Joint Universities Accelerator School JUAS 2019 Archamps, France, 18 – 20th February 2019

Normal-conducting accelerator magnets Lecture 1: Basic principles

Thomas Zickler CERN

Scope of the lectures

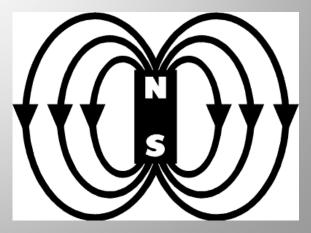
Overview of electro-magnetic technology as used in particle accelerators considering *normal-conducting*, *iron-dominated* electro-magnets (generally restricted to direct current situations)

Main goal is to:

- create a fundmental understanding in accelerator magnet technology
- provide a guide book with practical instructions how to start with the design of a conventional accelerator magnet
- focus on applied and practical design aspects using 'real' examples
- introduce finite element codes for practical magnet design
- present an outlook into magnet manufacturing, testing and measurements

Not covered:

- permanent magnet technology
- superconducting technology



Literature

- <u>CAS proceedings</u>, Fifth General Accelerator Physics Course, University of Jyväskylä, Finland, September 1992, CERN Yellow Report 94-01
- International Conference on Magnet Technology, Conference proceedings
- Iron Dominated Electromagnets, J. T. Tanabe, World Scientific Publishing, 2005
- Magnetic Field for Transporting Charged Beams, G. Parzen, BNL publication, 1976
- Magnete, G. Schnell, Thiemig Verlag, 1973 (German)
- Field Computation for Accelerator Magnets: Analytical and Numerical Methods for Electromagnetic Design and Optimization, S. Russenschuck, Wiley-VCH, 2010
- <u>Practical Definitions & Formulae for Normal Conducting Magnets</u>, D. Tommasini, Sept. 2011
- <u>CAS proceedings</u>, Magnetic measurements and alignment, Montreux, Switzerland, March 1992, CERN Yellow Report 92-05
- <u>CAS proceedings</u>, Measurement and alignment of accelerator and detector magnets, Anacapri, Italy, April 1997, CERN Yellow Report 98-05
- The Physics of Particle Accelerators: An Introduction, K. Wille, Oxford University Press, 2000
- <u>CAS proceedings</u>, Magnets, Bruges, Belgium, June 2009, CERN Yellow Report 2010-004

... and there will be a Special CAS on Normal-Conducting Magnets in autumn 2020 (see: https://cas.web.cern.ch/)

Acknowledgements

Many thanks ...

... to all my colleagues who contributed to this lecture, in particular L.Bottura, M.Buzio, B.Langenbeck, N.Marks, A.Milanese, S.Russenschuck, D.Schoerling, C.Siedler, S.Sgobba, D.Tommasini, A.Vorozhtsov

Program (1)

Lecture 1

Monday 18.2. (10:45 – 12:15)

Introduction & Basic principles

Why do we need magnets?

Basic principles and concepts

Magnet types in accelerators

Lecture 2

Monday 18.2. (14:00 – 15:00)

Magnet production, tests and measurements

Magnetic materials

Manufacturing techniques

Quality assurance & tests

Lecture 3

Monday 18.2. (15:00 – 16:00)

Analytical design

What do we need to know before starting?

Yoke design

Coil dimensioning

Cooling layout

Cost estimation and optimization

Program (2)

Lecture 4

Tuesday 19.2. (15:00 – 16:00)

Applied numerical design

Building a basic 2D finite-element model Interpretation of results

Typical application examples

Tutorial

Tuesday 19.2. (16:15 – ???)

Case study (part 1)

Students are invited to design and specify a ,real' magnet Analytical magnet design with pencil & paper

Mini-workshop

Wednesday, 20.2. (9:00 – 12:00)

Case study (part 2)

Computer work

Numerical magnet design

Exam

Thursday, 14.3. (9:00 – 10:30)

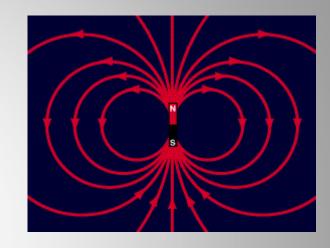
Lecture 1: Basic principles

- Why do we need magnets?
- Magnet technologies
- Basic principles and concepts
- Field description
- Magnet types and applications

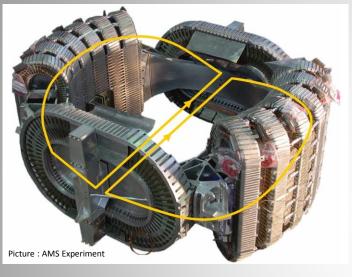
Magnetic units

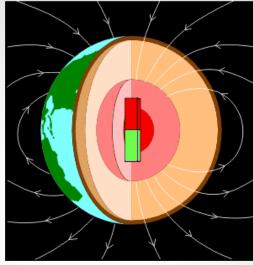
IEEE defines the following units:

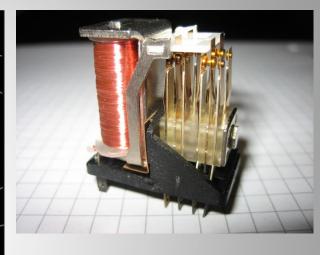
- Magnetic field:
 - H(vector) [A/m]
 - the magnetizing force produced by electric currents
- Electro-motive force:
 - e.m.f. or U [V or $(kg m^2)/(A s^3)$]
 - here: voltage generated by a time varying magnetic field
- Magnetic flux density or magnetic induction:
 - B (vector) [T or kg/(A s²)]
 - the density of magnetic flux driven through a medium by the magnetic field
 - Note: induction is frequently referred to as "Magnetic Field"
 - H, B and μ relates by: $B = \mu H$
- Permeability:
 - $-\mu = \mu_0 \mu_r$
 - permeability of free space $\mu_0 = 4 \text{ m } 10^{-7} \text{ [V s/A m]}$
 - relative permeability μ_r (dimensionless): $\mu_{\rm air} = 1$; $\mu_{\rm iron} > 1000$ (not saturated)
- Magnetic flux:
 - $-\phi$ [Wb or (kg m²)/(A s²)]
 - surface integral of the flux density component perpendicular trough a surface

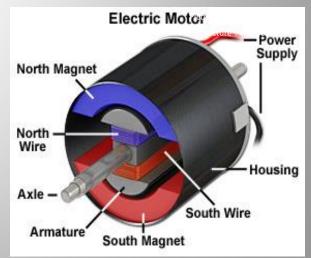


Magnets everywhere...

