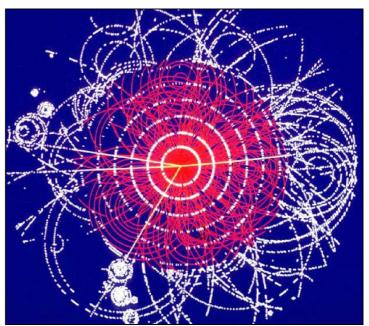
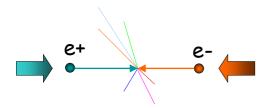

Future High Energy Linear Colliders

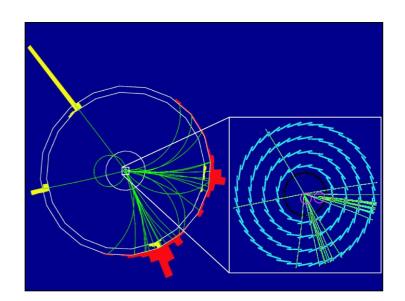
Louis Rinolfi

CERN




Hadrons versus leptons colliders

hadron collider => frontier of physics


- -discovery machine
- -quarks collisions
- not all nucleon energy available in collision
- –huge background

lepton collider => precision physics

- -study machine
- -elementary particles collisions
- -well defined CM energy
- -polarization possible

Brief history of high energy linear colliders e⁺ e⁻

- 1985: **CLIC** = CERN Linear Collider => Compact Linear Collider
- 1989:SLC = Stanford Linear ColliderStart operation with the beam
- **Six linear colliders studies at high energy, in parallel:**
 - => TESLA (1.3 GHz, superconducting, SC) DESY (Germany)
 - => SBLC (3 GHz, normal conducting, NC) DESY (Germany)
 - => NLC (11.4 GHz, normal conducting, NC) SLAC (California)
 - => JLC (11.4 GHz, normal conducting, NC) KEK (Japan)
 - => VLEPP (14 GHz, normal conducting, NC) Novosibirsk (Russia)
 - => CLIC (30 GHz, normal conducting, NC) CERN (Switzerland)
 - 2004: International Technology Recommendation Panel selects the Superconducting RF technology versus room temperature technology => ILC (International Linear Collider) based on TESLA technolgy
 - 2019: CLIC (12 GHz) and ILC (1.3 GHz) studies are ongoing

Future high energy colliders as seen in 2000

LONGITUDINAL BEAM DYNAMICS

CERN/PS 2000-008 (LP)

Application to synchrotron

Course given at JUAS (Joint Universities Accelerator School) at Archamps (France)

January 2000

The milestones with a possible future scenario are given below: 1989: SLC first beam (50 GeV) 1989: LEP first beam (45 GeV) 1998: End of SLC (50 GeV with polarised electrons) 2000: End of LEP (104 GeV) 2005: LHC first beam p^+/p^+ (7 TeV)) (approved in 1994) 2010: Linear Collider e^-/e^+ (up to 3 TeV) (?) 2030: Muons Collider μ^-/μ^+ (?)

Arian linear Collider Workshop 2018

May 28 - June 1, 2018 Fukuoka International Congress Center Fukuoka, JAPAN

hal Organizing Committee (IOC) te (DESY) u(diversity of Oregon) insudhary (University of Delhi) iskov (FRAL) (ICC) gif (KEX) S. Hou (National Taiwan University) Kawagoe (Kyaku University, Chai) maniya (University of Tokyo) ien (CEN) (CESY) Michizon (KEK) Michizon (KEK)

International Workshop on Future Linear Colliders LCWS2018

October 22-26, 2018

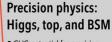
UNIVERSITY OF TEXAS 🖗 ARLINGTON

Recent workshops on high energy linear colliders

January 21 - 25, 2019 @ CERN

Accelerator technology, high-gradient structures, and low-emittance beams

 Advanced radio frequency technologies: high-efficiency klystrons, pulse compressors components, and accelerating structures

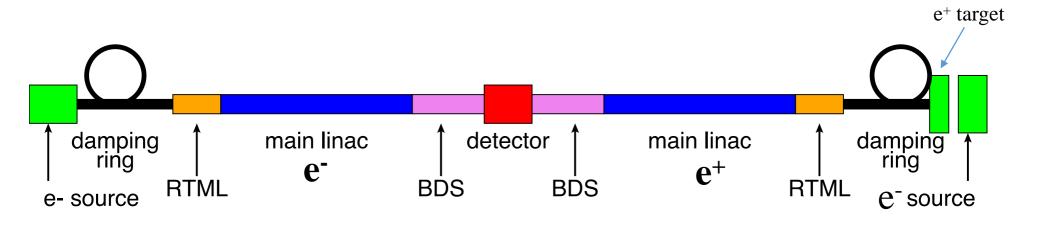

 Low emittance beams: beam dynamics, damping rings, beam delivery, instrumentation, alignment, stabilization

 Staged approach: from a 380 GeV Higgs/top factory to TeV energies

ee collisions at the energy frontier!

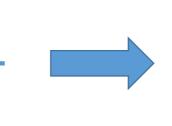
Detector technology and software

- Detector R&D: new prototype designs, simulation studies, and test-beam results for tracking detectors and calorimeters
- Software for detector geometry, simulation and reconstruction (DD4hep)
- Tracking and particle flow reconstruction
- Distributed data management and computing (iLCDirac)



- CLIC potential for precision measurements of the Higgs boson and top-quark properties, and the flavour sector
- Global interpretation using Standard Model effective field theory
- Signatures for direct discovery at CLIC, complementarity with indirect probes and hadron colliders

Learn more 📑


clicw2019.web.cern.ch

Basic Linear Collider

Reach the highest collision energy

Reach the highest luminosity

With a reduced power consumption and a minimum cost

BDS = Beam Delivery System RTML = Return To Main Linac

Energy center of mass for linear colliders

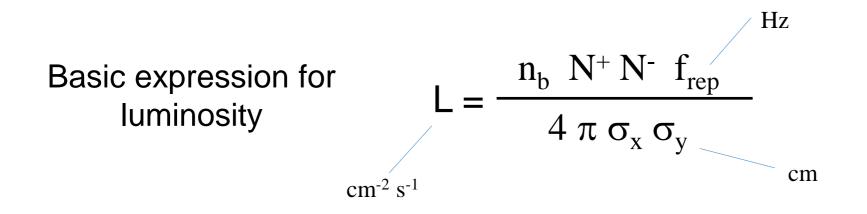
Energy (center of mass) $E_{cm} = 2 F_{fill} L_{linac} G_{RF}$ MeV MeV MV/m

<image>

 F_{fill} = Filling factor of the Linac;

 L_{linac} = Length of the linac; G_{RF} = accelerating gradient

JUAS seminar 31 January 2019


Louis Rinolfi

Luminosity

Number of events = $\sigma_{event} x \int L(t) dt$

 σ_{event} is the probability of producing a particular event $\int L(t) dt$ is a measure of the total number of interactions with L the instantaneous luminosity

The unit of the cross-section (σ_{event}) is the barn (1 barn = 10⁻²⁸ m²) => 1fb = 10⁻⁴³ m²

