

Introduction for Magnets

Gijs de Rijk CERN

JUAS

Archamps

18th February 2019

JUAS, 18 Febr 2019, Introduction to magnets, GdR

Contents

1. Introduction

2. Fundamentals 1: Maxwell and friends

3. Fundamentals 2: harmonics

This lecture is a based on previous lectures by Attilio Milanese and Davide Tommasini

Earth magnetic field

In Archamps, on 30/01/2019, the (estimated) magnetic field (flux density) is $|B| = 47447 \text{ nT} = 0.047447 \text{ mT} = 4.7447 \cdot 10^{-5} \text{ T} \approx 0.5 \text{ Gauss}$

US/UK World Magnetic Model - Epoch 2015.0 Main Field Total Intensity (F)

Magnet types, functional view

We can classify magnets based on their geometry (that is, what they do to the beam)

dipole

bend

quadrupole

focus

sextupole

Chromatic effects

octupole

damping

kicker / septum

Injection - extraction

solenoid

focus

combined function bending

Bend and focus

corrector

Correct errors

skew magnet

coupling

undulator / wiggler

Synchrotron light

Magnet types, technological view

We can also classify magnets based on their technology

electromagnet

permanent magnet

iron dominated

coil dominated

normal conducting (resistive)

superconducting

static

cycled / ramped slow pulsed

fast pulsed

Types of iron dominated, resistive magnet fields for accelerators

Types of superconducting magnet fields for accelerators

a "pure" multipolar field can be generated by a specific coil geometry

Courtesy P. Ferracin, CERN

Early Cyclotron

The 184" (4.7 m) cyclotron at Berkeley (1942)

Some early synchrotron magnets (early 1950-ies)

Bevatron (Berkeley) 1954, 6.2 GeV

Cosmotron
(Brookhaven)
1953, 3.3 GeV
Aperture:
20 cm x 60 cm

PS combined function dipole (1959)

Magnetic field:

at injection

for 24.3 GeV

maximum

GdR

18 Febr 2019, Introduction to magnets,

Weight of one magnet unit

Gradient @1.2 T: 5 T/m

Equipped with pole-face windings for higher order corrections

Connection of the PFW main windings for R type magnet

147 G 1.2 T 1.4 T 38 t

Water cooled Al racetrack coils

FINAL POLE PROFILE.

dipole magnet : SPS dipole (1975)

H magnet type MBB

B = 2.05 T

JUAS, 18 Febr 2019, Introduction to magnets, GdR

Coil: 16 turns

 $I_{max} = 4900 \text{ A}$

Aperture = $52 \times 92 \text{ mm}^2$

L = 6.26 m

Weight = 17 t

SPS main dipole

These are main quadrupoles of the SPS at CERN: 22 T/m × 3.2 m

Elettra combined function magnet

This is a combined function bending magnet of the ELETTRA light source

SESAME sextupoles

These are sextupoles (with embedded correctors) of the main ring of the SESAME light source

Beam Transfer line magnets: Castor and Cesar

1977: Very first SC magnets at CERN in an SPS beam line

- CESAR dipole: aperture 150 mm, B=4.5 T
 I = 2 m
- CASTOR quadrupole

Both use a monolithic conductor would into a cos⊕ coil

Fig.1. Magnet cross section.

ISR Insertion quadrupole

- Nb-Ti monolitic conductor
- fully impregnated coil
- Prestress from yoke + shell

Tevatron proton-antiproton ring

- Nb-Ti conductor at 4.2 K
- Collars for prestress
- warm iron

Tevatron dipoles: 4.2 T single aperture, warm yoke

LHC dipole

This is a main dipole of the LHC at CERN: 8.3 T × 14.3 m

LHC main quadrupole

This is a cross section of a main quadrupole of the LHC at CERN: 223 T/m × 3.2 m

Electro-magnetism

Ørsted showed in 1820 that electricity and magnetism were somehow related

Electromagnet

The first electromagnet was built in 1824 by Sturgeon

Basic magnet type

Our magnets work on a few basic principles (steady state only)

an electrical current induces a magnetic effect

some materials (e.g. iron) greatly enhance these effects

some other materials produce these effects even without electrical currents

1. Introduction

2. Fundamentals 1: Maxwell and friends

3. Fundamentals 2: harmonics

So, how do we properly describe all this? I

Maxwell Equations

Integral form

$$\oint \vec{H} d\vec{s} = \int_{A} \left(\vec{J} + \frac{\partial \vec{D}}{\partial t} \right) d\vec{A}$$

