SURVEY and ALIGNMENT in accelerators

Hélène Mainaud Durand

Introduction

out of ALIGNMENT
What does alignment mean?
According to the Oxford dictionary: "an arrangement in which two or more things are positioned in a straight line"
In the context of particle accelerators, the things are: beam instrumentation \& vacuum devices, magnets, RF components, etc.
Why aligning components?
The Earth on which we build accelerators is in constant motion
Accelerators have to be kept aligned within given tolerances to make the beam pass through
Alignment tolerances [Fisher] [Ruland]
Error of placement which, if exceeded, lead to a machine that is uncorrectable with an unacceptable loss of luminosity

Surveying

Surveying

From Wikipedia, the free encyclopedia

This is the current revision of this page, as edited by Fgnievinski (talk | contribs) at 22:22, 28 October 2018 (\rightarrow Profession). The present address (URL) is a permanent link to this version.
(diff) \leftarrow Previous revision | Latest revision (diff) | Newer revision \rightarrow (diff)
This article is about measuring positions on Earth. For other uses, see Survey (disambiguation) and Surveyor (disambiguation).
Surveying or land surveying is the technique, profession, and science of determining the terrestrial or threedimensional positions of points and the distances and angles between them. A land surveying professional is called a land surveyor. These points are usually on the surface of the Earth, and they are often used to establish maps and boundaries for ownership, locations, such as building corners or the surface location of subsurface features, or other purposes required by government or civil law, such as property sales.

Surveyors work with elements of geometry, trigonometry, regression analysis, physics, engineering, metrology, programming languages, and the law. They use equipment, such as total stations, robotic total stations, theodolites, GPS receivers, retroreflectors, 3D scanners, radios, handheld tablets, digital levels, subsurface locators, drones, GIS, and surveying software.

Surveying has been an element in the development of the human environment since the beginning of recorded history. The planning and execution of most forms of construction require it. It is also used in transport,

A surveyor using a total station communications, mapping, and the definition of legal boundaries for land ownership. It is an important tool for research in many other scientific disciplines.

Survey, Mechatronics and Measurements

Abstract

Survey, Mechatronics and Measurements (SMM) group The SMM Group develops and maintains a centralized competence in Survey, Mechatronic systems, tests and Measurement. The group is in charge of maintaining a competence in the development of radiation tolerant electronics, and provides support CERN wide for radiation tests and radiation monitoring for evaluating the dose to electronics installed in radiation areas. The group develops robotic platforms adapted to interventions in the accelerator environment, and deploys those solutions in collaboration with all groups in the Accelerator and Technology sector. SMM is able to provide computing support for data acquisition, data processing and data analysis, as well as for data storage related to all these activities.

Survey mandate :

- Geodetic aspects
- Dimensional metrology of accelerator and of experiment components
- Positioning and alignment on beam lines
- Quality controls (infrastructure, installations, components)
- The R\&D related to these tasks

Outline

- Introduction to geodesy
- Steps of alignment
- Instrumentation toolkit
- Case of the LHC
- Current challenges on HL-LHC
- Alignment R\&D: case of the CLIC project

Introduction to geodesy

- Definition
- CERN Geodetic Reference Frame (CGRF) and CERN Coordinate System (CCS)
- Deflection of vertical
- Impact

Geodesy: definition

Geodesy is the science of accurately measuring and understanding three fundamental properties of the Earth: its geometric shape, its orientation in space, and its gravity field- as well as the changes of these properties with time.

Why is it so important to take it into account?

- To align components of a collider, along a plane or a straight line, we need to know the shape of the Earth very accurately
- A large part of instrumentation is set-up to perform measurements w.r.t to gravity
- We need to define the relative position of all area on surface and underground: sites, buildings, tunnels, accelerators, experiments

Geodesy: CERN reference systems

To link 2 different objects in space, a reference system has to be defined in which the position of each object can be referenced. It has to be combined with a coordinate system to give their position.

Example at CERN:

- CERN Coordinate System (CCS): Cartesian system X, Y, Z
- CERN Geodetic Reference Frame (CGRF):
- Reference surface which is fitting the shape of the earth
- Depends on the accuracy requested
- And of the size of the project

CERN CCS and PS orbit

Geodesy: reference systems

Different datums:

PS (circumference $=628 \mathrm{~m}$) \Rightarrow datum = plane

SPS (circumference $=7 \mathrm{~km}$)
Horizont. \& vert. datum = sphere
New coordinate: H height w.r.t to the sphere

Geodesy: CERN reference systems

CERN Geodetic Reference Frame [Jones]:
Two surfaces to model the shape of the Earth:

- A horizontal geodetic datum: typically a mathematical surface
- A vertical geodetic datum \rightarrow geoid, a natural surface. The geoid is the gravity equipotential surface representing mean sea level, that is everywhere normal to the gravity vector (plumb line).

The geoid is irregular due to local mass anomalies (mountains, valleys or rock of various density)

Latitude and longitude provide a good horizontal reference but a mathematical surface is not accurate enough for heights as it does not take into account the deflection of vertical

Geodesy: reference systems

For the LHC accelerator (circumference $=27 \mathrm{~km}$), the Earth is an ellipsoid

Horizontal geodetic datum = ellipsoid
Vertical geodetic datum = geoid (shape of a paraboloid)

Geodesy: deflection of vertical

The deflection of vertical is the angle of divergence between the gravity vector (normal to the geoid and the normal to the ellipsoid)

Maximum deviation of vertical: $15^{\prime \prime}$ relative to the ellipsoid of CERN system

Computation of the equipotential surfaces at any altitude with a $10 \times 10 \mathrm{~km}$ grid, expressed in the local origin of CERN system combined with astro-geodetic measurements using the zenithal camera of ETH Zurich

Geodesy: deflection of vertical

Astro-gravimetric Equipotential Determination

SOURCES	ERROR [arcsec]		
	random	systematic	model
Astrometry			
Star Catalog (Tycho 2)	$0.01-0.1$	<0.01	UCAC3
Timing (GPS + Shutter)	<0.01	-	-
Scintillation	$0.1-1.0$	-	-
Anomalous Refraction	-	$0.01-0.3$	Ray Tracing ?
Tilt			
Instrumentation Noise	<0.05	-	-
Celestial Calibration	-	<0.03	-
Ellipsoidal Coordinates			
Differential GNSS	$\ll 0.01$	-	

[Guillaume]

Geodesy: summary

At CERN:

- Reference frame is an ellipsoid tangent to the earth at PO
- Geoid:
- Determined in 1985 for LEP and still used for LHC
- Determined in 2000 for the CNGS project
- Global coordinate system is CCS

Geodesy: impact

- Accelerators built in a tangential plane (slightly tilted to accommodate geological deformations)
- All points around an untilted circular machine lie at the same height.
- Linear machines cut right through the equipotential iso-lines:

Curvature correction, plane to sphere or spheroid.