 $n_b =$ number of bunches; N = number of particles per bunch;

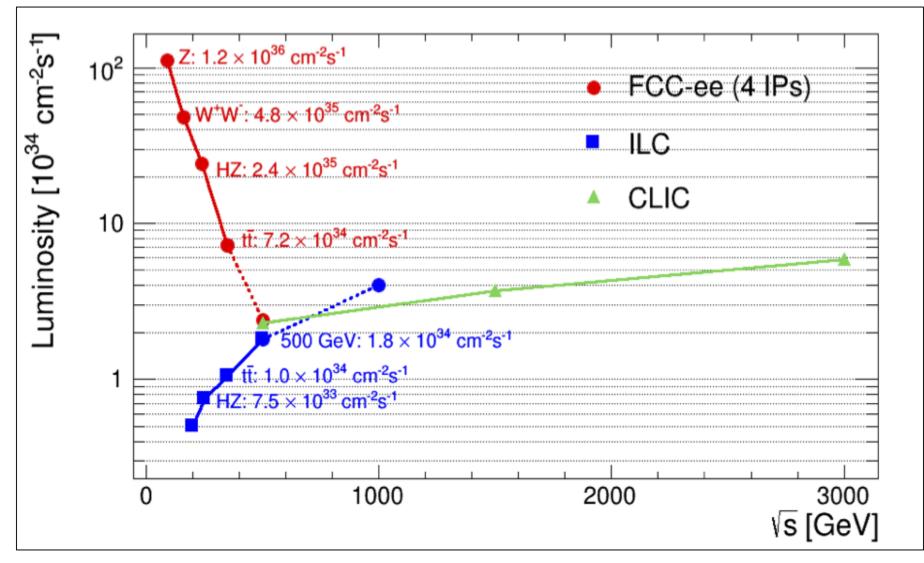
 σ_x , σ_y = rms transverse beam sizes

Re-write luminosity for linear colliders

$$L = \frac{n_{b} N^{+} N^{-} f_{r}}{4 \pi \sigma_{x} \sigma_{y}}$$

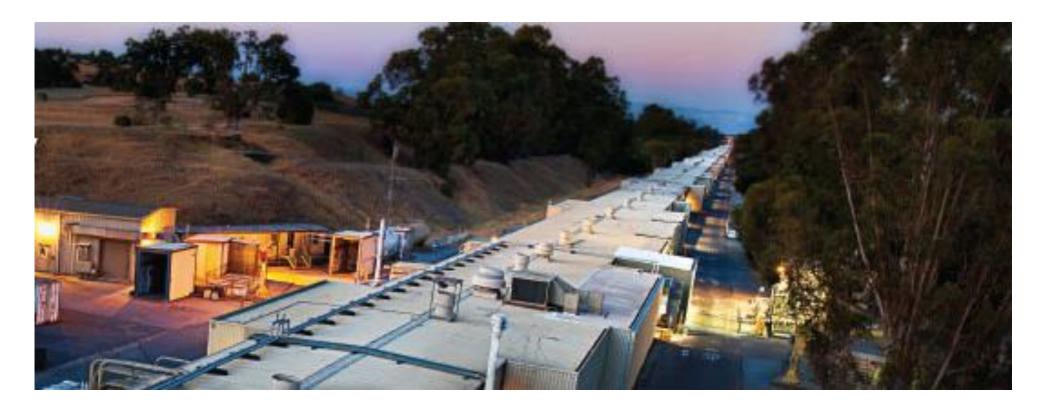
$$\mathcal{L} \propto H_{D} \frac{N}{\sigma_{x}} Nn_{b} f_{r} \frac{1}{\sigma_{y}} \qquad \text{Beam Quality} \\ \text{Beam current} \\ \text{(Physics)} \qquad \text{Beam current} \\ \text{(Power and RF limits, beam stability)} \qquad \text{Beam Stability} \qquad \text{Beam Quality} \\ \mathcal{L} \propto \frac{P_{wall}}{E_{cm}} \frac{\eta}{\sigma_{y}} N_{\gamma} H_{D}$$

$$P_{wall} = \text{total wall-plug power; } E_{cm} = \text{center mass energy;}$$


 η = efficiency of converting wall-plug power into beam power

 $N\gamma$ = number of beamstrahlung photons emitted per e+/-

 H_D = enhancement of luminosity due to the pinch effect during bunch crossing


Luminosity performance for e⁺e⁻ colliders

F. Gianotti

Note 1: Peak luminosity at SLC (92 GeV) was ~10³⁰ cm⁻²s⁻¹ Note2: Peak luminosity at LEP2 (209 GeV) was ~10³² cm⁻²s⁻¹

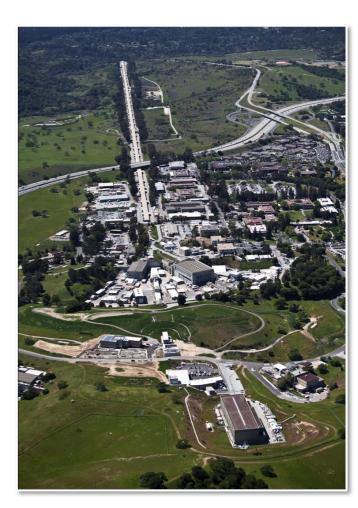
SLC (Stanford Linear Collider) – California - USA

The first and only Linear Collider who was running with a beam e^- (45.6 GeV) and e^+ (45.6 GeV)

3.2 km (2 miles) S-band linac

Operation: 1989-1998

Louis Rinolfi


SLC (Stanford Linear Collider) – California - USA

2 experiments: MARK II, SLD Peak Luminosity: 2x10³⁰cm⁻²s⁻¹

SLAC Linear Collider

Final beam energy $E_{cm} = 92 \text{ GeV}$

80% electron-beam polarization

JUAS seminar 31 January 2019

Louis Rinolfi

The Linear Collider Collaboration

SLAC-R-985 KEK Report 2012-1 PSI-12-01 JAI-2012-001 CERN-2012-007 12 October 2012

ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

A MULTI-TEV LINEAR COLLIDER BASED ON CLIC TECHNOLOGY

CLIC CONCEPTUAL DESIGN REPORT

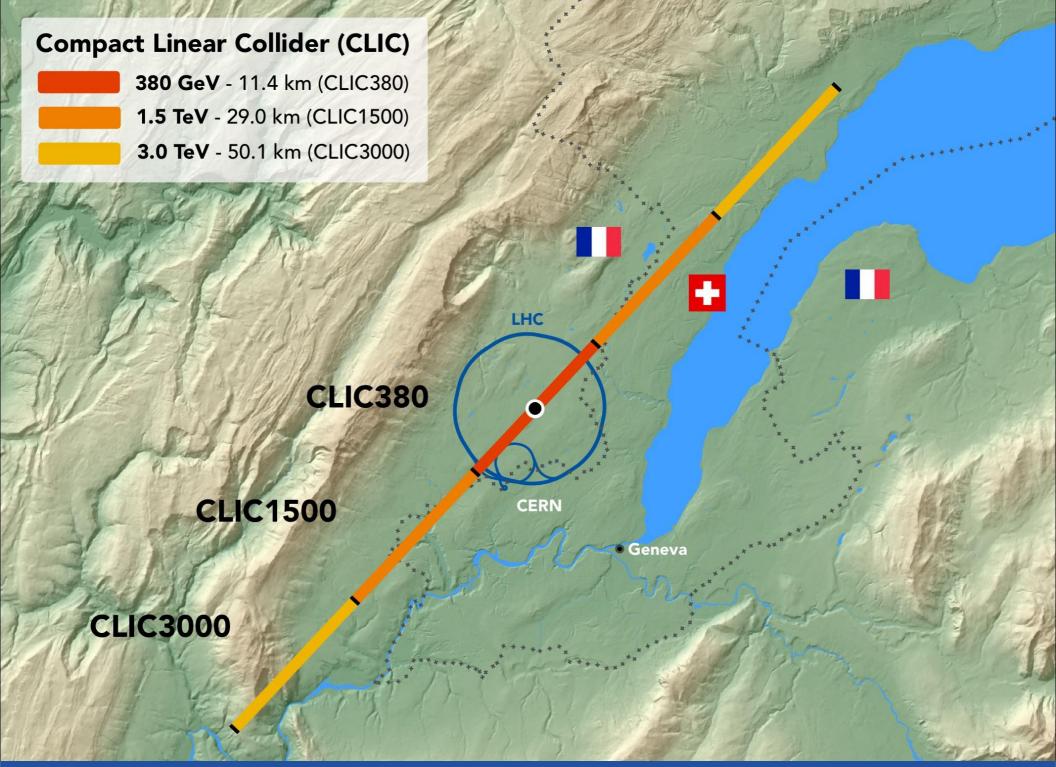
GENEVA 2012

CLIC Conceptual Design Report published in 2012

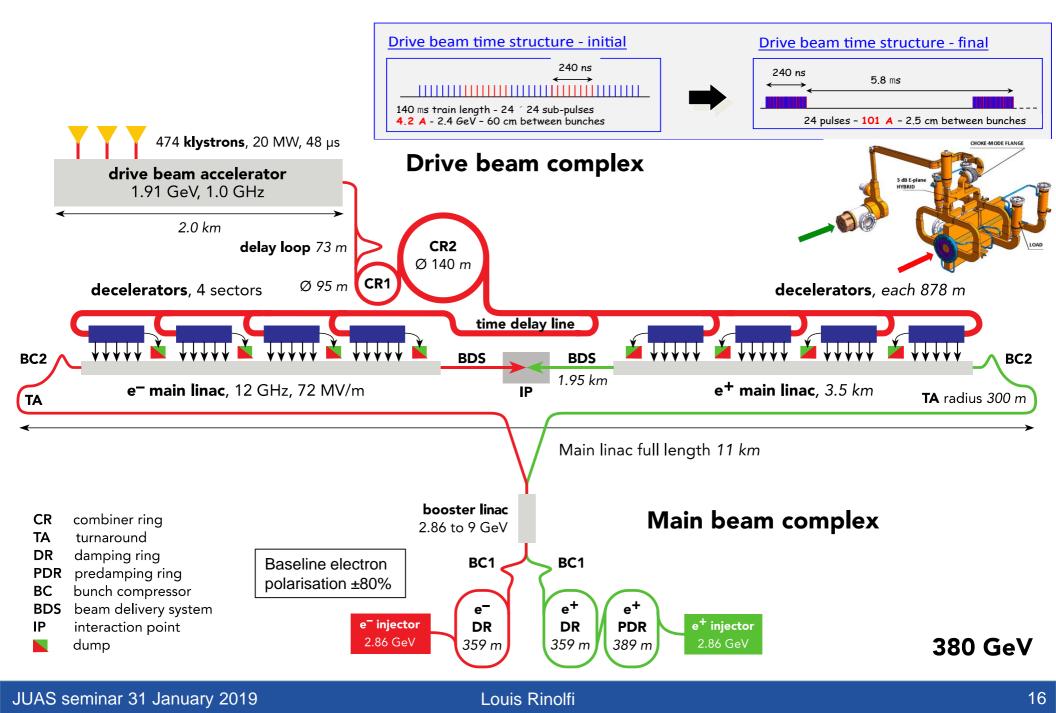
<section-header><section-header><text>

ILC Technical Design Report published in 2013

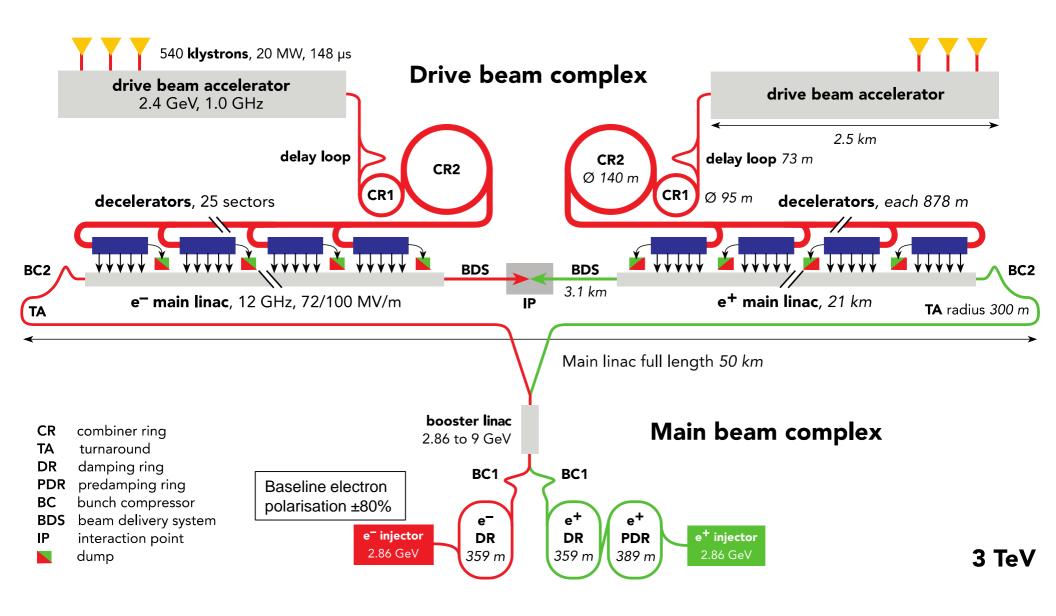

LINEAR COLLIDER COLLABORATION 2012


CLIC Collaborations

CLIC accelerator collaboration


70 institutes from 32 countries

CLIC detector and physics (CLICdp) 30 institutes from 18 countries



CLIC layout – 380 GeV

CLIC layout – 3TeV

CLIC parameters

Parameter	Symbol	Unit	Stage 1	Stage 2	Stage 3
Centre-of-mass energy	\sqrt{s}	GeV	380	1500	3000
Repetition frequency	$f_{\rm rep}$	Hz	50	50	50
Number of bunches per train	n_b		352	312	312
Bunch separation	Δt	ns	0.5	0.5	0.5
Pulse length	$ au_{ m RF}$	ns	244	244	244
Accelerating gradient	G	MV/m	72	72/100	72/100
Total luminosity	L	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	1.5	3.7	5.9
Luminosity above 99% of \sqrt{s}	$\mathscr{L}_{0.01}$	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	0.9	1.4	2
Main tunnel length		km	11.4	29.0	50.1
Number of particles per bunch	Ν	10^{9}	5.2	3.7	3.7
Bunch length	σ_z	μm	70	44	44
IP beam size	σ_x / σ_y	nm	149/2.9	$\sim 60/1.5$	$\sim 40/1$
Normalised emittance (end of linac)	$\varepsilon_x/\varepsilon_y$	nm	920/20	660/20	660/20
Normalised emittance (at IP)	$\varepsilon_x/\varepsilon_y$	nm	950/30	—	

