
Transverse Beam Dynamics

JUAS 2019 - Tutorial 2 (solutions)

1 Exercise: Particle momentum, geometry of a storage ring and thin lenses

The LHC storage ring at CERN collides proton beams with a maximum momentum of p = 7 TeV/c per beam. The main
parameters of this machine are:

Circumference C0 = 26658.9 m
Particle momentum p = 7 TeV/c

Main dipoles B = 8.392 T lB = 14.2 m
Main quadrupoles G = 235 T/m lq = 5.5 m

1. Calculate the magnetic rigidity of the design beam, the bending radius of the main dipole magnets in the arc and determine
the number of dipoles that is needed in the machine.

Answer. The beam rigidity is obtained in the usual way by the golden rule:

Bρ = p
e = 1

0.299792 · p[GeV/c] = 3.3356 · p[GeV/c] = 3.3356 · 7000 Tm= 23349 T·m

and knowing the magnetic dipole �eld we get

ρ =
3.3356 · 7000Tm

8.392T
= 2782m

The bending angle for one LHC dipole magnet:

θ = lB
ρ = 14.2m

2782m = 5.104 mrad

and as we want to have a closed storage ring we require an overall bending angle of 2π:

N = 2π
θ = 1231 Magnets

2. Calculate the k-strength of the quadrupole magnets and compare its focal length to the length of the magnet. Can this
magnet be treated as a thin lens?

Answer. We can use the beam rigidity (or the particle momentum) to calculate the normalised quadrupole strength:

k = G
Bρ = G

p/e = 0.299792 · G
p[GeV/c] = 0.299792 · 235T/m

7000GeV/c = 0.01 m−2

an the focal length:

f = 1
k·lq = 18.2 m > lq

The focal length of this magnet is still quite bigger than the magnetic length lq. So it is valid to treat that quadrupole in
thin lens approximation.
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2 Exercise: Stability condition

Consider a lattice composed by a single 2 meters long quadrupole, with f = 1 m

• Prove that if the quadrupole is defocusing, then a lattice is not stable

• Prove that if the quadrupole is focusing, then the lattice is stable

Solution:

• Let's work in thin-lens approximation

MQD =

(
1 Lquad/2
0 1

)(
1 0
1
f 1

)(
1 Lquad/2
0 1

)
which can be computed to be

MQD =

(
2 3
1 2

)
has trace Tr (MQD) = 4, which does not ful�ll the stability requirement:

|Tr (MQD)| ≤ 2

• In the case of a focusing quadrupole:

MQF =

(
1 Lquad/2
0 1

)(
1 0
− 1
f 1

)(
1 Lquad/2
0 1

)
=

(
0 1
−1 0

)
which clearly satis�es the stability criterion.

3 Exercise: Normalised phase space

Let us consider the following phase space vector: (x, x′). The transformation to a normalised phase space (X,X ′) is given by:(
X
X ′

)
=

(
1/
√
βx 0

αx/
√
βx

√
βx

)(
x
x′

)
The normalisation process of the phase space is illustrated in the �gure below:

If we know that the transfer matrix between two points 1 and 2 (with phase advance φx between them) in the phase space
(x, x′) is given by:

M1→2 =


√

βx2

βx1
(cosφx + αx1 sinφx)

√
βx1βx2 sinφx

(αx1−αx2) cosφx−(1+αx1αx2) sinφx√
βx2βx1

√
βx1

βx2
(cosφx − αx2 sinφx)


Obtain the transfer matrix between two points 1 and 2 in the normalised phase space.
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Answer. If one writes
M1→2 = U−12 ·R · U1

with U1 the transformation into normalised coordinates for the Twiss parameters at 1, and U2 its inverse for the Twiss parameters
at 2: i.e.,

U1 =

 1√
β1

0

α1√
β1

√
β1

 ; U−12 =

( √
β2 0

− α2√
β2

1√
β2

)
It can be shown that the matrix M12 can be written as:

M12 =

( √
β2 0

− α2√
β2

1√
β2

)(
cos ∆φ sin ∆φ
− sin ∆φ cos ∆φ

) 1√
β1

0

α1√
β1

√
β1


with

R =

(
cos ∆φ sin ∆φ
− sin ∆φ cos ∆φ

)
.

4 Exercise: beam size and luminosity

An e+e− collider has an interaction Point (IP) with β∗x = 0.5 m and β∗y = 0.1 cm. The peak luminosity available by a e+e−

collider can be written as:

L =
NbNe−Ne+frev

4πσ∗xσ
∗
y

[cm
−2

s−1]

where Nb = 80 is the number of bunches per beam (we assume the same number of bunches for both the e− and the e+ beams),
Ne− = Ne+ = 5 × 1011 is the number of particles per bunch (we assume the same number for both e− and e+ bunches), and
frev is the revolution frequency. The horizontal and vertical normalised beam emittances are respectively: εx,N = 2.2 mm and
εy,N = 4.7 µm.

• Compute the revolution frequency frev, knowing that the circumference is 80 km and that the beam moves nearly at the
speed of light

Solution. The revolution period is given by Trev = circumference/c = 80km/c, and therefore the revolution frequency is:

frev = 1/Trev = c/80 km'3.75 kHz

• Calculate the beam transverse beam sizes σ∗x and σ∗y at the IP, and the luminosity L for two di�erent beam energies: 45
GeV and 120 GeV

Solution. For 45 GeV beam energy: in this case the Lorentz factor is γ = 88062.622, and σ∗x =
√
β∗xεx,N/γ ' 111.76 µm and

σ∗y =
√
β∗yεy,N/γ ' 0.23 µm, and the luminosity is L ' 2.32× 1034 cm−2s−1

For 120 GeV beam energy: in this case the Lorentz factor is γ = 234833.66, and σ∗x =
√
β∗xεx,N/γ ' 68.56 µm and

σ∗y =
√
β∗yεy,N/γ ' 0.14 µm, and the luminosity is L ' 6.22× 1034 cm−2s−1

• What are the beam divergences (horizontal and vertical) at the IP for the 45 GeV case?

Solution. Where α = 0 we have

σ∗x′ =

√
εx,N
γβ∗x

= ...

• What is the value of the betatron function at position s = 0.5 m from the IP?

Solution. We know that the betatron function in the drift space of a low beta region (where we have the interaction point)
depends on the longitudinal coordinate as follows:

β(s) = β∗ +
s2

β∗

Therefore, βx(0.5m) = 1 m, and βy(0.5m) = 250 m
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