Distance $[\mathrm{m}]$	Sphere $\mathrm{H}_{\mathrm{S}}[\mathrm{m}]$	Spheroid $\mathrm{H}_{\mathrm{E}}[\mathrm{m}]$
20	0.00003	0.00003
50	0.00020	0.00016
100	0.00078	0.00063
1000	0.07846	0.06257
10000	7.84620	6.25749
25000	49.03878	39.10929

- Center of a 30 km linear accelerator is 17 m below the end points
- One solution to accommodate

Effect of earth curvature on linear and circular accelerators

Three plane lay-out

Curvature correction.

[Ruland2]

Geodesy: other data

Impact of moon and sun on ground surface

Bending of accelerator due to the periodic undulations of the Earth tides
[CLIC Note]

Steps of alignment

Definition of alignment tolerances

Definition of alignment strategy
Installation and determination of surface geodetic network
Transfer of reference in the tunnel

Installation and determination of an underground geodetic network

Absolute alignment of the components
Relative alignment of the components

Maintenance of the alignment

Definition of alignment tolerances

Alignment error table for the dipoles

(ii)
(ii)
(iii)

Mechanical aperture limitation at the ends without beam screen 0.80 mm r.m.s
Mechanical aperture limitation at the ends with beam screen
0.86 mm r.m.s.

Magnetic axis of the correctors / theor. orbit

Definition of alignment strategy

Surface geodetic network

- Installation of a geodetic network on surface + pillars close to each access pit

- Determination of pillars position using GPS
- Determination of vertical deflection using astronomical observations

[Ruland2]
Example of surface network (Argonne APS).

Transfer of geodetic network

Survey monuments are installed close to each pit on the surface, measured by GPS means. The equipotential of gravity will be determined at the surface level by a combination of high accuracy gravimetric measurements and zenithal camera measurements.

These reference points will be transferred from the surface to the tunnel through pits, using a combination of 3D triangulation and trilateration measurements coupled with angular measurements w.r.t. plumb line. These methods were validated in a LHC pit (depth of 65 m), with an accuracy of 0.5 mm .

Transfer of geodetic network

Nadiral telescope = optical plumb line

[Hugon]

Combination of several means of measurements to decrease the impact of refraction (bending of the straight path of light)

Underground geodetic network

The underground networks consist of dense networks of monuments, preferably in the floor or on the walls. Several means are proposed for their determination: total station, direct levelling, gyro-theodolite measurements, in order to reach:

- an absolute accuracy of 3-4 mm along 3 km
- a relative accuracy in planimetry between 3 consecutive monuments of 0.3 mm r.m.s. by adding wire offset measurements and in altitude between 3 consecutive monuments of 0.1 mm .

Deep levelling references will be distributed in the tunnels. These vertical references in invar will be sealed on stable rocks, with at their extremity a mechanical interface located just below the level of the floor, and totally independent from it. Levelling measurements will be linked to these deep levelling references considered as stable along time.

Underground geodetic network

As tunnel networks are usually long \& narrow, simulations allow to compute and prepare the best configuration

The objects to align

Each component/object to be aligned is equipped with at least two reference alignment targets and a reference for the control of the roll angle. These reference targets are called fiducials.

R

They should be located on top of the jacks to ease the adjustment, in order to minimize level arm effects.

Definition of the theoretical trajectory

To align the objects, we need their theoretical trajectory, defined by physicians, using the MAD-X software:

- First in a horizontal local coordinates system x, y, z
- Then in the CCS system

MAD-X (Methodical Accelerator Design: general purpose tool for charged-particle optics design and studies in alternating gradient accelerators and beam lines.

Fiducialisation

Fiducialisation is the determination of the reference axis of the component w.r.t. its external alignment targets (fiducials) accessible to survey measurements.

3 types of measurements according to the accuracy needed:

- Mechanical measurements using a gauge (typically for warm magnets)
- Laser tracker measurements when the requirements are of the order of 0.1 mm rms
- CMM measurements, for smaller components and requirements of the order of micrometers.

Fiducialisation

The geometric axis is defined as the best fit of a series of points located in the center of each cold bore tube (with an auto-centering device going through it) and measured from both extremities

Alignment tolerances

Beam simulations provide the parameters of components and position tolerances (maximum permissible displacements in the direction of the 3 coordinates and roll) Absolute positioning tolerance: max. shape distortion by specifying how close is a component from its theoretical position
Relative positioning tolerance: alignment aualitv of adiacent components.

[Schwarz]

[^0]
Alignment requests

Absolute alignment

Sequence of tasks:

- Marking on the floor: consists of marking the vertical projection of the geometrical mean of the beam line, the position of the elements, the interconnection points and the vertical projection of the head of jacks on the floor.
Accuracy $\sim \pm 2 \mathrm{~mm}$
- Positioning of the jacks: the stroke of jacks compensates the errors of the floor, the errors in their positioning, cryostat construction errors and ground motion during the life of the accelerator. The jacks are positioned within $\pm 2 \mathrm{~mm}$. Then, the jacks are sealed on the floor and their position is checked again.

Absolute alignment

Sequence of tasks:

- First positioning: it takes place once the components are installed on their jacks. Each component is aligned independently with respect to the underground geodetic network. A component is considered aligned once its fiducials have reached their theoretical position.
- At the same time, a small local smoothing from magnet to magnet is carried out to decrease the influence of the small relative errors between the points of the geodetic network.

Relative alignment

Smoothing: the process can only start once the magnets are connected, under vacuum and are cold down, so that all the mechanical forces are taken into account. The objective is to obtain a relative radial and vertical accuracy of 0.15 mm over a distance of 150 m.
The smoothing initially corrects both residual errors in the first positioning and ground motion.

Vertical smoothing of LSS5

Once we have:

- A coordinate reference system,
- The theoretical alignment position of the fiducials in the system
- Components equipped with the fiducials

We need the instrumentation \& devices to determine the position of components and adjust them in the tunnels...

Our tool kit

Software \& database

Photogrammetry

Optical \& digital levels

Laser trackers \& total stations

TDA 500
TS60
TC2002

Instrumentation toolkit

- Determination of the position
- Standard instruments
- Levels
- Laser tracker
- Total station
- AT40x
- Photogrammetry
- Alignment systems
- Adjustment

A level is an instrument with a telescope that can be leveled with a spirit bubble. The optical line of sight forms a horizontal plane at the same elevation as the telescope cross hair. By reading a graduated rod held vertically, you can deduce the difference of height between points.