CDR 2012 https://cds.cern.ch/record/1500095 https://cds.cern.ch/record/1425915 https://cds.cern.ch/record/1475225

Project Implementation Plan 2018

JUAS seminar 31 January 2019

Louis Rinolfi

CLIC roadmap

2013 - 2019 Development Phase

Development of a Project Plan for a staged CLIC implementation in line with LHC results; technical developments with industry, performance studies for accelerator parts and systems, detector technology demonstrators

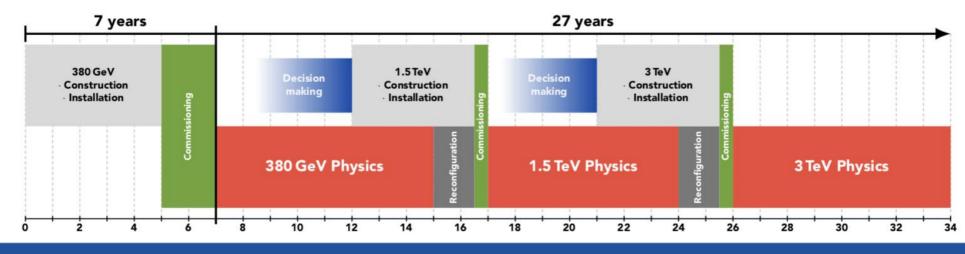
2020 - 2025 Preparation Phase

Finalisation of implementation parameters, preparation for industrial procurement, Drive Beam Facility and other system verifications, Technical Proposal of the experiment, site authorisation

2026 - 2034 Construction Phase

Construction of the first CLIC accelerator stage compatible with implementation of further stages; construction of the experiment; hardware commissioning

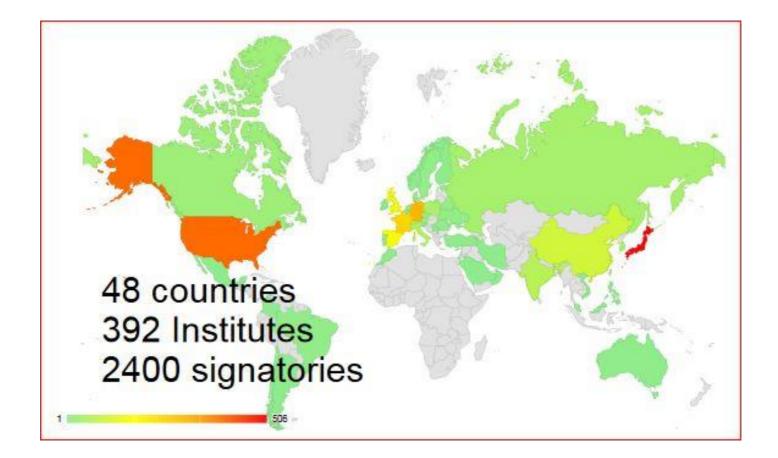
2019 - 2020 Decisions


Update of the European Strategy for Particle Physics; decision towards a next CERN project at the energy frontier (e.g. CLIC, FCC)

2025 Construction Start

Ready for construction; start of excavations

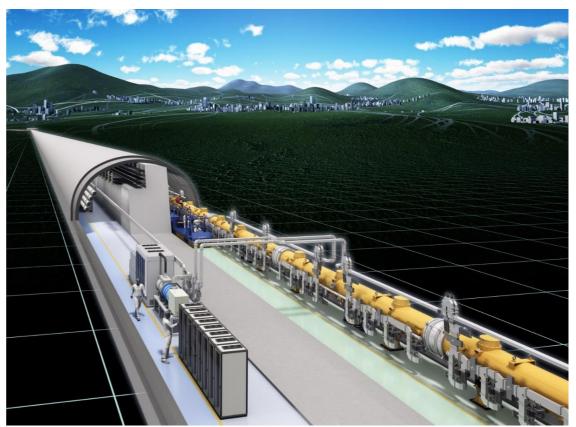
2035 First Beams


Getting ready for data taking by the time the LHC programme reaches completion

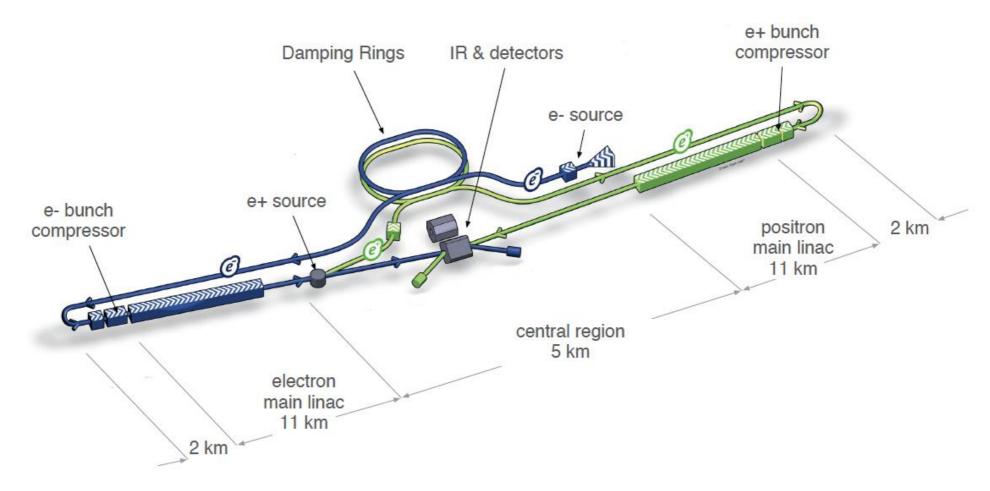
JUAS seminar 31 January 2019

Louis Rinolfi

ILC Collaborations



ILC in Japan



Kitakami mountains

ILC layout

8370 superconducting cavities in 930 cryo-modules Gradient 31.5 MV/m RF Frequency 1.3 GHz Beam polarization: e- 80%, e+ 30%