$$\oint \vec{E} \, d\vec{s} = -\frac{\partial}{\partial t} \int_{A} \vec{B} \, d\vec{A}$$

$$\int_{A} \vec{B} \, d\vec{A} = 0$$

$$\int_{A} \vec{D} \ d\vec{A} = \int_{V} \rho \ dV$$

Ampere's law

Faraday's equation

Gauss's law for magnetism

Gauss's law

With:
$$\vec{B} = \mu \vec{H} = \mu_0 (\vec{H} + \vec{M})$$

 $\vec{D} = \varepsilon \vec{E} = \varepsilon_0 (\vec{E} + \vec{P})$
 $\vec{J} = \kappa \vec{E} + J_{imp}$

Differential form

$$rot\vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$$

$$rot\vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$div\vec{B} = 0$$

$$div\vec{D} = \rho$$

James Maxwell 1831 – 1879

So, how do we properly describe all this? II

Lorentz force

$$\overrightarrow{F_m} = q(\overrightarrow{v} \times \overrightarrow{B})$$
 for charged beams

 $\overrightarrow{F_m} = I \overrightarrow{\ell} \times \overrightarrow{B}$ for conductors

Hendrik Lorentz 1853 –1928

Nomenclature

В	flux density magnetic field B field magnetic induction	T (Tesla)
Н	magnetic field magnetic field strength H field	A/m (Ampere/m)

 μ_0

permeability of vacuum

 $4\pi \cdot 10^{-7}$ H/m (Henry/m)

 μ_{r}

relative permeability

dimensionless

μ

permeability, $\mu = \mu_0 \mu_r$

H/m

Magnetostatics

Let's have a closer look at the 3 equations that describe magnetostatics

Gauss law of magnetism

(1) div
$$\vec{B} = 0$$

always holds

Ampere's law with no time dependencies

(2) rot
$$\vec{H} = \vec{J}$$

holds for magnetostatics

Relation between \vec{H} field and the flux density \vec{B}

$$(3) \quad \vec{B} = \mu_0 \mu_r \vec{H}$$

holds for linear materials

Divergence free fields

Gauss law of magnetism:

the magnetic flux tubes wrap around, with neither sources nor sinks

$$\operatorname{div} \vec{B} = \frac{\partial B_x}{\partial x} + \frac{\partial B_y}{\partial y} + \frac{\partial B_z}{\partial z} = 0$$

$$\operatorname{div} \vec{B} = \frac{\partial B_x}{\partial x} + \frac{\partial B_y}{\partial y} + \frac{\partial B_z}{\partial z} = 0 \qquad \oiint \vec{B} \cdot \overrightarrow{dS} = \iiint \operatorname{div} \vec{B} \, dV = 0$$

$$\operatorname{divergence} / \operatorname{Gauss theorem}$$

Electrical currents generate magnetic fields

Ampere's law:

electrical currents generate ("stir up") a magnetic field

$$\operatorname{rot} \vec{H} = \left(\frac{\partial H_z}{\partial y} - \frac{\partial H_y}{\partial z}\right) \vec{i}_x + \left(\frac{\partial H_x}{\partial z} - \frac{\partial H_z}{\partial x}\right) \vec{i}_y + \left(\frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y}\right) \vec{i}_z = \vec{J}$$

$$\oint \vec{H} \cdot \vec{dl} = \iint \operatorname{rot} \vec{H} \, dS = \iint \vec{J} \, dS = NI$$

Kelvin-Stokes theorem

Law of Biot & Savart

From Ampere's law without time dependencies and Gauss law we can derive the Biot & Savart law

$$\oint \vec{H} \cdot \vec{dl} = I \quad ->$$

$$H(2\pi r) = I ->$$

$$H = \frac{I}{2\pi r} - \frac{I}{| - \rangle}$$

$$| - \rangle \quad B = \mu_0 H = \frac{\mu_0 I}{2\pi r}$$

$$| \vec{B} = \mu_0 \vec{H} - |$$

Non-linear materials - magnetisation

In a nonlinear material (with for ex. saturation and hysteresis), the constitutive law becomes more complex

Non-linear materials: BH curves

In most of our simulations we use a simple BH model for the material: this is a typical curve for an electrical steel.