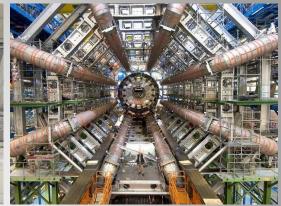








Magnets at CERN



Normal-conducting magnets:

4800 magnets (50 000 tonnes) are installed in the CERN accelerator complex

Superconducting magnets:

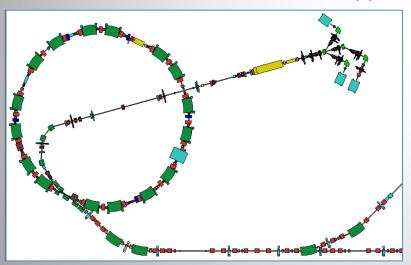
10 000 magnets (50 000 tonnes) mainly in LHC

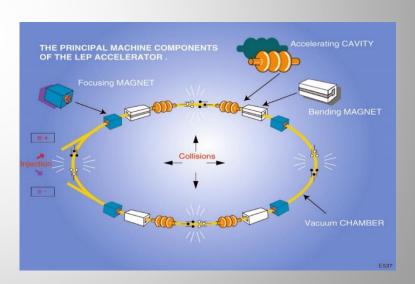
Permanent magnets:

150 magnets (4 tonnes) in Linacs & EA

Why do we need magnets?

- Interaction with the beam
 - guide the beam to keep it on the orbit
 - focus and shape the beam
- Lorentz's force: $\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$
 - for relativistic particles this effect is equivalent if $ec{E}=cec{B}$
 - if B = 1 T then $E = 3.10^8$ V/m(!)





- Permanent magnets provide (in general) only constant magnetic fields
- Electro-magnets can provide adjustable magnetic fields

11

Maxwell's equations

In 1873, Maxwell published "Treatise on Electricity and Magnetism" in which he summarized the discoveries of Coulomb, Oersted, Ampere, Faraday, et. al. in four mathematical equations:

Gauss' law for electricity:

$$\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$

 \mathcal{E}_0 Gauss' law of flux conservation:

$$\nabla \cdot \vec{B} = 0$$

Faraday's law of induction:

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

Ampere's circuital law:

$$\nabla \times \vec{B} = \mu_0 \vec{J} + \mu_0 \varepsilon_0 \frac{\partial E}{\partial t}$$

$$\oint_{\partial V} \vec{E} \cdot d\vec{A} = \frac{q}{\varepsilon_0}$$

$$\oint_{\partial V} \vec{B} \cdot d\vec{A} = 0$$

$$\oint_{\partial A} \vec{E} \cdot d\vec{s} = -\frac{d\Phi}{dt} = -\frac{d}{dt} \int_{A} \vec{B} \cdot d\vec{A}$$

$$\oint_{\partial A} \vec{B} \cdot d\vec{s} = \int_{A} \mu_0 \vec{J} \cdot d\vec{A} + \frac{d}{dt} \int_{A} \mu_0 \varepsilon_0 \vec{E} \cdot d\vec{A}$$

Maxwell's equations

Gauss' law for electricity:

$$\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$

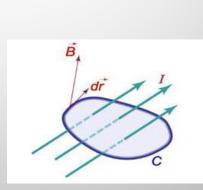
Gauss' law of flux conservation:

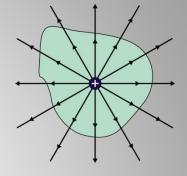
$$\nabla \cdot \vec{B} = 0$$

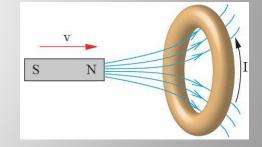


$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

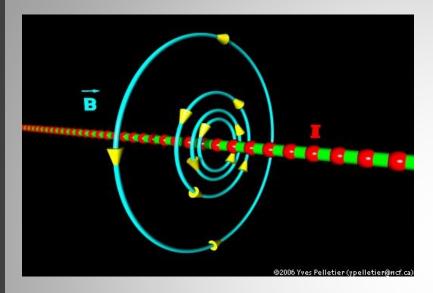
$$\nabla \times \vec{B} = \mu_0 \vec{J} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$$







Producing the field

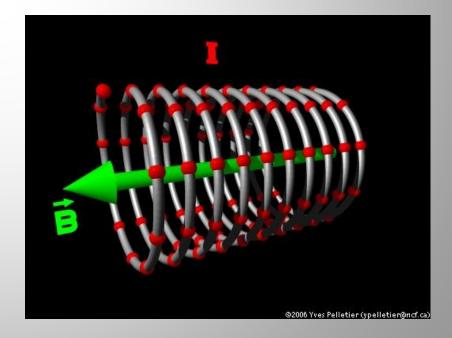


"Right hand rule" applies

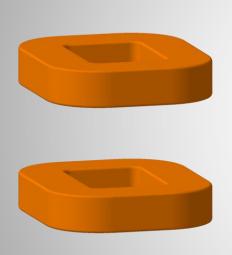
Maxwell & Ampere:

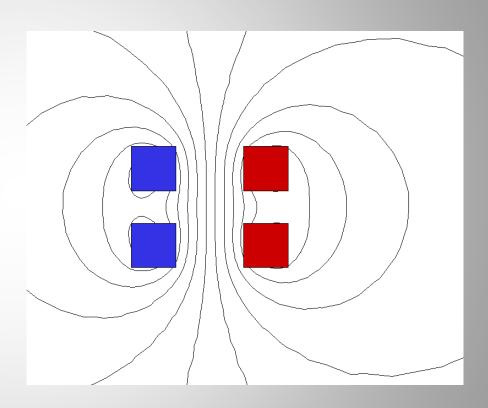
$$\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$$

"An electrical current is surrounded by a magnetic field"



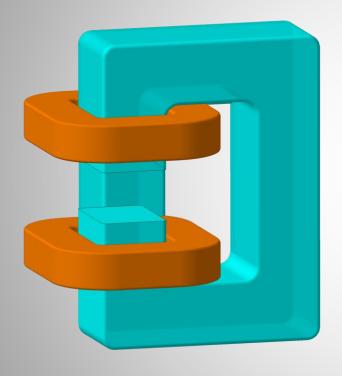
Magnetic circuit

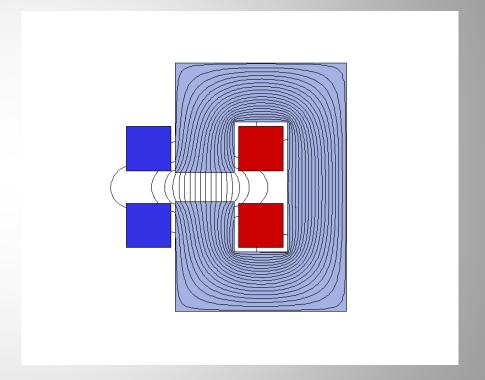




Flux lines represent the magnetic field Coil colors indicate the current direction

Magnetic circuit



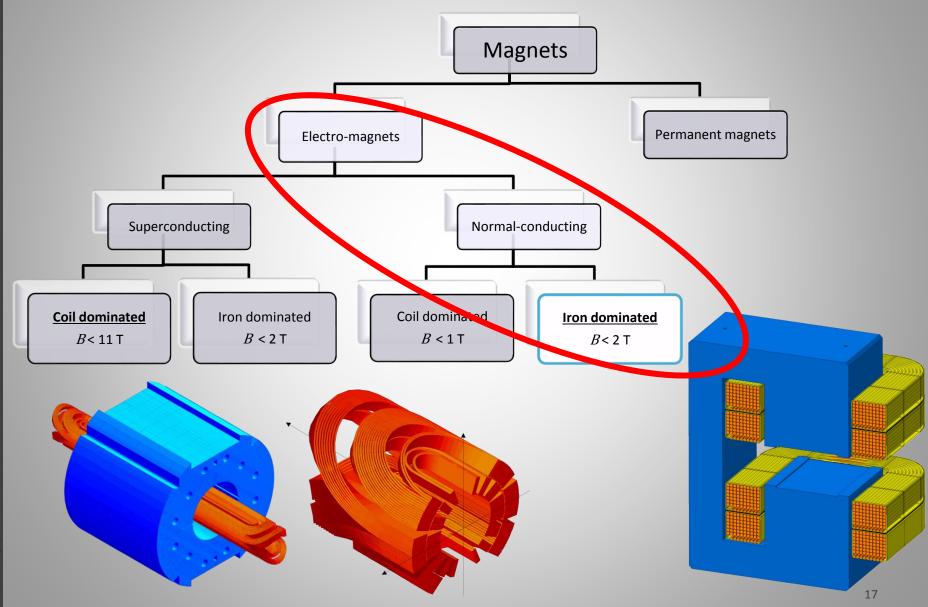


Coils hold the electrical current Iron holds the magnetic flux

→ "iron-dominated magnet"

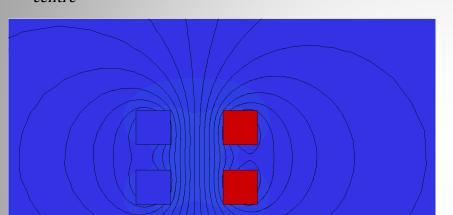
Introduction – Basic principles – Magnet types – Summary

Magnet technologies

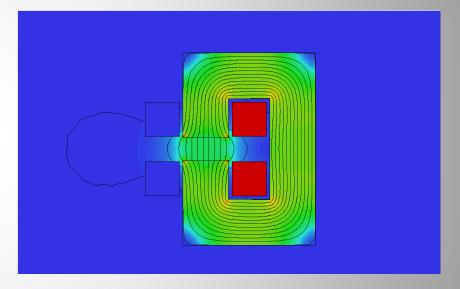


Magnetic circuit

$$I$$
 = 32 kA B_{centre} = 0.09 T



I= 32 kA B_{centre} = 0.80 T



Component: BMOD 0.0 1.0 2.0

The presence of a magnetic circuit can increase the flux density in the magnet aperture by factors

Note: the asymmetric field distribution is an artifact from the FE-mesh

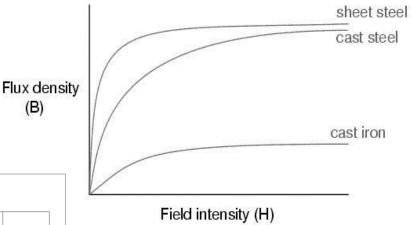
(B)