Laser tracker

- Measure 3D coordinates by tracking a laser beam to a retro-reflective target
- Combination of two techniques:
- A distance meter to measure absolute distance (laser interferometer or Absolute Distance Meter, based on the time of flight of an infrared beam)
- Angular encoders to measure the laser tracker's two mechanical axes

```
Accuracy* }\mp@subsup{}{}{*
All accuracies are specified as maximum permissible errors (MPE) and calculated per
ASME B89.4.19-2006 & draft ISO10360-10 using precision Leica 1.5" Red Ring Reflectors up to }60\textrm{m}\mathrm{ distance unless
otherwise noted.
```

Angle accuracy
Distance accuracy AIFM
Dynamic lock on
$+/-15 \mu \mathrm{~m}+6 \mu \mathrm{~m} / \mathrm{m}$
$+/-0.5 \mu \mathrm{~m} / \mathrm{m}$
$+/-10 \mu \mathrm{~m}$

Total station

Same combination of two types of measurements:

- Angle measurements based on encoders

- Distance measurements using Electronic Distance Measurements (EDM)

Common Specifications for TDM/TDA5005 and TM5100A
Angular measurement
Standard deviation
per ISO17123-3, $1 \sigma^{11}$
Units of measurement
$0.5^{\prime \prime}$ (0.15 mgon)
360° sexagesimal, 400 gon 360° decimal, 6400 mil
Display
(smallest selectable unit)

Specifications TDM/TDA5005

Point accuracy (total RMS $\left.\approx 1 \sigma)^{2}\right)$ at $20 \mathrm{~m}(65 \mathrm{ft})$ measuring volume
$\leq 0.3 \mathrm{~mm}\left(0.012^{\prime \prime}\right)$

Distance measurement
Standard deviation (absolute)
per ISO17123-4, 1σ
at $120 \mathrm{~m}(365 \mathrm{ft})$ measuring volume ${ }^{3}$
Reflective tape
Corner cube reflector
Units of measurement
Display
(smallest selectable unit)
$\left.\pm 0.5 \mathrm{~mm}(0.02)^{\prime \prime}\right)$
$\mathrm{m} . \mathrm{mm}$, feet, inch
0-5 decimal places, dependent on the selected unit

LEICA AT40x

- Between a total station \& laser tracker
- Distance meter (0.02 mm)
- Horizontal \& vertical encoders of TDA5000(1,5 dmgr)
 - Measurement up to 160 m

```
Absolute Distance Performance*
Resolution: 0.1 \mum
Accuracy:+/- 10 \mum (+/- 0.00039")
Repeatability: +/- 5 \mum (+/- 0.0002")
```

```
Absolute Angular Performance*
Resolution: 0.07 arc seconds
Accuracy:+/- 15 \mum + 6 \mum/m
(+/- 0.0006" + 0.000072"/ft)
Repeatability: +/- 7.5 \mum}+3\mu\textrm{m}/\textrm{m
(+/-0.0003" + 0.000036"/ft)
```


$\mathrm{U}_{\mathrm{xyz}}$ Coordinate Uncertainty*

The measurement uncertainty of a coordinate " $U_{x y z}$ " is defined as the deviation between a measured coordinate and the nominal coordinate of that point. This measurement uncertainty is specified as a function of the distance between the laser tracker and the measured point.

Reflector:
+/- $15 \mu \mathrm{~m}+6 \mu \mathrm{~m} / \mathrm{m}(+/-0.0006 "+0.000072 " / \mathrm{ft})$

[^1]
A 3D portable CMM

	B89.4.22			ISO 10360-2		
Model	Measuring range	Point repeatability	Volumetric accuracy	MPEp	MPEe	Arm weight
7312	$1.2 \mathrm{~m} / 3.9 \mathrm{ft}$.	$0.014 \mathrm{~mm} / 0.0006 \mathrm{in}$.	$\pm 0.025 \mathrm{~mm} / 0.0010 \mathrm{in}$.	$8 \mu \mathrm{~m}$	$5+\mathrm{L} / 40 \leq 18 \mu \mathrm{~m}$	$10.2 \mathrm{~kg} / 22.5 \mathrm{lbs}$
7512	$1.2 \mathrm{~m} / 3.9 \mathrm{ft}$.	$0.010 \mathrm{~mm} / 0.0004 \mathrm{in}$.	$\pm 0.020 \mathrm{~mm} / 0.0008 \mathrm{in}$.	$6 \mu \mathrm{~m}$	$5+\mathrm{L} / 65 \leq 15 \mu \mathrm{~m}$	$10.8 \mathrm{~kg} / 23.8 \mathrm{lbs}$

Photogrammetry

Photogrammetry: science of making measurements from photographs

Advantages of photogrammetry

- Image acquisition needs no stable station
- Flexible use following object size
- Components < 1 m (1 sigma < 50 micron)
- Components up to $15-25 \mathrm{~m}$ (1 sigma $<0.5 \mathrm{~mm}$)
- Mobile System
- Off-site interventions in factories
- Various assembly halls and experimental caverns
- Limited measurement time for large amount of points

- Short interruption for installation, production process

Photogrammetry

Digital photogrammetry since 1997 at CERN

- Fully automated processing
- Underexposed, convergent images
- High redundancy, reliability
- Blunder detection at measurement and adjustment level

Reference points signalised by targets (increased precision)

- CERN Reference Hole 8 mm H7

Used in combination with other systems

- scale, link to accelerator geometry

Used in all LHC experiments and others

Targets

Photogrammetry: applications

CMS Tracker Barrel

Max. difference to best-fit cylinder

- +1.49 mm
- -0.95 mm
- Deformation max. 0.38 mm
- Comparison on identical points

Software and Database Applications

Survey database

- Principal Client
- Survey Team
- Other Clients
- Operators, Layout, Integration, GIS (Geographic Information Service)

Instrumentation toolkit

- Determination of the position
- Standard instruments
- Specific alignment systems
- Wire offsets
- BCAM
- Hydrostatic Levelling System (HLS) \& applications
- Wire Positioning System (WPS) \& applications
- Drawbacks of WPS \& HLS
- Laser based alignment systems
- Adjustment

Wire offset measurements

Measurement of the shortest distance between a point and line [AB]

Manual device
Accuracy 0.07 mm

How to use a stretched wire in a circular collider?

- Wire length: 120 m
- Overlapping area to get redundancy
- Precision independent from the length of the wire
- Wire must be protected from air currents.
- Speed of measurements > $400 \mathrm{~m} /$ day, 80 points / day.

BCAM : Brandeis Camera Angle Monitor

Based on image acquisition of reflective targets


```
BCAM:
\checkmark ~ V i e w i n g ~ w i n d o w ~ = ~ 3 0 \times 4 0 ~ m r a d ; ;
\checkmark Precision = 5 \murad;
\checkmark ~ N o n - m a g n e t i c ;
\checkmark ~ A c c e p t ~ a ~ t o t a l ~ o f ~ 4 0 0 ~ G r a y .
```


Monitoring

- To gain time
- Improve accuracy
- No access needed

Requirements:

- Monitor and speed up closure
- Gain in precision for re-positioning
- Relative repositioning at $0.3 \mathrm{~mm}(1 \sigma)$
- Movement follow-up at 0.1 mm

- Cover 6 DOF per moving detector
- Cycle < 30 sec.
- Resist to 1 Tesla magnetic field
- Radiation dose of 2 Gy for lifetime

Instrumentation toolkit

- Determination of the position
- Standard instruments
- Specific alignment systems
- Wire offsets
- BCAM
- Hydrostatic Levelling System (HLS) \& applications
- Wire Positioning System (WPS) \& applications
- Drawbacks of WPS \& HLS
- Laser based alignment systems
- Adjustment

Hydrostatic Levelling System (HLS)