The flattening-off is called "saturation"

Field in a magnet with a steel yoke I

Now, why do the flux lines come out perpendicular to the iron?

Field in a magnet with a steel yoke II

Because they obey to Maxwell!

iron
$$\mu_r \gg 1$$

air
$$\mu_r = 1$$

$$H_{\parallel, \, air} = H_{\parallel, \, iron}$$

$$B_{\parallel, \, \mathrm{air}} = \frac{B_{\parallel, \, \mathrm{iron}}}{\mu_{r, \mathrm{iron}}} \approx 0$$

$$B_{\perp, \, \text{air}} = B_{\perp, \, \text{iron}}$$

Vector potential \vec{A}

This is an "advanced introduction", so let's introduce the vector potential (3D)

Definition:

$$\vec{B} = \operatorname{rot} \vec{A}$$

In magnetostatics, we can combine Eqs. 1 to 3 in a more compact form (3D)

In 2D this becomes a scalar Laplace equation

$$abla^2 A_z = 0$$
 $\qquad \frac{\partial^2 A_z}{\partial x^2} + \frac{\partial^2 A_z}{\partial y^2} = 0$ magneral m

holds for magnetostatics and in air

- 1. Introduction
- 2. Fundamentals 1: Maxwell and friends
- 3. Fundamentals 2: harmonics

Multipoles I, quadrupole

We look at the 2D first: how can we conveniently describe the field in the aperture, for ex. in a quadrupole?

SESAME quadrupole

$$B_{pole} = 0.6 T$$

Multipoles III, sextupole

And in another resistive magnet, with a different configuration?

Multipoles IV, Superconducting dipole

Can the same formalism also describe the field in the aperture of a superconducting dipole?

Multipoles V, harmonic expansion

The solution is a harmonic (or multipole) expansion, describing the field (within a circle of validity) with scalar coefficients

(4)
$$B_{y}(z) + iB_{x}(z) = \sum_{n=1}^{\infty} (B_{n} + iA_{n}) \left(\frac{z}{R_{ref}}\right)^{n-1}$$

with:
$$z = x + iy = re^{i\theta}$$

This decomposition has two characteristic radii: R_{ref} and R_{max}

Multipoles VI, cylindrical coordinates

Expanding Eq. 4 in terms of radial and tangential components, we find sin and cos terms

$$B_r = \sum_{n=1}^{\infty} \left(\frac{r}{R_{ref}}\right)^{n-1} \left[B_n \sin(n\theta) + A_n \cos(n\theta)\right] \qquad y$$

$$B_{\theta} = \sum_{n=1}^{\infty} \left(\frac{r}{R_{ref}}\right)^{n-1} \left[B_{n} \cos(n\theta) - A_{n} \sin(n\theta)\right]$$

Multipoles VII, normalized coefficients

In most cases, there is a main fundamental component, to which the other terms are normalized

take: (4) $B_y(z) + iB_x(z) = \sum_{n=1}^{\infty} (B_n + iA_n) \left(\frac{z}{R_{ref}}\right)^{n-1}$

define:

$$b_n = 10000 \frac{B_n}{B_N} \qquad a_n = 10000 \frac{A_n}{B_N}$$

hence:

$$B_{y}(z) + iB_{x}(z) = B_{N} \sum_{n=1}^{\infty} \frac{b_{n} + ia_{n}}{10000} \left(\frac{z}{R_{ref}}\right)^{n-1}$$
 field shape

NB. The multipole coefficients b_n and a_n dimensions are referred to as "units"

Multipoles VIII, midplane field

Another useful expansion derived from Eq. 4 is that of B_y and B_x on the midplane, i.e. at y = 0

$$B_{y}(x) = \sum_{n=1}^{\infty} B_{n} \left(\frac{x}{R_{ref}} \right)^{n-1} = B_{1} + B_{2} \frac{x}{R_{ref}} + B_{3} \left(\frac{x}{R_{ref}} \right)^{2} + \cdots$$

$$B_{x}(x) = \sum_{n=1}^{\infty} A_{n} \left(\frac{x}{R_{ref}}\right)^{n-1} = A_{1} + A_{2} \frac{x}{R_{ref}} + A_{3} \left(\frac{x}{R_{ref}}\right)^{2} + \cdots$$