Permeability

$$\vec{B} = \mu \vec{H}$$

$$\mu = \mu_0 \mu_r$$

Permeability: correlation between magnetic field strength *H* and magnetic flux density B





Ferro-magnetic materials: high permeability ($\mu_r >> 1$), but not constant

Excitation current in a dipole

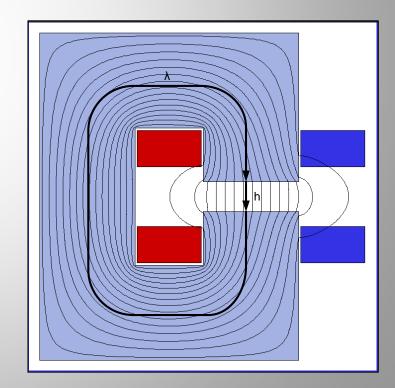
Ampere's law
$$\oint \vec{H} \cdot d\vec{l} = NI$$
 and $\vec{B} = \mu \vec{H}$

leads to
$$NI = \oint \frac{\vec{B}}{\mu} \cdot d\vec{l} = \int_{gap} \frac{\vec{B}}{\mu_{air}} \cdot d\vec{l} + \int_{yoke} \frac{\vec{B}}{\mu_{iron}} \cdot d\vec{l} = \frac{Bh}{\mu_{air}} + \frac{B\lambda}{\mu_{iron}}$$

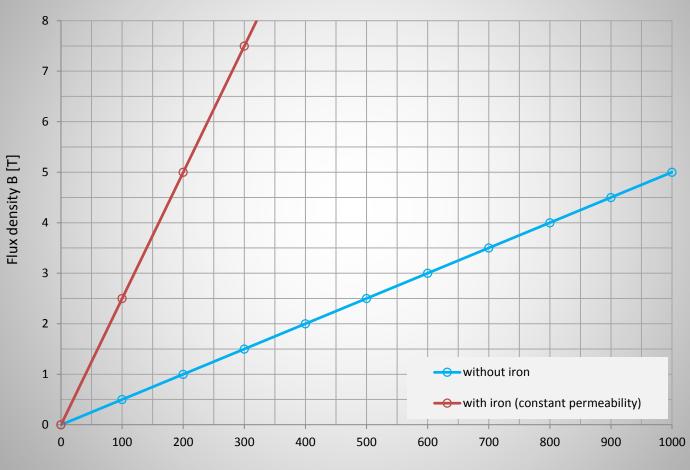
assuming, that B is constant along the path.

If the iron is not saturated:
$$\frac{h}{\mu_{air}} >> \frac{\lambda}{\mu_{iron}}$$

then:
$$NI_{(per pole)} \approx \frac{Bh}{2\mu_0}$$



Transfer function



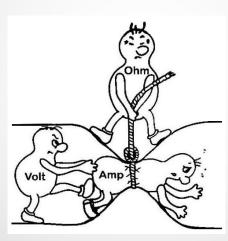
Excitation current NI [kA]

Similar to electrical circuits, one can define the 'resistance' of a magnetic circuit, called 'reluctance':

Ohm's law:

$$R_E = \frac{U}{I} = \frac{l_E}{A_E \sigma}$$

- Voltage drop U[V]
- Resistance $R_E[\Omega]$
- Current *I*[A]
- El. conductivity σ [S/m]
- Conductor length $I_E[m]$
- Conductor cross section A_E [m²]



Hopkinson's law:

$$R_M = \frac{NI}{\Phi} = \frac{l_M}{A_M \mu_r \mu_0}$$

- Magneto-motive force NI[A]
- Reluctance R_M [A/Vs]
- Magnetic flux Φ [Wb]
- Permeability μ [Vs/Am]
- Flux path length in iron $I_M[m]$
- Iron cross section A_M [m²] (perpendicular to flux)

...but: μ_{iron} is in general <u>not</u> constant!