Based on communicating vessels
Water network = reference surface
1 sensor is installed on top of each vessel to measure the distance to the water surface contactless

$$
C=\frac{\varepsilon_{o} \varepsilon_{r} S}{d}
$$

Resolution: 0.2 mm
Measurement range: 5 mm
Repeatability: 1 mm
Bandwidth: 10 Hz

HLS applications: ATLAS bedplates

HLS applications: ATLAS bedplates

HLS applications: ATLAS bedplates

HLS applications: ATLAS bedplates

HLS MEASUREMENT - BARREL TOROID COILS INSTALLATION

Installation of one BT coil (24 m long, 100 t)
effect on the Bedplates measured with the HLS

HLS - EXTRA PHENOMENA RECORDING - EARTHQUAKES

BEDPLATES HLS measurements [mean plane] (20.12.2004-31.12.2004)

-USA_A -US_A -USA_M -US_M -USA_C -US_C
~70 earthquakes seen from Dec 2005 with the HLS installed at CERN

Instrumentation toolkit

- Determination of the position
- Standard instruments
- Specific alignment systems
- Wire offsets
- BCAM
- Hydrostatic Levelling System (HLS) \& applications
- Wire Positioning System (WPS) \& applications
- Laser based alignment systems
- Adjustment

Wire positioning System (WPS)

Prototype (1990)

Version 1 in 1994

Version 2 CERN

Differential capacitive sensors

A capacitive measurement system converts a change in position, or properties of the dielectric material into an electrical signal (analog or digital).

WPS: associated wire

Carbon Kevlar

Carbon PEEK/PES

Carbon peek wire:

- Diameter: 0.4 mm
- Linear mass: $235 \mathrm{~g} / \mathrm{km}$
- Breaking tension: 230 N
- Conductivity $>0.025 \mathrm{~m} / \mathrm{\Omega} . \mathrm{mm} 2$

Other types of wires under study:

- Vectran (multifilament yarn spun from Liquid Crystal Polymer)
- Metallization of vectran by silver plasma coating

WPS performances

Voltage: 0-10 V

Full Range : +/- 5 mm

WPS: impact of sag

Modelisation of the wire sag by using a combination of HLS and WPS sensors to determine the difference of height on 3 points along the wire

WPS: two configurations

"Relative" alignment (monitoring)

"Absolute" alignment (pre-alignment)

WPS \& HLS: alignment of LHC inner triplets

\square

40 m

WPS \& HLS: Alignment of LHC inner triplets

- LHC sensors readings under the spot line: used by OP to have a better understanding of the displacements observed on the beam
- Triplet 5R realigned with pilot beam on. First time in the world !!!

LCLS case (SLAC)

Alignment Diagnostic System (ADS)

- Goal: Monitoring of
- X, Y Position of each Quadruple
- Roll, Pitch and Yaw of each Undulator Segment

Component Monitoring Tolerance	Value	Unit
Horizontal / Vertical Quadrupole and BPM Positions	0.7	$\mu \mathrm{~m}$
Roll of Undulator Segment	1000	$\mu \mathrm{rad}$
Pitch of Undulator Segment	16	$\mu \mathrm{rad}$
Yaw of Undulator Segment	30	$\mu \mathrm{rad}$

11 Composition:

- 2 wires spanning the whole undulator hall
- 1 water level system

LCLS case (SLAC)

Alignment Diagnostics System - Sensors

LCLS case (SLAC)

ADS Installation - Hardware

HLS

-Piping
-CPVC (FM4910) 2" and 1 " schedule 40
-Pipe is supported by Unistrut ${ }^{(8)}$ to avoid sag

- Bellows
- Gortiflex® GF-100B
-Small: max length 2", $\min 1 "$
-Long: max length 10 ", $\min 2 "$
-Bracket
- Nickel plated steel, machined out of standard angle 0.5 thickness

WPM

-Wire

- Stainless Steel Gold plated (0.5 mm diameter)
-Frequency
-100KHz
- Weight
-35 kg
-Tube
- Brass 10 mm
diameter

LCLS case (SLAC)

[LeCocq]

Alignment systems and gravity

Metrology networks must provide a straight alignment of accelerators linacs. Reference frames (wire and water surface) are influenced by gravity:
\checkmark Earth curvature, height, latitude
\checkmark Distribution of masses in the neighborhood

Maxi. deviation of the vertical: $15^{\prime \prime}$ at CERN
\checkmark Moon and sun attraction
Moon and sun act as disturbing masses, modifying the gravitational field Their impact on a given point vary according their position w.r.t the point.

Alignment systems and gravity

Impact on WPS system:
The non uniformity of gravitational field due to combined effects of latitude, height and deflection of vertical can deform the wire significantly (up to $15 \mu \mathrm{~m}$) but can be correctec (theoretical result that needs to be cross-checked experimentally).

Impact of HLS system:

HLS is affected by ocean and Earth tides but corrections can be applied [Boerez]
Effect of neighborhood masses must be taken into account

Geoid profile of 40 km

The uncertainty of the geoid determination must be strictly added to the uncertainty of vertical alignment. See [Guillaume].

Instrumentation toolkit

- Determination of the position
- Standard instruments
- Specific alignment systems
- Wire offsets
- Hydrostatic Levelling System (HLS) \& applications
- Wire Positioning System (WPS) \& applications
- Drawbacks of WPS \& HLS
- Laser based alignment systems
- Adjustment

Observing diffraction pattern of Fresnel zones plates (SLAC)

Advantages	Drawbacks
Large number of targets (~ 300)	Repositioning of targets
Rad-hard	Non compact targets

[Ruland2]

The Fresnel lens focuses the light on the detector forming an interference pattern

Observing diffraction pattern of an iris (Spring 8)

[Zhang]

Observing diffraction pattern of spheres (DESY)

Advantages	Drawbacks
Static targets	Limited number of targets (~ 16)
	Measurement uncertainty depends on longitudinal position

[Prenting]

Observing laser spot with open / close QPD's (KEK)

QPD: quadrant photo-detectors
[Suwada]

Advantages	Drawbacks
Large number of photo-detectors	Uncertainty due to open/close photo- detectors

The central position at the target can be estimated by measuring the intensity centroid of the laser based fiducial in the transverse detection of the QPD

Laser based system

LAMBDA project: principle

- Compact \& compatible with its environment
- Measurement repeatability $1 \mu \mathrm{~m}$, accuracy $5 \mu \mathrm{~m}$
[Stern]
- Low cost

Comparison of several laser based alignment systems

		Wanted accuracy	Already achieved
Observing diffraction pattern	...of Fresnel zone plates (SLAC)	$500 \mu \mathrm{~m}$ (1 σ) over 3000 m	Estimated accuracy: $500 \mu \mathrm{~m}$ (1б) over 3000 m
	...of an iris (SPRING 8)	$10 \mu \mathrm{~m}(2 \sigma)$ over 10 m	Pointing stability: $10 \mu \mathrm{~m}$ (2б) over 10 m
	...of spheres (DESY)	$300 \mu \mathrm{~m}(1 \sigma)$ over 150 m	Estimated achievable accuracy: 100/200 $\mu \mathrm{m}$ (1б) over 150 m
	... of diffraction plate (NIKHEF)	$10 \mu \mathrm{~m}$ (10) over 200 m	Estimated achievable accuracy: $1 \mu \mathrm{~m}$ (1б) over 140 m
Observing laser spot	...with open/close quadrant photodetectors (KEK)	$100 \mu \mathrm{~m}(1 \sigma)$ over 500m	Pointing stability: $40 \mu \mathrm{~m}$ Estimated accuracy: $100 \mu \mathrm{~m}$ (1б) over 500 m
	...with open/close shutters (CERN)	$10 \mu \mathrm{~m}(1 \sigma)$ over 200 m	Pointing stability: $5 \mu \mathrm{~m}(1 \sigma)$ over 35 m

Instrumentation toolkit

- Determination of the position
- Standard instruments
- Specific alignment systems
- Wire offsets
- Hydrostatic Levelling System (HLS) \& applications
- Wire Positioning System (WPS) \& applications
- Drawbacks of WPS \& HLS
- Laser based alignment systems
- Adjustment

Standard means of adjustment

Wedge jack adjuster as used in APS.
The upper wedge is pushed up or down by displacing horizontally the lower wedge.

