Tutorial 2

andrea.latina@cern.ch, guido.sterbini@cern.ch
hector.garcia.morales@cern.ch, nuria.fuster.martinez@cern.ch

Tutorial 2: First Part

Matching the FODO cell using a parametric plot.

- Consider the FODO cell of tutorial 1 ($L_{\text {cell }}=100 \mathrm{~m}$, $L_{\text {quad }}=5 \mathrm{~m}$ and $f=200 \mathrm{~m}$).
- Define the beam (proton at $E_{\text {tot }}=7 \mathrm{TeV}$), activate the sequence and try to twiss it powering the quads to obtain $\Delta \mu \approx 90 \mathrm{deg}$ phase advance in the cell using the thin lens approximation (use Fig. 1). What is the actual phase advance computed by MADX?

Tutorial 2: First Part

Figure 1: Phase advance versus quad strength, cell length and quad length. Thin lens approximation of a FODO.

Tutorial 2: SECOND Part

Tune and β-function dependence with K1.

- What is the $\beta_{\max }$? Compare with the thin lens approximation (Fig. 2). Compute the maximum beam σ assuming $\epsilon_{n}=3 \mathrm{mrad} \mathrm{mm}, E_{\text {tot }}=7 \mathrm{TeV}$?
- Halve the focusing strength of the quadrupoles, what is the effect of it on the $\beta_{\max }, \beta_{\min }$ and on the $\Delta \mu$? Compare with the parametric plots in Fig. 1 and Fig. 2.

Tutorial 2: SECOND Part

Figure 2: β-functions versus quad strength, cell length and quad length. Thin lens approximation of a FODO.