$$I$$
= 32 kA B_{centre} = 0.09 T

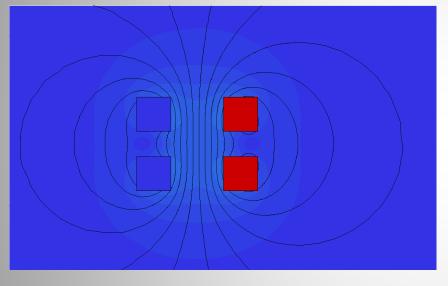
$$\longrightarrow I = 64 \text{ kA}$$

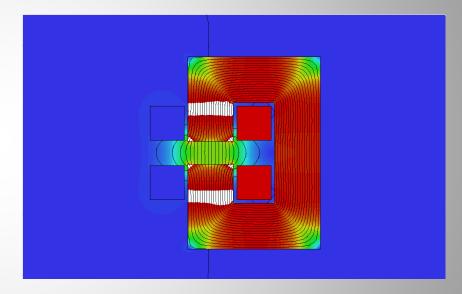
$$B_{centre} = 0.18 \text{ T}$$

$$I$$
 = 32 kA B_{centre} = 0.80 T

$$I = 64 \text{ kA}$$

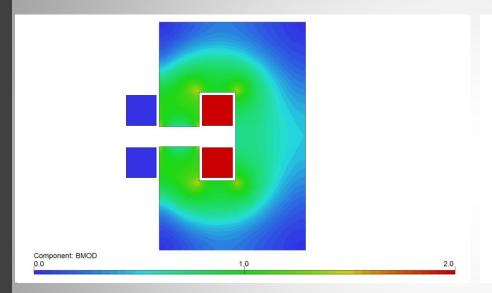
$$B_{centre} = 1.30 \text{ T}$$

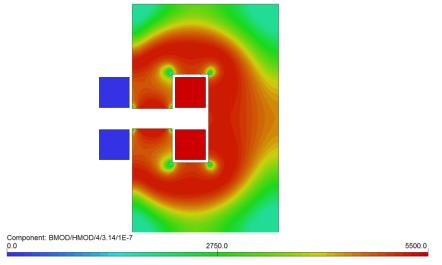




Component: BMOD
0.0 1.0 2.0

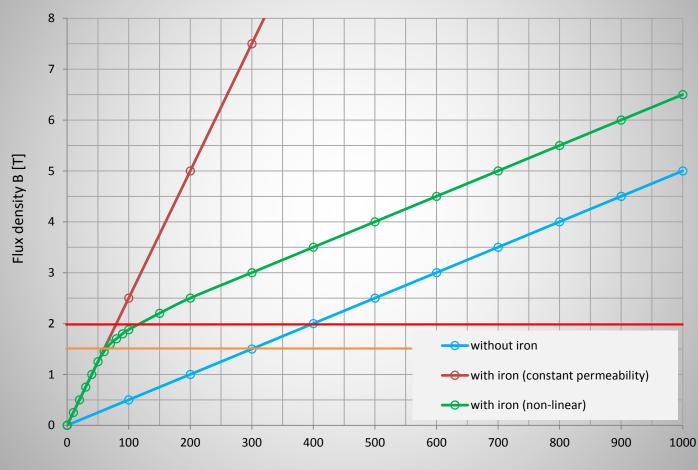
Increase of B above 1.5 T in iron requires non-proportional increase of H Iron saturation (small $\mu_{\rm iron}$) leads to inefficiencies





Keep yoke reluctance small by providing sufficient iron cross-section!

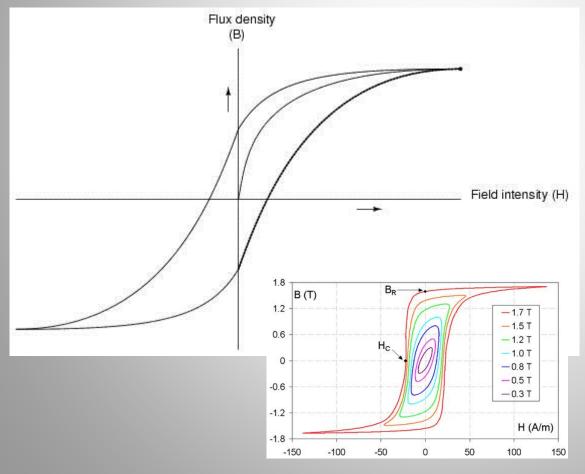
$$\vec{B} = \mu_0 \vec{H} + \vec{J} = \mu_0 \mu_r \vec{H}$$



Excitation current NI [kA]

Steel hysteresis

Flux density B(H) as a function of the field strength is different, when increasing and decreasing excitation

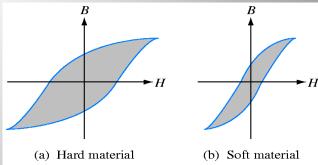


Remanent field (Retentivity):

$$H=0 \rightarrow B=B_r>0$$

Coercivity or coercive force:

$$B=0 \rightarrow H=H_c < 0$$

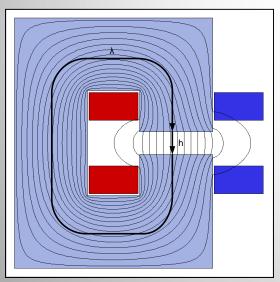


Residual field in a magnet

In a continuous ferro-magnetic core (transformer) the residual field is determined by the remanent field B_r

In a magnet core (gap), the residual field is determined by the coercivity ${\cal H}_c$

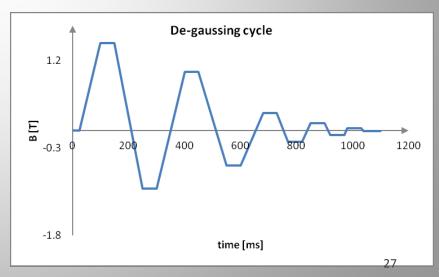
Assuming the coil current I=0:



Demagnetization cycle!

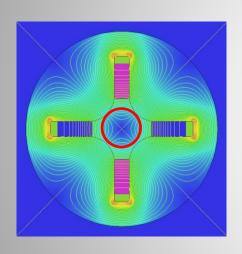
$$\oint \overrightarrow{H} \cdot \overrightarrow{dl} = \int_{gap} \overrightarrow{H}_{gap} \cdot \overrightarrow{dl} + \int_{yoke} \overrightarrow{H}_{c} \cdot \overrightarrow{dl} = 0$$

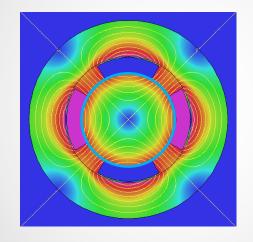
$$B_{residual} = -\mu_0 H_C \frac{l}{g}$$

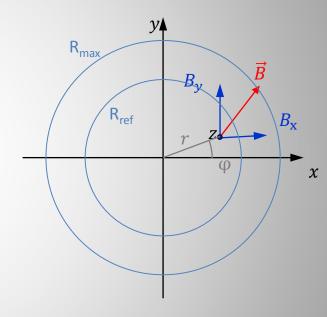


How can we conveniently describe the field in the aperture?