- Horizontal plane adjusted by the height of 3 vertical rods
- One or two sliding plates to adjust the horizontal
- Adjustment: pull/push the top plate sliding on the plate below.

Standard means of adjustment

Roller cams

Magnet positioning mount with roller cams.

Struts

ALS 20-ton machine screw jack strut.
 1 (Z) Lateral Struts

Kinematic suspension

Struts are length-adjustable rigid members with spherical joints at each end.
[Ruland2]

Standard means of adjustment

Polyurethane jack

«Indian» LHC jack

Motorized jacks

Different cases:

- Remote alignment in severe environment
- Active pre-alignment

LHC motorized jacks

"Short" magnets : Q1, Q3
"Long" magnets : Q2

Cam movers

Case of the LHC

Tunnel empty

Determination of underground geodetic network

Marking on the floor

Positioning of jacks

Initial vertical alignment

Initial longitudinal alignment

Initial radial alignment

Vertical smoothing

Radial smoothing

Current challenges on HL-LHC

- Internal monitoring of cold masses
- Full Remote Alignment

HL-LHC: introduction

Major intervention on more than 1.2 km of the LHC

HL-LHC: introduction

HL-LHC: internal monitoring system

- From the LHC experience: we know at the micron level the position of the cryostat, but not what happens inside \rightarrow difficult to correlate with beam.
- Displacements up to $\pm 0.5 \mathrm{~mm}(3 \sigma)$ seen on the LHC dipoles after transport
- Strong interest from physicists to know more accurately than in the LHC the longitudinal position of the cold mass

HL-LHC: internal monitoring system

- Decision to include in the baseline the internal monitoring of the inner triplet cold masses using laser interferometer (less «invasive» solution)
- Validation of the commercial solution based on Frequency Scanning Interferometry (FSI), providing absolute distance measurements
- Δ Phase (meas.) $=\frac{2 \pi}{c} * L_{M} * \Delta v$
- Δ Phase (ref.) $=\frac{2 \pi}{c} * L_{R} * \Delta v$

$$
\frac{\Delta \text { Phase (meas.) }}{\Delta \text { Phase (ref.) }}=\frac{L_{M}}{L_{R}}
$$

The FSI distance measurement is deduced from the ratio of the phase change induced in an interferometer reference (stable reference in the form of absorption peaks of an integrated gas cell) and the interferometer measurement (to the reflective target) by frequency scanning

HL-LHC: internal monitoring system

Validation on independent benches
Performance of one line FSI \& study of an alternative

- Irradiation tests
- Thermal tests
- Precision, accuracy,...

Validation on Crab
cavities in SM18 \& SPS
Performance target at
warm, vacuum, cold,
and cross-comparison
with other systems

HL-LHC: internal monitoring system

From the LHC experience

HL-LHC: internal monitoring system

Crab cavities monitoring with FSI

- Successful cross-comparison with other systems at warm, at cold, under vacuum
- Accuracy of the absolute position of crab cavities using FSI : $\pm 0.05 \mathrm{~mm}$
- Relative position: a few micrometers

HL-LHC: internal monitoring system [Mainaud Durand3]

IT quadrupole monitoring with FSI

HL-LHC: internal monitoring system

How can we achieve a "heating" of the probes up to ~200K ?

Permanent heating - by making sure that the probe stays at >=200K, no cryo-condensation should ever take place in principle. This could be achieved using the power radiated from the vacuum vessel (which is 300 K "hot").

\qquad〔 Vacuum vessel - 300K heat sink

HL-LHC: internal monitoring system

Position calculation

HL-LHC: internal monitoring system

Towards Full Remote Alignment

HL-LHC alignment requirements:

Estimation of the deviation of the magnets from a laser straight line, with a quadratic sum of the following independent contributions: $\pm 0.27 \mathrm{~mm}$:

- Fiducialisation: mechanical axis vs external fiducials: $\pm 0.1 \mathrm{~mm}$
- Smoothing :
- Mechanical axis of quadrupoles included in a cylinder with a radius of 0.1 mm
- Left / right mechanical axis included in a cylinder with a radius of 0.15 mm .
- Misalignment between alignment campaigns: $\pm 0.17 \mathrm{~mm}$ (integrating ground motion, mechanical stress encountered during vacuum and cool-down phases)

Remote adjustment of the position of the main components from Q1 to Q5 (5DOF)

Towards Full Remote Alignment

- Combined with an internal monitoring of the position of cold masses in the Inner Triplet cryostats using FSI system
- Motorized jacks supporting all main components.

Towards Full Remote Alignment

Development of low cost sensors

Kapton WPS (kWPS)

- Based on flexible Kapton polyamide PCB with electrodes printed on the surface and covered with a layer of gold
- Sensor assembly consists of:
- 2 aluminium blocks including connectors \& screws
- A Kapton foil glued during a simple assembly process

- First tests performed on the prototype show a micrometric repeatability of measurements over $\pm 5 \mathrm{~mm}$ of range
- Irradiation tests under way
- Next steps: accuracy and long term stability of the sensor.

Towards Full Remote Alignment

«Standardized» adjustment platform

Why a 5 DOF adjustment platform?

- More than 40000 DB quadrupoles to be aligned 2 per 2 on a common support within a budget of error $<20 \mu \mathrm{~m}$
- First tests used shims for the adjustment: the alignment took more than 1 day per quadrupole!
- Decision to develop a specific platform, with all adjustment knobs on the same side, in a limited volume.

Requirements:

- Stroke: $\pm 1 \mathrm{~mm}$ in translations, rotations adjustment within ± 4 mrad
- Micrometric adjustment for X and Y translations, 20 urad for angular adjustment

Towards Full Remote Alignment

«Standardized» adjustment platform

Towards Full Remote Alignment

«Standardized» adjustment platform

Towards Full Remote Alignment

«Standardized» adjustment platform

Universal adjustment solution - concept of use plug-in motors: a) Platform measurement from distance using a laser tracker;
b) Installation of plug-in motors in less than one minute;
c) Remote adjustment from distance.