Multipoles IX, multipole fields

Each multipole corresponds to a field distribution: adding them up, we can describe everything (this is nicely compatibly with Maxwell)

B₁: normal dipole

B₂: normal quadrupole

B₃: normal sextupole

A₁: skew dipole

A₂: skew quadrupole

A₃: skew sextupole

Multipoles X, dipole field

B₁ is the normal dipole

Multipoles XI, quadrupole field

B₂ is the normal quadrupole

gradient:
$$G = \frac{B_2}{R} = \frac{\partial B_y}{\partial x} = B'$$

field on the pole tip: $B_{pole} = B'R_{pole}$

Multipoles XII, sextupole field

B₃ is the normal sextupole

gradient:
$$B^{\prime\prime} = \frac{\partial^2 B_y}{\partial x^2} = \frac{2B_3}{R^2}$$

$$B_{pole} = \frac{1}{2}B^{\prime\prime}R_{pole}$$

Multipoles XIII, allowed multipoles

The allowed / not-allowed harmonics refer to the terms that shall / shall not cancel out thanks to design symmetries

fully symmetric dipoles: only B₁, b₃, b₅, b₇, b₉, etc.

half symmetric dipoles: B₁, b₂, b₃, b₄, b₅, etc.

Multipoles XIV, allowed multipoles

These are the allowed harmonics for fully symmetric quadrupoles and sextupoles

fully symmetric quadrupoles: B₂, b₆, b₁₀, b₁₄, b₁₈, etc.

fully symmetric sextupoles: B₃, b₉, b₁₅, b₂₁, etc.

Multipoles XV, scaling

We can change R_{ref} and scale up (or down) the harmonics

$$B_{n,2} = B_{n,1} \left(\frac{R_{ref,2}}{R_{ref,1}}\right)^{n-1}$$

$$b_{n,2} = b_{n,1} \left(\frac{R_{ref,2}}{R_{ref,1}}\right)^{n-N}$$

R_{ref,2}

50

Multipoles XVI, example

Let's have a look at a real case: the measurements of 33 quadrupoles built for SESAME

mean ± rms	QF @ 250 A
b_3	-0.2 ± 0.8
a_3	-0.1 ± 0.9
b ₄	0.3 ± 0.4
a ₄	-0.3 ± 0.1
b_5	0.0 ± 0.1
a ₅	0.0 ± 0.1
b_6	-0.1 ± 0.1
b ₁₀	-0.3 ± 0.0
b ₁₄	0.3 ± 0.0

SESAME QF

Magnetic Length

In 3D, the longitudinal dimension of the magnet is described by the magnetic length

magnetic length L_{mag} as a first approximation in an irn dominated magnet:

- For dipoles $L_{mag} = L_{yoke} + d$
- For quadrupoles: $L_{mag} = L_{yoke} + r$

- d = pole distance
- r = radius of the inscribed circle between the 4 poles

Multipoles along a magnet

This 2D decomposition holds also for the integrated 3D field, as long as at the start / end B is constant along z

Magnetic fields, order of magnitudes

From Ampere's law with no time dependencies

(Integral form)
$$\oint_C \vec{B} \cdot d\vec{l} = \mu_0 I_{encl.}$$

We can derive the law of Biot and Savart

$$\vec{B} = \frac{\mu_0 I}{2\pi r} \hat{\varphi}$$

If you wanted to make a B = 1.5 T magnet with just two infinitely thin wires placed at 100 mm distance in air one needs :

I = 187500 A

- To get reasonable fields (B > 1 T) one needs large currents
- Moreover, the field homogeneity will be poor

Iron dominated magnets, simple example

With the help of an iron yoke we can get fields with less current

 $\oint_C \vec{H} \cdot d\vec{l} = N \cdot I$ $N \cdot I = H_{iron} \cdot l_{iron} + H_{airgap} \cdot l_{airgap} \Longrightarrow$

Example: C shaped dipole for accelerators

$$N \cdot I = \frac{B}{\mu_0 \mu_r} \cdot l_{iron} + \frac{B}{\mu_0} \cdot l_{airgap} \Longrightarrow$$

$$N \cdot I = \frac{l_{airgap} \cdot B}{\mu_0}$$

 $N \cdot I = \frac{l_{airgap} \cdot B}{\text{the iron : limited to B < 2 T}}$

coil

Comparison: iron magnet and air coil

Imagine a magnet with a 50 mm vertical gap (horizontal width ~100 mm) Iron magnet wrt to an air coil:

- Up to 1.5 T we get ~6 times the field
- Between 1.5 T and 2 T the gain flattens of : the iron saturates
- Above 2 T the slope is like for an air-coil: currents become too large to use resistive coils

These two curves are the transfer functions – B field vs. current – for the two cases

Magnets in an accelerator: power convertor and circuit

- B field stability in time: ~10⁻⁵ 10⁻⁶
- Typical R of a magnet $\sim 20 \text{m}\Omega$ $60 \text{m}\Omega$
- Typical L of a magnet ~20mH 200mH
- Powering cable (for 500A): Cu 250 mm² (Cu: 17 n Ω .m) R = 70 $\mu\Omega$ /m, for 200m: R= 13m Ω
- Take a typical rise time 1s

Cu or Al coil Steel yoke

Then the Power Convertor has to Supply: 0-500 A with a stability of a few ppm.

Voltage up to 40 V (resitive)
And 100 V (inductive)

Acknowledgement

This lecture is a based on previous lectures by Attilio Milanese and Davide Tommasini

Literature on Magnets

Books

- 1) M. Wilson, Superconducting magnets / Oxford : Clarendon Press, 1983 (Repr. 2002). 335 p
- 2) K-H. Mess, P. Schmüser, S. Wolff, Superconducting Accelerator Magnets, Singapore, World Scientific, 1996. 218 p.
- Y. Iwasa, Case studies in superconducting magnets: design and operational issues. 2nd ed. Berlin: Springer, 2009. -682 p.
- 4) S. Russenschuck, Field computation for accelerator magnets: analytical and numerical methods for electromagnetic design and optimization / Weinheim: Wiley, 2010. 757 p.
- 5) CERN Accelerator school, Magnets, Bruges, Belgium 16 25 June 2009, Editor: D. Brandt, CERN–2010–004
- 6) G.E.Fisher, "Iron Dominated Magnets" AIP Conf. Proc., 1987 -- Volume 153, pp. 1120-1227
- 7) J. Tanabe, "Iron Dominated Electromagnets", World Scientific, ISBN 978-981-256-381-1, May 2005
- 8) P. Campbell, Permanent Magnet Materials and their Application, ISBN-13: 978-0521566889

Schools

- 1. CAS Bruges, 2009, specialized course on magnets, 2009, CERN-2010-004
- 2. CAS Frascati 2008, Magnets (Warm) by D. Einfeld
- 3. CAS Varna 2010, Magnets (Warm) by D. Tommasini
- 4. N. Marks, Magnets for Accelerators, J.A.I., Jan. 2015
- 5. Superconducting magnets for particle accelerators in USPAS

Conference series

- Magnet Technology, MT
- Applied Superconductivity, ASC
- 3. European Applied superconductivity, EUCAS

Literature on Magnets

Papers and reports

- 1) D. Tommasini, "Practical definitions and formulae for magnets," CERN, Tech. Rep. EDMS 1162401, 2011
- 2) S. Caspi, P. Ferracin, "Limits of Nb3Sn accelerator magnets", Particle Accelerator Conference (2005) 107-11.
- 3) S. Caspi, P. Ferracin, S. Gourlay, "Graded high field Nb3Sn dipole magnets", 19th Magnet Technology Conference, IEEE Trans. Appl. Supercond., (2006) in press.
- 4) E. Todesco, L. Rossi, "Electromagnetic Design of Superconducting Dipoles Based on Sector Coils", Phys. Rev. Spec. Top. Accel. Beams 10 (2007) 112401
- 5) E. Todesco, L. Rossi, AN ESTIMATE OF THE MAXIMUM GRADIENTS IN SUPERCONDUCTING QUADRUPOLES, CERN/AT 2007-11(MCS),
- 6) P. Fessia, et al., Parametric analysis of forces and stresses in superconducting dipoles, IEEE, trans. Appl, Supercond. Vol 19, no3, June 2009.
- 7) P. Fessia, et al., Parametric analysis of forces and stresses in superconducting quadrupole sector windings, sLHC Project Report 0003
- 8) A. Devred, Practical Low-Temperature Superconductors for Electromagnets, CERN yellow report

Websites

1) http://www.magnet.fsu.edu/magnettechnology/research/asc/plots.html

