 20. Feb. 2019
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B,: normal quadrupole B;:norma

&

A,: skew quadrupole

<o

Normal-conducting accelerator magnets

ial lines are flux lines. B is tangent point by poin
1es are orthogonal to the vector equipote
haping the field.

Archamps, 18. — 20. Feb. 2019
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% Cield cdescrintiol
H N4 Field description
::'E (0 0] _1
g° X x?
= Field expansion along x: B, (x) = z =B, +B;—+B3— +
z n=1
By By By
A A A
X X X
B,: dipole B,: quadrupole B;: sextupole
o B, _ dB,,
0 0x

The field profile in the horizontal plane follows a polynomial expansion
The ideal poles for each magnet type are lines of constant scalar potential

o
—
o
(o'}
e
(9]
[
o
I
|
()
—
5
o
s
©
B
(8]
—
<

JUAS 2019




Introduction — Basic principles — — Summary

E@‘m Dipoles ==

Purpose: bend or steer the particle beam

© Thomas Zickler, CERN
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Equation for normal (non-skew) ideal (infinite) poles:
y= th/2 (= straight line with 4= gap height)

Magnetic flux density: B, = 0; B,= B, = const.
Applications: synchrotrons, transfer lines, spectrometry, beam scanning
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Dipole types

O-Shape

—Summary

C-Shape

J




Introduction — Basic principles — — Summary

@ juas
X Quadrupoles

Purpose: focusing the beam (horizontally focused beam is vertically defocused)

© Thomas Zickler, CERN
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X-axis

Equation for normal (non-skew) ideal (infinite) poles:

2xy = +1r? (= hyperbola with r= aperture radius)

X

Archamps, 18. — 20. Feb. 2019

B,
y

Magnetic flux density: B, = Rl:f y,; B,= Roor

JUAS 2019
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H DA Quadrupole types S
S eSSy e LYPES

i

§© Standard quadrupole | Standard quadrupole Il  Collins or Figure-of-Eight
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© Thomas Zickler, CERN

Purpose: correct chromatic aberrations of ‘off-momentum’ particles
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X-axis

Equation for normal (non-skew) ideal (infinite) poles:
3x%y —y3 r3 (with r= aperture radius)

Magnetic flux density: B,= R§3 xy,; By,= =3 (x% — y?)

ref ref

Archamps, 18. — 20. Feb. 2019
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Cornoinecd function rnagnets

© Thomas Zickler, CERN

Functions generated by pole shape (sum a scalar potentials):
Amplitudes cannot be varied independently
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Dipole and quadrupole: PS main magnet (PFW, Fo8...)

o EEOEAP
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H N4 Cornoined function ragnets
E Functions generated by individual coils:
Tz Amplitudes can be varied independently
of 0.02 ™~ TTmeeeeot ] /
0.01 \._/
' -20 -15 -10 -5 X[r?‘lm] 5 10 15 20
E 0.741913675 A Sl Quadrupole and corrector dipole
I (strong sextupole component in dipole
9 field)
8§
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horizontal dipole

Normal-conducting accelerator magnets
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Coll dominated magnets
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2

© Thomas Zickler, CERN

 Nested multi-pole corrector (moderate field levels)
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* |ron for shielding only
 Field determined by current distribution

Vertical dipole configuration Multi-pole configuration

Archamps, 18. — 20. Feb. 2019
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Normal-conducting accelerator magnets
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& Viagnet 1 -
N ATNET TVOES
H B2 Vagnet types
:
° Pole shape Field distribution Pole equation B,, B,
KGN y=tr B,=0
E B,= B, = const.
— B
B = 2
=“‘== ..... 2xy="2%r? ¥ Rres
= B,
I B, = ==
- ref
= S B
\ ¥4 B, = R23f Xy
(= 3X2y—y3:i1"3 i
y __ _Bal 2
A | By = 2 A )
2 T B, = =+ (3x%y — y%)
g A(x3y-xy3)==xr ¥ Ry
S B
old i By = 6R§ef (x3 4 3Xy2)
-
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E@ surmrnary ==

* Magnets are needed to guide and shape particle beams

© Thomas Zickler, CERN
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e Coils carry the electrical current, the iron yoke carries the
magnetic flux

* Magnetic steel is characterized by its relative permeability x.
and its coercivity .

* |ron saturation influences the efficiency of the magnetic circuit
and has to be taken into account in the design

* The 2D (magnetic) vector field can be expressed as a series of
multipole coefficients

* Different magnet types for different functions

Archamps, 18. — 20. Feb. 2019
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