Universal adjustment platform

- manual operation concept

Universal adjustment solution - permanent motors version concept

Towards Full Remote Alignment

«Standardized» adjustment platform

(1) (2)

(1) Spherical joints
(2) Flexural joints: Nitinol joints and flexible shaft

Towards Full Remote Alignment

Towards Full Remote Alignment

After study: the full remote alignment can

R\&D: case of CLIC project

CLIC: introduction

- CLIC= Compact LInear Collider

- Project Implementation Plan under preparation for consideration by the European Strategy Update Process in 2020.

CLIC: introduction

Beam off

Mechanical pre-alignment $\sim 0.2-0.3 \mathrm{~mm}$ over 200 m

Active pre-alignment $14-17 \mu \mathrm{~m}$ over 200 m
Beam on

Beam based Alignment \& Beam based feedbacks

CLIC: introduction

- Considering the number of components to be aligned, ground motion, such tight tolerances can not be obtained by a static on-time alignment system.
- Active pre-alignment: we associate movers and sensors to the components to maintain them in place.

Total budget error allocated to the associate positioning of the reference axes of the major accelerator components can be represented by points inside a cylinder over a sliding window of 200m.

Along BDS:

Radius equals to $10 \mu \mathrm{~m}$ over sliding windows of 500 m

Along Main Linac: over sliding windows of 200 m

Component type	AS	BPM	MB Quad	DB quad
Radius $(\mu \mathrm{m})$	14	14	17	20

CLIC: introduction

Components to be aligned:

Strategy:

2 steps:

- Fiducialisation \& initial alignment of the components and their support
- Transfer in tunnel and alignment in tunnel

Fiducialisation:

CLIC: alignment strategy

Initial alignment:

Transfer in the tunnel:

CLIC: alignment strategy

Absolute alignment using overlapping reference lines

MRN = Metrological Reference Network

Very good correlation between
simulated data and TT1 results

Propagation error over the CLIC collider simulated using the variance-covariance matrix as estimator of parameters:

- For a sliding window of 200 m , the standard deviation of the transverse position of each component w.r.t. a straight line is included in a cylinder with a radius below $7 \mu \mathrm{~m}$
- Maximum standard deviation of 1.1 mm computed along the 25 km of linacs

CLIC: alignment strategy

Fiducialisation \& alignment on common support

\checkmark Results achieved in the PACMAN project:

- Sub-micrometric repeatability to determine the magnetic axis of quadrupole, the electro-magnetic center of the middle cell of AS, the electrical center of BPM
- Relative position of BPM versus quadrupole determined within an uncertainty of measurement below $5 \mu \mathrm{~m}$.
- Fiducialisation (determination of the position of the reference axis w.r.t. external targets) for the 3 types of components <5 $\mu \mathrm{m}$.
- Referential frame of the pre-alignment sensors determined w.r.t. references axes within an accuracy of $2.5 \mu \mathrm{~m}$

CLIC: alignment strategy

Relative alignment of the components

\checkmark Determination of the position: sensors associated to each

CLIC: alignment strategy

Relative alignment of the components: adjustment $\rightarrow 2$ cases

Articulation point + linear actuators (3DOF):

- Snake configuration kept for the DB side, allowing a natural smoothing
- Adjustable articulation point, controlled by FSI measurements within an accuracy of $5 \mu \mathrm{~m}$
- 3 linear actuators supporting the master cradle will perform the alignment
- Ves replaced by adjustable platforms

[Sosin]

Cam movers (5 to 6 DOF):

- 5 DOF configuration validated for 2 lengths of quadrupoles: 0.5 m and 2 m (sensors offsets below $1 \mu \mathrm{~m}$ and roll below 5 rad), met in one movement using feedback from alignment sensors.
- Proposition to add a 6th cam mover

[Kemppinen]

CLIC: alignment strategy

If you combine long $\&$ short systems

or

Adjustment configuration

Degrees of freedom: $3 / 5$ to 6

CLIC: alignment strategy

Sensors configuration for $\mathbf{3 8 0} \mathbf{G e V}$ DB option

Sensors configuration for $\mathbf{3 8 0} \mathbf{~ G e V}$ Klystrons option

Section View

PACMAN project

PACMAN NETWORK
CERN, CH
Cranfield University, UK
Delft University of Technology, NL
ETH Zürich, CH
IFIC,ES
LAPP, FR
University of Sannio, IT
SYMME, FR
University of Pisa, IT
DMP, ES
ELTOS, IT
ETALON, DE
Hexagon Metrology, DE
METROLAB, CH
National Instruments, HU
SIGMAPHI, FR
TNO, NL
PACMAN = a study on Particle Accelerator Components' Metrology and Alignment to the Nanometre scale
It is an Innovative Doctoral Program, hosted by CERN, providing training to 10 Early Stage Researchers.

PACMAN: a few interesting results

Even if your BPM and quadrupole quadrants were manufactured at a micrometric accuracy, the electric / magnetic axes are not so close from the mechanical axes.

TABLE V. Mechanical, magnetic, and electric axes center offset.

	X $[\mu \mathrm{m}]$	Y $[\mu \mathrm{m}]$	Uncertainty $[\mu \mathrm{m}]$
MBQ (magnetic vs mechanical)	-21.6	40.9	± 10
BPM (electric vs mechanical)	17.3	40.6	± 4
BPM/MBQ (electric vs magnetic)	-2.3	-7.5	± 1.2

TABLE III. Offset between the mechanical axis and the magnetic axis at 126 A .

Horiz. center	Vert. center	Yaw	Pitch
$32.2 \mu \mathrm{~m}$	$20.2 \mu \mathrm{~m}$	$-75.9 \mu \mathrm{rad}$	$-57.4 \mu \mathrm{rad}$

TABLE II. Offset between the magnetic axis at 4 and 126 A .

Horiz. center	Vert. center	Yaw	Pitch
$2.9 \mu \mathrm{~m}$	$3.1 \mu \mathrm{~m}$	$-2.3 \mu \mathrm{rad}$	$-5.1 \mu \mathrm{rad}$

PACMAN: a few interesting results

Determination of the position of the stretched wire, w.r.t. external targets: 3 methods:

- Coordinate Measuring Machine measurements (+wire measured using confocal sensor plugged on the CMM head): uncertainty $\sim 2 \mu \mathrm{~m}$
- Frequency Scanning Interferometry (absolute distance measurements)
- Micro-triangulation (angle measurements)

FSI demonstrated a very high accuracy: difference between FSI \& CMM measurement on coordinates $<2.5 \mu \mathrm{~m}$. Portable \& self calibrating

Micro-triangulation: after comparison with CMM measurements, 85% of the measured coordinates $<15 \mu \mathrm{~m}, 75 \%<10 \mu \mathrm{~m}, 42 \%<5 \mu \mathrm{~m}$, in a not optimal configuration.

PACMAN: scenario 1

- All components individually fiducialised (PACMAN process using stretched wire)
- Alignment on a common support using plug-in system, knowing the position of the targets.