ILC parameters

Quantity	Unit	ILC250	ILC500	ILC1000
Centre-of-mass energy	GeV	250	500	1000
Luminosity	10 ³⁴ cm ⁻² s ⁻¹	1.35	1.8	4.9
Repetition frequency	Hz	5	5	4
Bunches per pulse	1	1312	1312	2450
Bunch population	10 ¹⁰ e-	2	2	1.74
Linac bunch interval	ns	554	554	366
Beam current in pulse	mA	5.8	5.8	7.6
Beam pulse duration	S	727	727	897
Average beam power	MW	5.3	10.5	27.2
Norm. hor. emitt. at IP	μm	5	10	10
Norm. vert. emitt. at IP	nm	35	35	35
RMS hor. beam size at IP	nm	516	474	335
RMS vert. beam size at IP	nm	7.7	5.9	2.7
Site AC power	MW	129	163	300
Site length	km	20.5	31	40

Extendability built-in

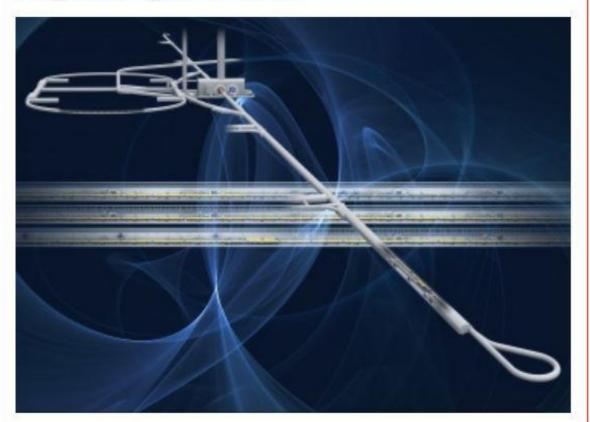
Going fom 250 GeV to 1 TeV

ILC Site & Infrastructure

- 67 km maximal length of tunnel
- Beam dumps, etc designed for 1 TeV operation
- Overall recommended ILC power limit for the 1 TeV ILC : 300 MW

Luminosity upgrades

- Straightforward: Increasing the number of bunches from 1312 to 2624
- Power Increase 129 MW \rightarrow 164 MW


Energy upgrades

- Energy upgrades to 350 GeV (tt threshold) and ~500 GeV being discussed
- 1 TeV for longer-term plan

DESY. | ILC | 103rd Plenary ECFA |Marcel Stanitzki

DIRECTOR'S UPDATE

Clarifications on the report from the Science Council of Japan regarding the ILC

The report released by the Science Council of Japan on 19 December on the realisation of the ILC raised many questions within the linear collider community. The ILC Planning Office at KEK asks for continuing support. **Special issue** 21 December 2019

What does this report mean to the ILC project ?

http://newsline.linearcollider.org/

Comparison

Parameter	Symbol [unit]	SLC	ILC	CLIC
Centre of mass energy	E _{cm} [GeV]	92	500	3000
luminosity	L [10 ³⁴ cm ⁻² s ⁻¹]	0.0003	1.8	6
Luminosity in peak	L _{0.01} [10 ³⁴ cm ⁻² s ⁻¹]	0.0003	1	2
Gradient	G [MV/m]	20	31.5	100
Particles per bunch	N [10 ⁹]	37	20	3.72
Bunch length	σ _z [μm]	1000	300	44
Collision beam size	σ _{x,y} [nm/nm]	1700/600	474/5.9	40/1
Vertical emittance	ε _{x,y} [nm]	3000	35	20
Bunches per pulse	n _b	1	1312	312
Distance between bunches	Δz [mm]	-	554	0.5
Repetition rate	f _r [Hz]	120	5	50

Other possible future linear colliders

LWFA = Laser Wake Field Accelerator => Wakefields driven in plasma by intense laser beams

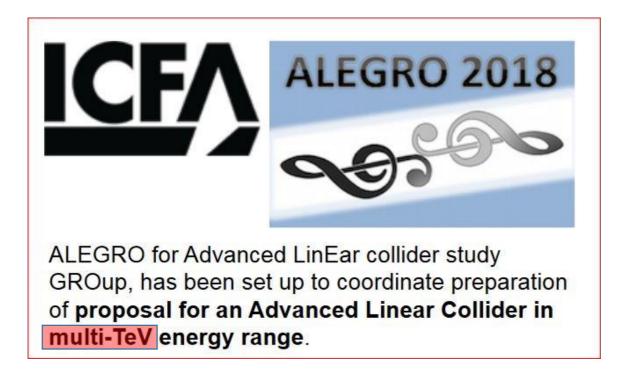
PWFA = Plasma Wake Field Accelerator => Wakefields driven in plasma by particle beams

SWFA = Structure Wake Field Accelerator => Wakefields driven in structures (dielectric tubes) by particle beams

DLA = Dielectric Laser Accelerator => Wakefields driven in dielectric structures by short-pulse laser

Gamma-gamma factory: => e- e- collisions => e- ions collisions (partially stripped ions)

Seminars on future linear colliders


JUAS Seminar on Particle accelerators (European context) 16th January 2019 by M. Vretenar / CERN

JUAS Seminar on Novel high gradient particle accelerator 30th January 2019 by R. Aβmann / DESY

3rd European Advanced Accelerator Concepts Workshop

Workshop 25-28 April 2017 at CERN <u>https://indico.cern.ch/event/569406/</u>

Workshop 26-29 March 2018 at University of Oxford, JAI <u>https://indico.cern.ch/event/677640/overview</u>

Future workshop at CERN 26-29 March 2019 https://indico.cern.ch/event/732810/overview

Linear Muon collider

F. Zimmermann, "Final Focus Challenges for Muon Colliders at Highest Energies," CERN-SL-99-077-AP.- AIP Conf. Proc.: 530 (1999), pp. In : Colliders and Collider Physics at the Highest Energies : Muon Colliders at 10 TeV to 100 TeV, Montauk, NY, USA, 27 Sep - 1 Oct 1999, pp.347-367

parameter	symbol	SPMC-0	SPMC-I	SPMC-II	SPMC-III
cm energy [TeV]	E_{cm}	3	10	100	1000
luminosity $[10^{35} \text{ cm}^{-2} \text{ s}^{-1}]$	L	1.2	2.1	7.2	5.4
beam energy [TeV]	E_b	1.5	5	50	500
muons/bunch $[10^{12}]$	N_b	5	3	0.8	0.2
bunches/train	n_b	1	1	1	1
repetition rate [Hz]	f_{rep}	160	27	7.9	3.2
normalized tr. emittances $[\mu m]$	$\gamma \epsilon_{x,y}$	15	2	0.5	0.25
6-dim. normalized emittance	$\gamma^3 \epsilon_{6d}$	16	1.5	0.23	0.30
$[10^{-12} \text{ m}^3]$					
rms energy spread	$\delta_{ m rms}$	1%	1%	1%	1%
rms bunch length [mm]	σ_{z}	0.5	0.8	0.2	0.1
relativistic Lorentz factor $[10^4]$	γ	1.41	4.7	47	473
IP beta functions [mm]	$eta^*_{x,y}$	0.5	0.8	0.2	0.1
IP spot sizes [nm]	$\sigma_{x,y}$	730	184	14.5	2.3
beamstrahlung energy loss	δ_B	7×10^{-7}	8×10^{-6}	4×10^{-3}	0.14
Upsilon parameter	Υ	2×10^{-6}	1.0×10^{-5}	1.4×10^{-3}	0.04
beamstrahlung photons/lepton	N_{γ}	0.71	1.67	5.61	8.43
luminosity enhancement factor	H_D	2.00	3.67	3.77	2.83