- at any point (in 2D) $z = x + iy = re^{i\varphi}$
- for any field configuration
- regardless of the magnet technology







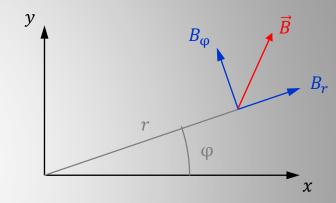
Solution: multipole expansion, describing the field within a circle of validity with scalar coefficients

$$B_{y}(z) + iB_{x}(z) = \sum_{n=1}^{\infty} (B_{n} + iA_{n}) \left(\frac{z}{R_{ref}}\right)^{n-1}$$

For radial and tangential components of the field the series contains sin and cos terms (Fourier decomposition):

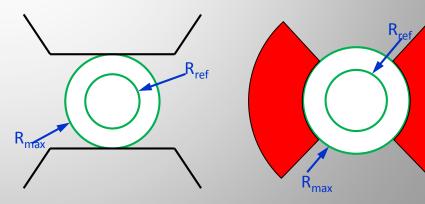
$$B_r(r,\varphi) = \sum_{n=1}^{\infty} \left(\frac{r}{R_{ref}}\right)^{n-1} \left[B_n \sin(n\varphi) + A_n \cos(n\varphi)\right]$$

$$B_{\varphi}(r,\varphi) = \sum_{n=1}^{\infty} \left(\frac{r}{R_{ref}}\right)^{n-1} \left[B_n \cos(n\varphi) - A_n \sin(n\varphi)\right]$$



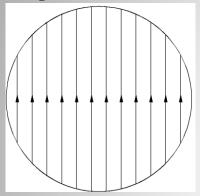
This 2D decomposition holds only in a region of space:

- without magnetic materials ($\mu_r = 1$)
- without currents
- when B_z is constant

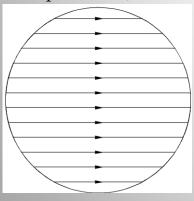


Each multipole term has a corresponding magnet type:

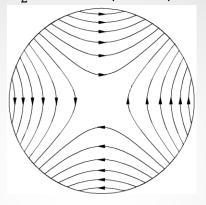
 B_1 : normal dipole



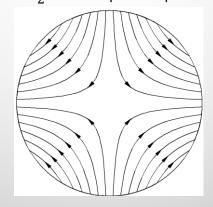
 A_1 : skew dipole



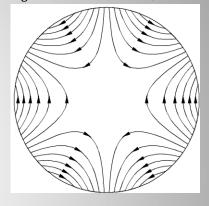
 B_2 : normal quadrupole



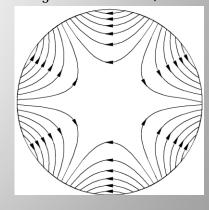
 A_2 : skew quadrupole



 B_3 : normal sextupole

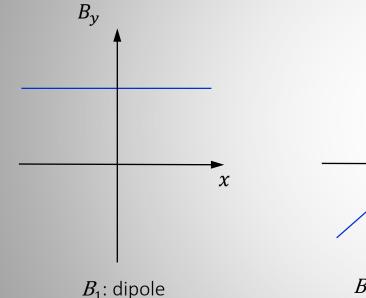


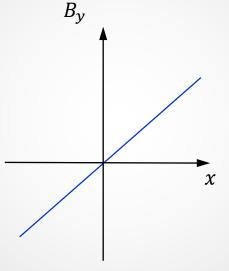
 A_3 : skew sextupole

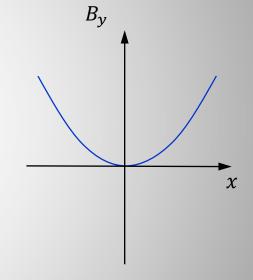


Vector equipotential lines are flux lines. \vec{B} is tangent point by point to the flux lines Scalar equipotential lines are orthogonal to the vector equipotential lines. They define the boundary conditions for shaping the field.

Field expansion along
$$x: B_y(x) = \sum_{n=1}^{\infty} B_n \left(\frac{x}{r_0}\right)^{n-1} = B_1 + B_2 \frac{x}{r_0} + B_3 \frac{x^2}{r_0^2} + \cdots$$







 B_2 : quadrupole

$$B_3$$
: sextupole

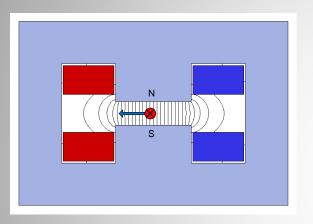
$$G = \frac{B_2}{r_0} = \frac{\partial B_y}{\partial x}$$

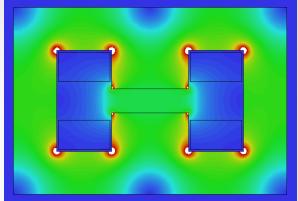
The field profile in the horizontal plane follows a polynomial expansion

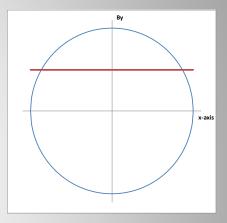
The ideal poles for each magnet type are lines of constant scalar potential

Dipoles

Purpose: bend or steer the particle beam







Equation for normal (non-skew) ideal (infinite) poles:

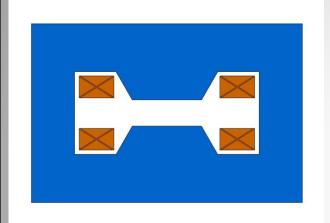
$$y = \pm h/2$$
 (\rightarrow straight line with $h = \text{gap height}$)

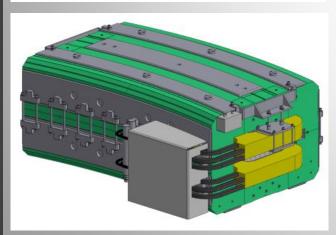
Magnetic flux density: $B_x = 0$; $B_y = B_1 = \text{const.}$