PACMAN: scenario 2

- All components installed roughly on a common support
- Installation of a stretched wire to align all the components reference axes at a theoretical position on the common support (PACMAN process +5 DOF adjustment system)
- Determination of the position of the alignment targets once all the components are at the theoretical position

PACMAN \& summary

CLIC: alignment strategy

Summary of the results achieved

Components type	AS, BPIV (um)		V/B quad (um)		DB quad (um)	
YEAR	2012	2018	2012	2018	2012	2018
Fiducialisation	5 (TBC)		10 (TBC)		10 (TBC)	
Fiducials to pre-alignment sensor interface	5	5	5	5	5	5
Pre-alignment sensor accuracy	5	5	5	5	5	5
Sensor linearity	5	5	5	5	5	5
Straight reference	10 (TBC)	7 (in radial, TBC in vert.)	10 (TBC)	7 (in radial, TBC in vert.)	10 (TBC)	7 (in radial, TBC in vert.)
Total error budget	14	11	17	11	20	11

BUT... Active pre-alignment strategy validated only at $20^{\circ} \mathrm{C}$, not at $30^{\circ} \mathrm{C}$!

CLIC: alignment strategy

Geodesy	Study of MRN	Study of SPN	Fiducialisation
Relative determination of vertical deflection	Modelisation of a wire using Eigenfrequencies	Study of low cost sensors and industrialization	PACMAN studies on AS structures
New methods for vertical deflection measurements in pits	Development of corresponding least squares algorithms	Development of low cost linear actuators and industrialization	Development of a FSI bench for in-situ fiducialisation
Impact of gravitational fields on wires	Sensors configuration optimization, simulations over long distances	Impact of an operation at $30^{\circ} \mathrm{C}$ on alignment systems	Development of low cost adjustment platforms and industrialization
	Development of a new wire	FSI R\&D on sensors	Improve adjustment solution for the BPM on the quadrupole
	Development of a laser based solution	Development of a WPS with 2 wires	
		Development of 6 DOF cam movers	

FCC alignment

Future Circular Collider (FCC)

FCC alignment

- Absolute tolerance
- As no real values obtained, we are going to do the best we can (few mm)
- Relative tolerance
* All errors included

Accelerator collider	Radius/ Circumference	Vertical (mm) @1.	Transversal (mm) @1.	Roll angle (mrad)
LEP(e+e-)	$5 \mathrm{~km} / 27 \mathrm{~km}$	$0.2-0.3$	$0.2-0.3$	0.1
LHC (hh)	$5 \mathrm{~km} / 27 \mathrm{~km}$	0.15	0.15	0.1
CLIC (e+e-)	$2 * 25 \mathrm{~km}$	17 microns radially*		
FCC-hh	$16 \mathrm{~km} / 100 \mathrm{~km}$	$0.2\left(0.5^{*}\right)$	$0.2\left(0.5^{*}\right)$	1.0
FCC-ee	$16 \mathrm{~km} / 100 \mathrm{~km}$	0.1^{*}	0.1^{*}	0.1
HE-LHC	$5 \mathrm{~km} / 27 \mathrm{~km}$	$0.2\left(0.5^{*}\right)$	$0.2\left(0.5^{*}\right)$	$0.1 ?$

Conclusion

Do not forget Survey \& alignment in your project, you will gain:

- Time
- Accuracy
- Efficiency

Lines of sight in tunnel, geodetic networks on surface, pits, coordinate systems and geodetic reference frames, must be defined asap

Tolerances of alignment of all the components have to be defined asap to establish a clear strategy of alignment and chose the most appropriate solutions and instrumentation.

The Micron World, in which steel acts like butter and in which temperature excursions are like Gulliver's Travels, has been tamed and industrialized on the laboratory scale. I do not believe the problems that we are going to encounter in the design of future linear colliders on a kilometer scale will turn out to be fundamental. Rather, the challenge will be to be innovative enough to find sound engineering solutions that we can afford. Further, we should involve the alignment community in all aspects of the design decision making process at the earliest moment.

ALIGNMENT AND VIBRATION ISSUES
IN TeV LINEAR COLLIDER DESIGN
G. E. Fischer

Stanford Linear Accelerator Center
Stanford University, Stanford, CA

Bibliography:

[Bestmann] P. Bestmann et al., The LHC collimator survey train, IWAA 2010, DESY, Hamburg, Germany, 2010
[Boerez] J. Boerez, Analyse et modélisation de l'effet des marées sur les réseau de nivellement hydrostatiques du CERN, 2013, Université Louis Pasteur Strasbourg, Strasbourg.
[Caiazza] D. Caiazza et al., New solution for the high accuracy alignment of accelerator components, Phys. Accel. Beams 20 (2017) 083501.
[Charrondière] C. Charrondière et al., Remote control of heterogeneous sensors for 3D LHC collimator alignment, ICALEPS 2013, San Francisco, US, 2013, ISBN 978-3-9540-139-7
[CLIC Note] F. Becker et al., An active pre-alignment system and metrology network for CLIC, 2003, CERN, CLIC Note 553
[Deelen] N. Deelen, The alignment of CLIC: RASCLIC versus WPS, Msc Thesis, Utrecht university, 2016
[Fisher] G. Fischer, Alignment and vibration issues in TeV linear colider design, Proc. International Conference on High Energy Accelerators, Tsukuba, 1989, SLAC-PUB-5024
[Gayde] JC Gayde et al., Alignment and monitoring systems for accelerators and experiments based on BCAM - First results and benefits of systems developed for ATLAS, LHCb, and HIE-Isolde, IPAC2018, Vancouver, BC, Canada, ISBN: 978-3-95450-184-7

Bibliography:

[Gayde2] JC Gayde et al., The ATLAS detector positioning system (ADEPO) to control moving parts during ATLAS closure, IWAA 2016, Grenoble, France.
[Guillaume] S. Guillaume, Determination of a precise gravity field for the CLIC feasibility studies, PhD thesis, 2015, ETH Zürich
[Hugon] P. Hugon, Etude des méthodes optiques et mécaniques pour le transfert du réseau géodésique en surface au réseau souterrain, Msc Thesis, 2011, CERN, edms n ${ }^{\circ} 1113075$
[Jones] M. Jones, Geodetic definition (datum parameters) of the CERN coordinate system, ESTSU Internal note, 1999
[Kemppinen] J. Kemppinen et al., Cam mover alignment system positioning with wire position sensor feedback for CLIC, MEDSI, Barcelona, Spain, 2016, CERN-ACC-2016-0339, CLIC Note No 1072
[LeCocq] C. Lecocq, Alignment plan for the LCLS undulator, IWAA 2006, SLAC, 2006
[Mainaud Durand] H. Mainaud Durand, D. Missiaen, Alignment challenges for a future linear collider, IPAC2013, Shangai, China, 2013, p. WEPME046
[Mainaud Durand2]H. Mainaud Durand et al., Frequency Scanning Interferometry to monitor the position of accelerators components inside their cryostat for the HL-LHC project, IWAA 2018, Fermilab, USA, 2018

Bibliography:

[Mainaud Durand3]H. Mainaud Durand et al., Frequency Scanning Interferometry as new solution for online monitoring inside a cryostat for the HL-LHC project, IPAC 2018, Vancouver, Canada, 2018
[Mainaud Durand4]H. Mainaud Durand et al., HL-LHC requirements and associated solutions, IPAC 2017, Copenhagen, Denmark, 2017, ISBN 978-3-9540-182-3
[Mainaud Durand5]H. Mainaud Durand et al., The new CLIC main linac installation and alignment strategy, $9^{\text {th }}$ IPAC, Vancouver, Canada, 2018.
[Mainaud Durand6]H. Mainaud Durand et al., Micrometric propagation of error using overlapping stretched wires for the CLIC pre-alignment, $8^{\text {th }}$ IPAC, Copenhagen, Denmark, 2017, pp.TUPIK098.
[Mainaud Durand7]H. Mainaud Durand et al., CLIC pre-alignment strategy: final proposal and associated results, IWAA 2018, Fermilab, USA, 2018
[Mayoud] M. Mayoud, Geodetic metrology of particle accelerators and physics equipment, IWAA 1999, Annecy, 1999
[Mergelkuhl] D. Mergelkuhl et al., Recent developments for a photogrammetric system to measure offsets w.r.t. stretched wires, IWAA 2018, Fermilab, Batavia, US, 2018.