Table 4: Parameters for Single Pass Muon collider

1-3 July 2018 Università di Padova - Orto Botanico

Muon Collider workshop Italy

Muon colliders

Carlo Rubia / INFN / CERN Padova workshop 2018

Advantages

- Large cross sections σ (µ⁺µ⁻ → h) = 35 pb in s-channel resonance and 0.2 pb for µ⁺µ⁻ → ZH of at ≈ ½ TeV.
- Small size footprint: they may fit within the ESS site
- >No synchrotron radiation and beamstrahlung problems
- \succ Precise measurements of line shape and total decay width Γ
- >Exquisite measurements of all channels and tests of SM.
- The cost of the facility, provided cooling will be successful, is of the order of a fraction of one of the LHC.

Challenges

A low cost demonstration of muon cooling must be done first
 Muon 2D and 3D cooling needs to be demonstrated
 Need ultimately very small c.o.m energy spread (0.003%)
 Backgrounds from constant muon decay
 Significant R&D required towards end-to-end design

Questions for a future high energy linear collider

For electron-positron collisions, what are the goals for the energy and the luminosity ? Probably the higher is better but for a future project, the justifications are crucial (cost, power consumption,....)

For gamma-gamma collisions, some issues relative to positrons can be solved and beamstrahlung limit can be avoided. Can one justify a stand-alone project ?

For the Novel Acceleration Technologies, what are the remaining R&D's to make a jump between the facility and the real machine ?

For a future high energy linear colliders => which types of particles ?

Many fundamental questions remain open

Fabiola Gianotti / 16/01/2018 CERN

PUZZLING: the SM is not a complete theory of particle physics, as several outstanding questions remain that cannot be explained within the SM

What is the composition of dark matter (~25% of the Universe) ? What is the cause of the Universe's accelerated expansion (today: dark energy?; primordial: inflation?) What is the origin of neutrino masses and oscillations ? Why 3 fermion families ? Why do neutral leptons, charged leptons and quarks behave differently? What is the origin of the matter-antimatter asymmetry in the Universe ? Why is the Higgs boson so light (so-called "naturalness" or "hierarchy" problem) ? Why is Gravity so weak ? Etc. etc.

→ but where is the new physics in terms of E-scale and couplings to SM particles ???

The future of high energy physic is very exciting !!!

Conclusion

The forthcoming physic results are decisive to define a precise roadmap for the future.

For an high energy collider, we cannot test and demonstrate everything => various test facilities are essential.

Two crucial parameters: make high energies cheaper and increase the luminosity as much as possible.

Try to make credible an high energy collider.

JUAS students are the future machine builders for future high energy particle accelerators !

Acknowledgments

Several slides from:

F. Gianotti, A. Latina, P. Mugli, T. Omori, C. Rubia, D. Schulte, J. Sheppard, S. Stapnes, M. Stanitzki, F. Zimmermann

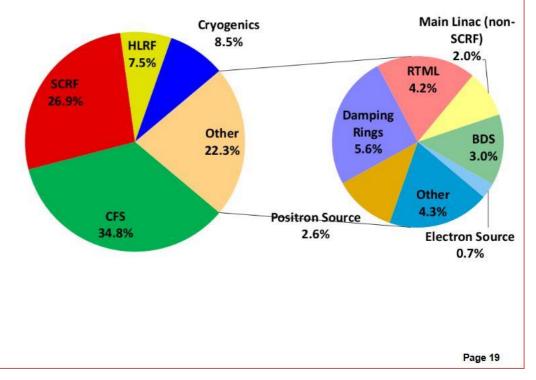
Spares

CLIC Cost

Domain	Sub-Domain	Cost [MCHF]	
		Drive-Beam	Klystron
Main Beam Production	Injectors	175	175
	Damping Rings	309	309
	Beam Transport	409	409
Drive Beam Production	Injectors	584	
	Frequency Multiplication	379	
	Beam Transport	76	
Main Linac Modules	Main Linac Modules	1329	895
	Post decelerators	37	
Main Linac RF	Main Linac Xband RF		2788
Beam Delivery and Post Collision Lines	Beam Delivery Systems	52	52
	Final focus, Exp. Area	22	22
	Post-collision lines/dumps	47	47
Civil Engineering	Civil Engineering	1300	1479
Infrastructure and Services	Electrical distribution	243	243
	Survey and Alignment	194	147
	Cooling and ventilation	443	410
	Transport / installation	38	36
Machine Control, Protection and Safety systems	Safety system	72	114
	Machine Control Infrastructure	146	131
	Machine Protection	14	8
	Access Safety & Control System	23	23
Total (rounded)		5890	7290

ILC Cost

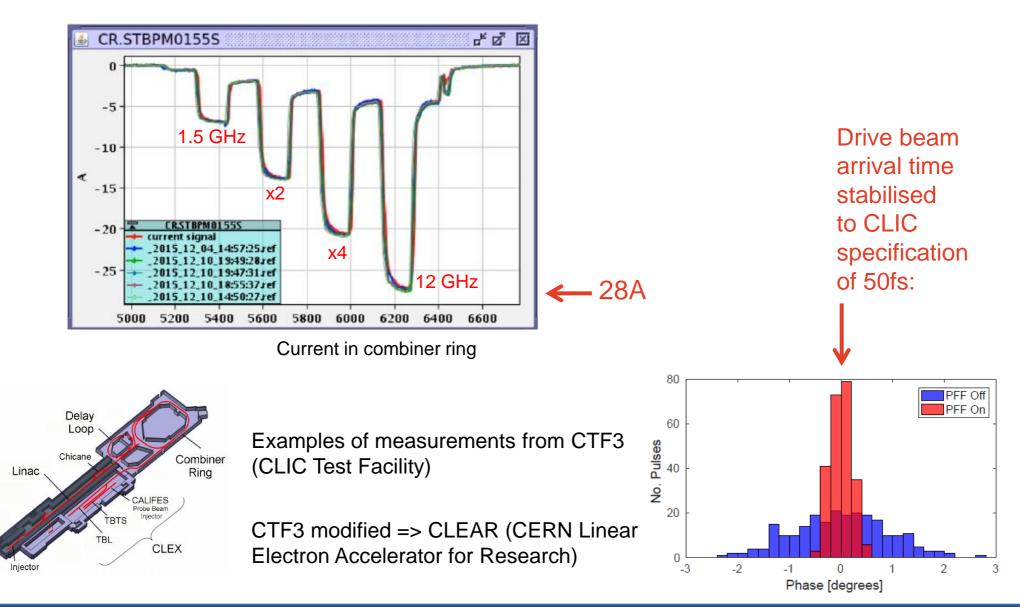
Accelerator Costing


ILC250 Baseline

ILC costing model

- Established for the TDR
 - Including set-up and learning curves
- TDR (500 GeV)
 - 7.98 Billion US-\$
- Updates since
 - All experiences from the E-XFEL, ESS, LCLS-II
 - Higher Gradient Cavities
- ILC 250 baseline
 - 40% cost reduction
 - 1/3 Construction (CFS)