Applications: synchrotrons, transfer lines, spectrometry, beam scanning

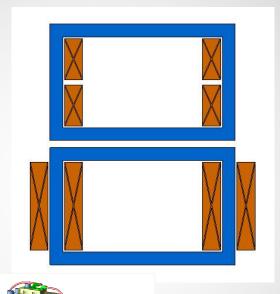
Dipole types

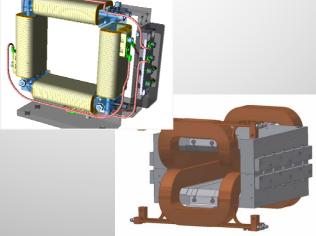
H-Shape



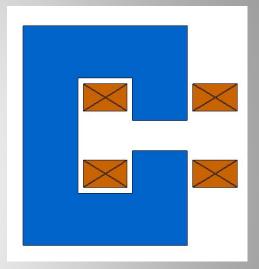


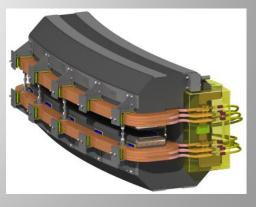
O-Shape





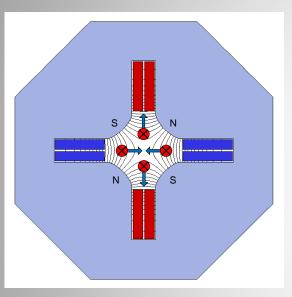
C-Shape

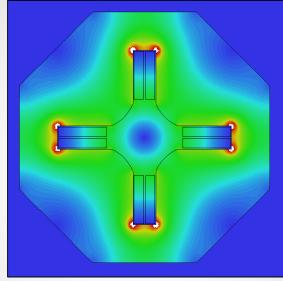


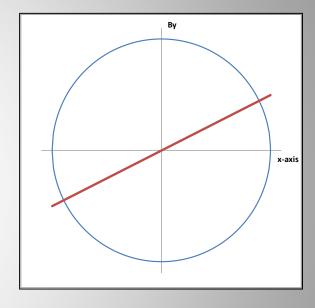


Quadrupoles

Purpose: focusing the beam (horizontally focused beam is vertically defocused)







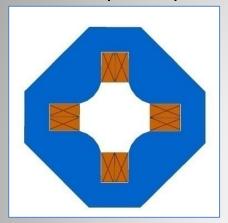
Equation for normal (non-skew) ideal (infinite) poles:

 $2xy = \pm r^2$ (\rightarrow hyperbola with r = aperture radius)

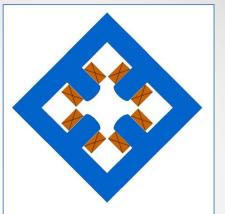
Magnetic flux density: $B_x = \frac{B_2}{R_{ref}} y$; $B_y = \frac{B_2}{R_{ref}} x$

Quadrupole types

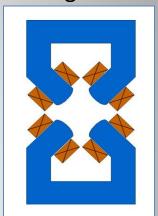
Standard quadrupole I

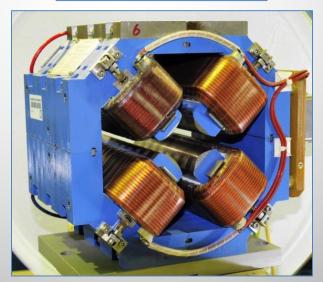


Standard quadrupole II



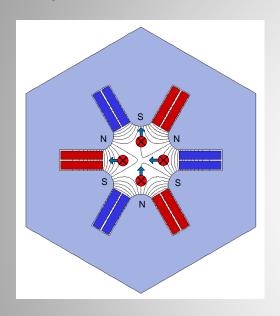
Collins or Figure-of-Eight

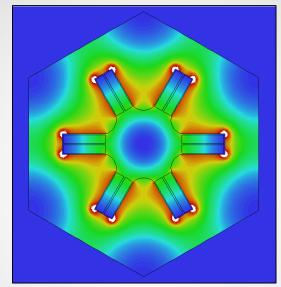


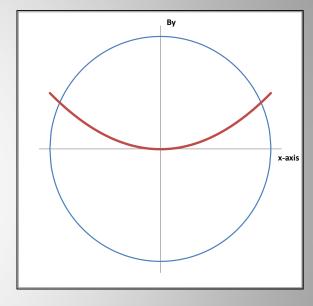


Sextupoles

Purpose: correct chromatic aberrations of 'off-momentum' particles







Equation for normal (non-skew) ideal (infinite) poles:

$$3x^2y - y^3 = \pm r^3$$
 (with $r =$ aperture radius)

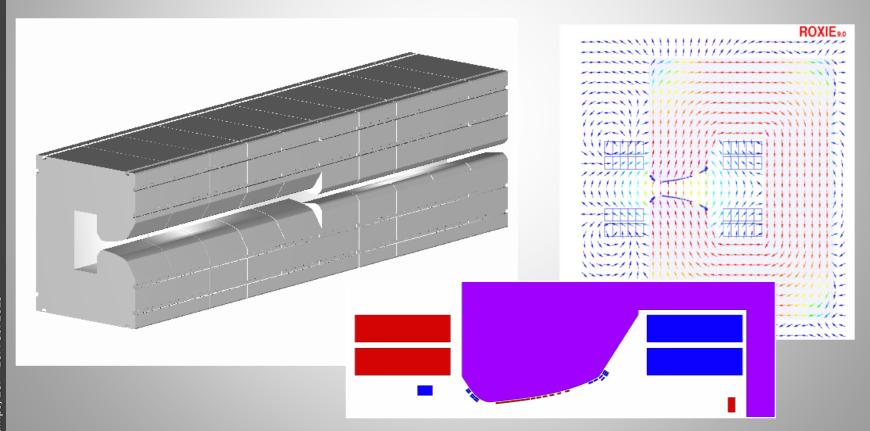
Magnetic flux density:
$$B_x = \frac{B_3}{R_{ref}^2} xy$$
; $B_y = \frac{B_3}{R_{ref}^2} (x^2 - y^2)$