Bibliography:

[Prenting]	J. Prenting, SLRS revisited, IWAA 2018, FNAL, Batavia, US, 2018 [Quesnel] J-P Quesnel et al., The metrology of the LHC project: what news?, IWAA 1999, Grenoble, ESRF, 1999
[Rude]	V. Rude et al., Validation of the crab cavities internal monitoring strategy, IWAA2016, ESRF, Grenoble, France, 2016
[Ruland]	R. Ruland, Some alignment considerations for the Next Linear Collider, SLAC PUB-7060,
[Ruland2]	1993 R. Ruland, Chapter 11: magnet support and alignment, Series on Synchrotron Radiation techniques and applications - volume 1 Synchrotron Radiation sources, Editor Herman
[Schwarz]	Winich, 1994 W. Schwarz, Some considerations on the alignment accuracy for accelerators, IWAA
[Sosin]	1990, Hamburg, 1990 M. Sosin et al., Design and study on a 5 degrees of freedom adjustment platform for CLIC Drive Beam quadrupoles, IPAC2014, Dresden, Germany, 2014, p. TUPRIO95

Bibliography

[Sosin2]	M. Sosin et al., Issues and feasibility demonstration of CLIC supporting system chain active pre-alignment using a module test setup (mock-up), CERN-ACC- Note 2016-0063, 2016
[Stern]	G. Stern, Study and development of a laser based alignment system for the compact linear collider, PhD thesis, 2016, ETH Zürich
[Suwada]	T. Suwada et al., Real-time measurement in slow displacement of the tunnel floor due to dynamic ground motion at the KEKB injector line linac, IWAA 2016, ESRF, Grenoble,
[Touzé]	France, 2016 T. Touzé, Proposition d'une méthode d'alignement de l'accélérateur CLIC, PhD thesis,
[Zhang]	CERN-THESIS-2011-071, CERN, 2011.
	C. Zhang, S. Matsui, Developping on iris diaphragm laser alignment system for SPRING-8 storage ring magnets, IWAA 2012, FNAL, Batavia, US, 2012.

A lot of materials from D. Mergelkuhl, D. Missiaen, JC Gayde, A. Herty, M. Jones, V. Rude, M. Sosin

Additional slides

Monitoring of ATLAS detector closure

Context:

- Regular maintenance and shut-down periods
- Implies open/close movements of large subdetectors of up to 900 t , more particularly:
- 2 ECT (240 t), 2 SW (103 t), 2 EB (900 t)
- Manual adjustment and survey is iterative and time consuming

ADEPO= ATLAS DETECTOR POSITIONING SYSTEM, a ATLAS-SURVEY collaboration

Technical requirements:

- Relative measurement system to measure «run» position at the beginning and end of the maintenance period
- Measurement range ~ 50 mm in X, Y, and Z directions
- Accuracy: 0.1 mm in dX and dZ
- Measurement time: less than 30^{\prime}

Environmental constraints:

- 1 T magnetic fields
- 2 Gy of radiation dose over life time
- Limited space in existing detectors

Monitoring of ATLAS detector closure

Solution $=$ BCAM camera (Brandeis CCD Angle Monitor)

- Optical measurement system
- Measurements on passive glass corner cubes
- Already used in ATLAS

Monitoring of ATLAS detector closure

System based on:

- 28 BCAMs on feet/rail system
- 44 passive targets (corner cube Reflectors)
- 1 driver \& 4 multiplexers
- 24 protections
- Application of IRLS (Iteratively Reweighted Least Square) for the data adjustment.

- BCAM on feet//rail systems (fixed parts)
- Passive targets on sub-detectors (moving parts)

Integration and installation were a challenge as well.

Monitoring of ATLAS detector closure

Results during ATLAS closure

- Intensive use of ADEPO during closure (TS 2015-2016)
- Six detectors closed with an average of 3 iterations using BCAM measurements
- Maximum of 7 iterations
- Average time for mechanical corrections~20'
- Average difference of ADEPO results to reference position : 0.3 mm along monitored X and Z directions
- Results for each detector confirmed by Laser Tracker measurements (single iteration)

Medium term results over 1 month:

- Average repeatability over 1 month: 2-3 $\mu \mathrm{m}$
- BCAM lines of $1.5-3.0 \mathrm{~m}$ measure the stability of a detector within $\pm 0.15 \mathrm{~mm}$

Substantial gain of time (25\%) and relative precision, for all YETS!

A BCAM system installed in LHCb to monitor the positions of the Inner Tracker stations during the LHCb dipole magnet cycles

Remote determination of collimators position

Standard alignment measurements no longer possible in collimators area (IP3 and IP7 due to the high level of radiations)
\rightarrow Development of a remote measurement system: design of a survey wagon on the TIM train.

Remote determination of collimators position

Measurements campaign in 2012:

- 26 reference magnets

Repeatability $<60 \mu \mathrm{~m}$ in altimetry and planimetry

Comparison with classical methods (levelling and wire offset measurements): 0.22 mm rms
Duration in the tunnel: a few hours (train) / 4 days at 3 persons (classical method)

Current objective: mechanical optimization and control robustness improvement for a smooth operation during LS2

Next steps: upgrade of the train for remote measurements in the LSS during LS3 for the HL-LHC project and remote measurements in the arcs for LS4.

Remote determination of collimators position

From the survey point of view: use of photogrammetry to measure the position of the wire:

Automatic wire detection

Automatic target detection

Target position
determination

- Wire precision: $\pm 6.5 \mu \mathrm{~m} / \mathrm{m}$

Remote determination of collimators position

Configuration with 4 cameras is a good compromise.
Precision of the 3D offset distance with respect to a stretched wire at a level of $\pm 15 \mu \mathrm{~m}$ to $\pm 20 \mu \mathrm{~m}$ for the fiducials

From the survey point of view \rightarrow next steps:

- 4 cameras to be implemented in a carbon frame
- 2 bi-directional inclinometers added to provide link to gravity
- Chain of calculation to be automatized.

[^0]: Position of magnets with respect to theoretical orbit

[^1]: *Maximum Permissible Error (MPE)