DESY. | ILC | 103rd Plenary ECFA |Marcel Stanitzki

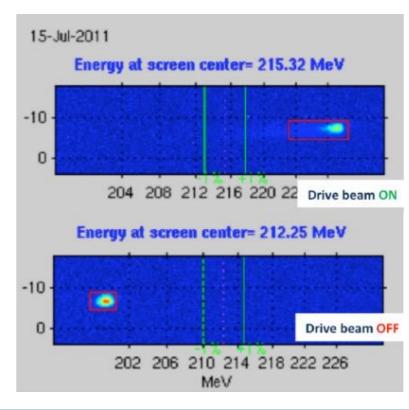

Primary cost drivers for the ILC

Results obtained in CTF3

Drive beam quality:

Produced high-current drive beam bunched at 12GHz

JUAS seminar 31 January 2019


Results obtained in CTF3

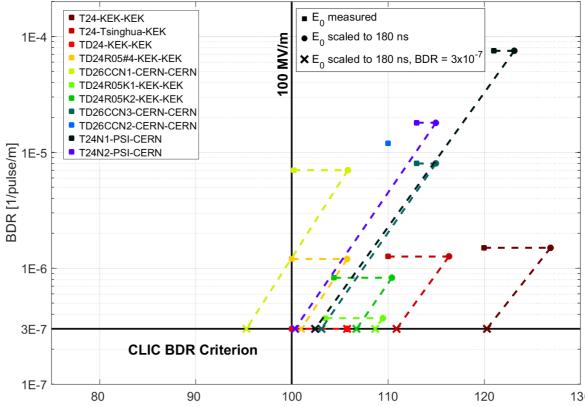
Demonstrated 2-beam acceleration

31 MeV = 145 MV/m

Accelerator challenges

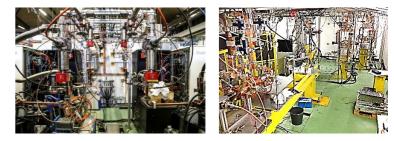
X-band performance: achieved 100MV/m gradient in main-beam RF cavities

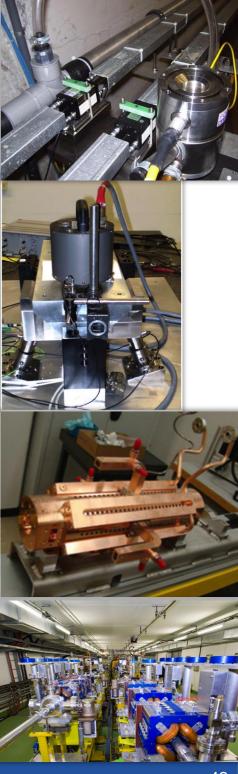
Key challenges:


High-current drive beam bunched at 12 GHz Power transfer + main-beam acceleration

~100 MV/m gradient in main-beam cavities

Low emittance generation Alignment & Stability





Unloaded Accelerating Gradient [MV/m]

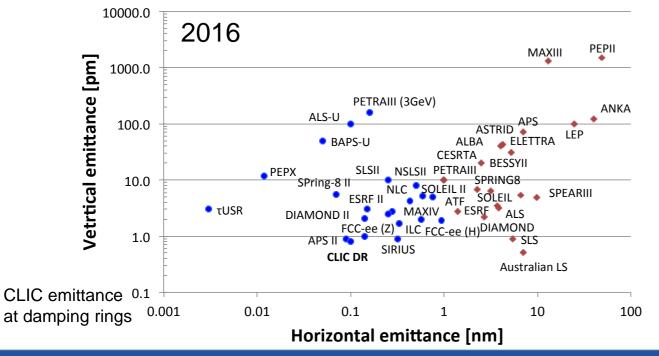
Accelerator challenges

Nano-beams The CLIC strategy:

Key challenges:

High-current drive beam bunched at 12 GHz

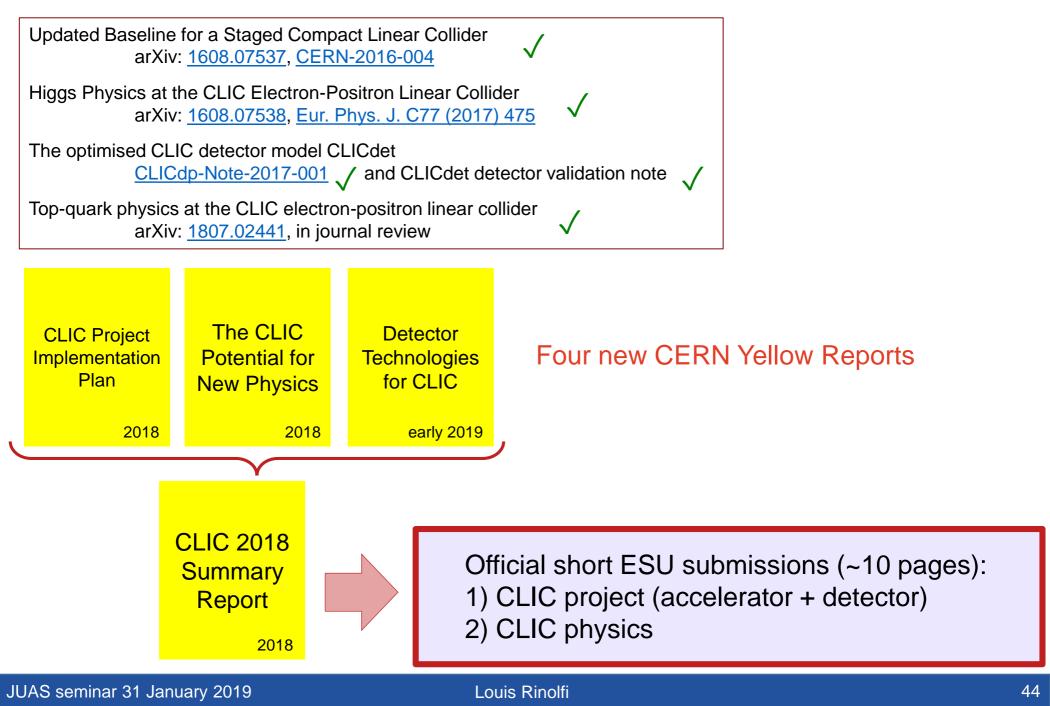
Power transfer + main-beam acceleration

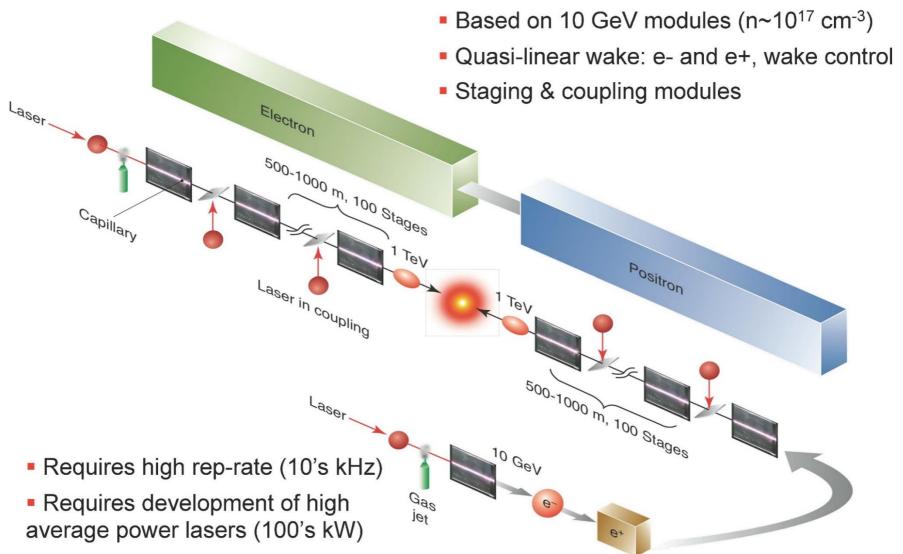

~100 MV/m gradient in main-beam cavities

Low emittance generation

Align components (10µm over 200m)

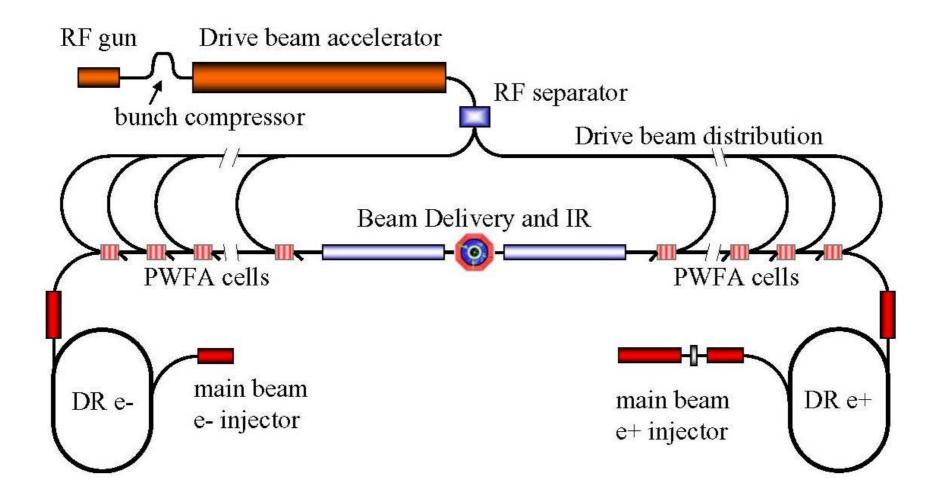
- Control/damp vibrations (from ground to accelerator)
- Measure beams well


 allow to steer beam and optimize positions
- Algorithms for measurements, beam and component optimization, feedbacks
- Tests in existing accelerators of equipment and algorithms (FACET at Stanford, ATF2 at KEK, CTF3, Light-sources)

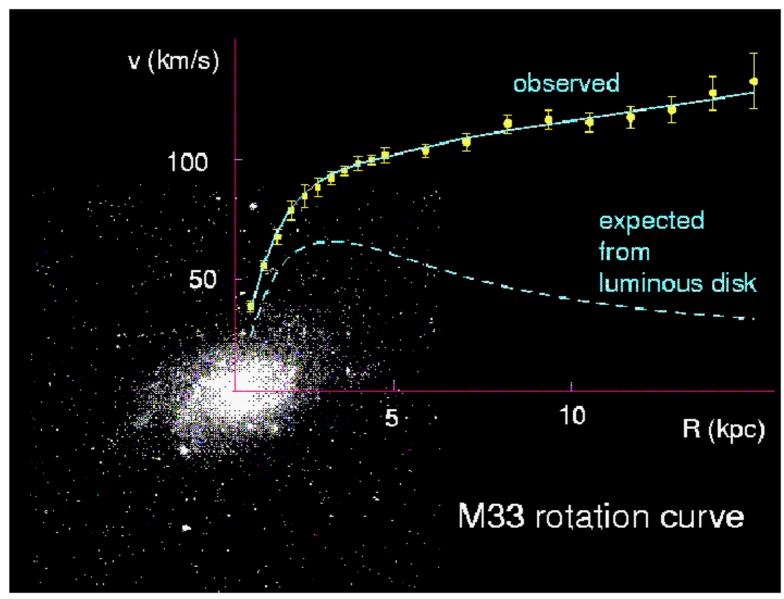

JUAS seminar 31 January 2019

Louis Rinolfi

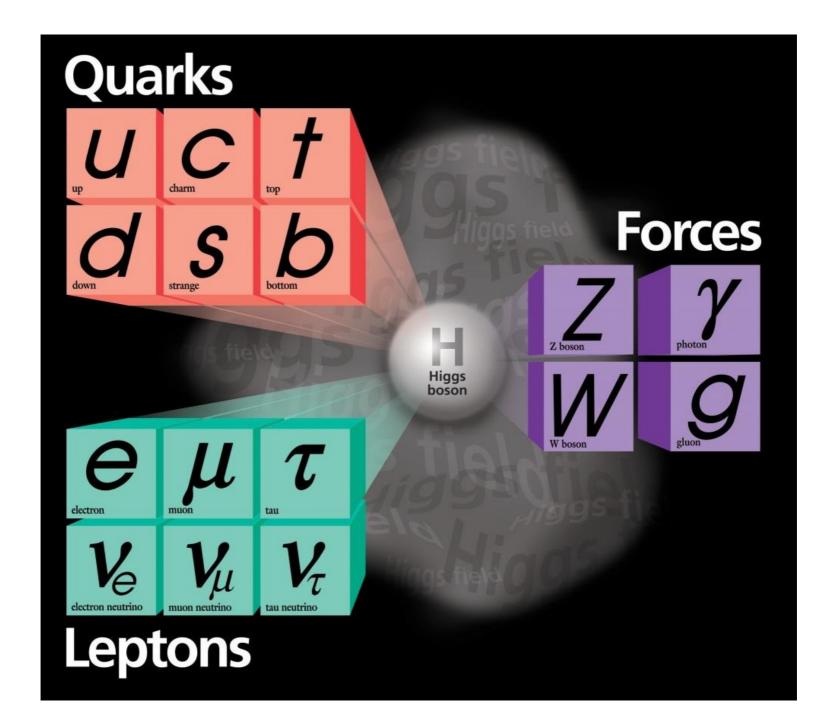
European Strategy Input


Laser Wake Field linear collider

W.P. Leemans & E. Esarey, Physics Today, March 2009


PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 15, 051301 (2012)

Plasma Wake Field linear collider


Concept for a multi-stage PWFA-based Linear Collider (A. Seryi, T. Raubenheimer et al., 2009)

Dark matter

Corbelli & Salucci (2000); Bergstrom (2000)

JUAS seminar 31 January 2019