Combined function magnets

Functions generated by pole shape (sum a scalar potentials):

Amplitudes cannot be varied independently

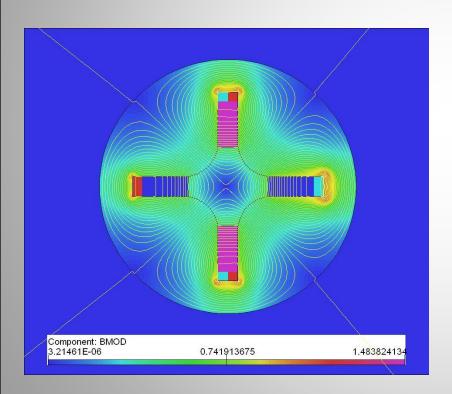
Dipole and quadrupole: PS main magnet (PFW, Fo8...)

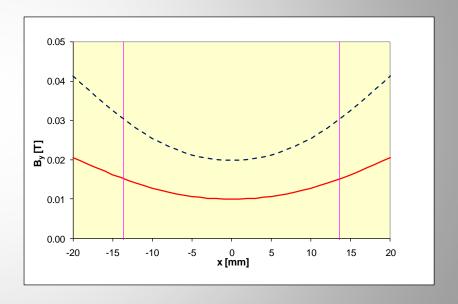


Combined function magnets

Functions generated by individual coils:

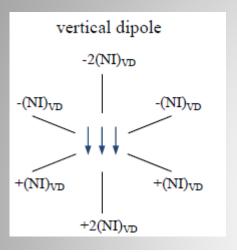
Amplitudes can be varied independently

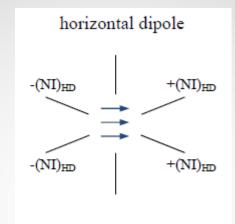


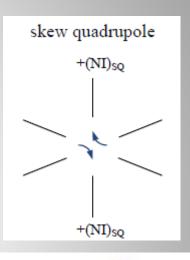


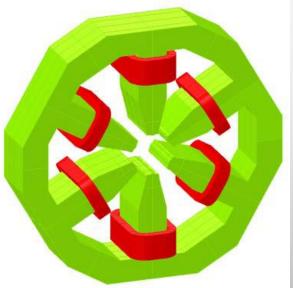
Quadrupole and corrector dipole (strong sextupole component in dipole field)

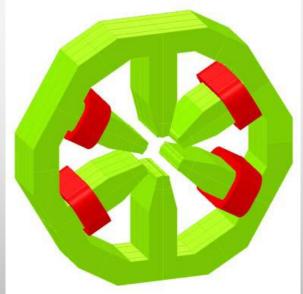
Combined function magnets

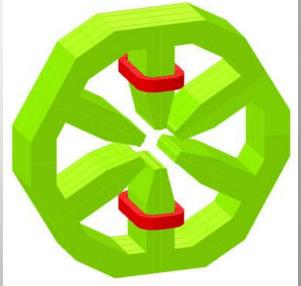






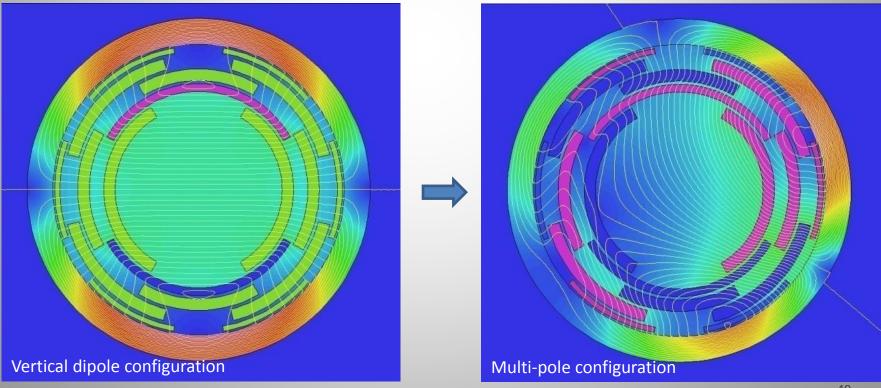






Coil dominated magnets

- Nested multi-pole corrector (moderate field levels)
- Iron for shielding only
- Field determined by current distribution



Magnet types

Pole shape	Field distribution	Pole equation	B_{x} , B_{y}
	N v v v v v v v v v v v v v v v v v v v	$y=\pm r$	$B_{x} = 0$ $B_{y} = B_{1} = \text{const.}$
	***************************************	$2xy = \pm r^2$	$B_{x} = \frac{B_{2}}{R_{ref}} y$ $B_{y} = \frac{B_{2}}{R_{ref}} x$
	***************************************	$3x^2y - y^3 = \pm r^3$	$B_x = \frac{B_3}{R_{ref}^2} xy$ $B_y = \frac{B_3}{R_{ref}^2} (x^2 - y^2)$
	- vain	$4(x^3y - xy^3) = \pm r^4$	$B_{x} = \frac{B_{4}}{R_{ref}^{3}} (3x^{2}y - y^{3})$ $B_{y} = \frac{B_{4}}{6R_{ref}^{3}} (x^{3} - 3xy^{2})$

Summary

- Magnets are needed to guide and shape particle beams
- Coils carry the electrical current, the iron yoke carries the magnetic flux
- Magnetic steel is characterized by its relative permeability μ_r and its coercivity H_c
- Iron saturation influences the efficiency of the magnetic circuit and has to be taken into account in the design
- The 2D (magnetic) vector field can be expressed as a series of multipole coefficients
- Different magnet types for different functions