EDM Constraints on Higgs CP Violation

Joachim Brod

BSM circa 2020, PITT-PACC

February 28, 2019

With Ulrich Haisch, Jure Zupan – JHEP 1311 (2013) 180 [arXiv:1310.1385]

With Wolfgang Altmannshofer, Martin Schmaltz - JHEP 1505 (2015) 125 [arXiv:1503.04830]

With Emmanuel Stamou – arXiv:1810.12303

With Dimitrios Skodras - JHEP 1901 (2019) 233 [arXiv:1811.05480]

With Jonathan Cornell, Dimitrios Skodras, Emmanuel Stamou - work in progress

Motivation – Electroweak Baryogenesis

- Baryogenesis fails within the SM
 - Need strong first-order phase transition
 - Need more CP violation
- A minimal setup for electroweak baryogenesis: [Huber, Pospelov, Ritz, hep-ph/0610003]

[Image credit: Morrissey et al., 1206.2942]

$$\mathcal{L} = rac{1}{\Lambda^2}(H^\dagger H)^3 + rac{Z_t}{\Lambda^2}(H^\dagger H) ar{Q}_3 H^c t_R$$

- $\Lambda \sim 500-800~{
 m GeV}$ gives correct baryon-to-photon ratio η_b
- In principle, there are more operators

[E.g., de Vries et al. 1710.04061]

Outline

- EDM overview
- EDM constraints on CP-violating Higgs couplings
 - Top Yukawa
 - Bottom & charm Yukawa
 - Light-fermion Yukawas

EDM Overview

Sources of CP violation

- QCD is CP invariant...
 - ... apart from possible heta term $\propto \epsilon_{\mu
 ulphaeta}G^{\mu
 u}G^{lphaeta}$
 - Neglect for the purpose of this talk
- Microscopic origin of CP violation:
 - Weak interactions
 - New Physics
- E.g. neutron EDM: SM contribution is tiny, $d_n^{\rm SM} \sim 10^{-32} e \, {\rm cm}$ [Khriplovich & Zhitnitsky, PLB 109 (1982) 490]

EDM experiments, bounds

- Measure different EDMs
 - Elementary: neutron, proton, deuteron
 - Atomic: mercury, radium, xenon
 - Molecular: ThO (mainly electron)
- Current bounds and prospects:

[Hewett et al., 1205.2671; Baker et al., hep-ex/0602020; [ACME 2018]; Graner et al. 1601.04339]

	<i>d_e</i> [<i>e</i> cm]	<i>d_n</i> [<i>e</i> cm]	<i>d_{p,D}</i> [<i>e</i> cm]
current	$1.1 imes10^{-29}$	$2.9 imes10^{-26}$	_
expected	$5.0 imes10^{-30}$	$1.0 imes10^{-28}$	$1.0 imes10^{-29}$
	$d_{ m Hg}$	d_{Xe}	d_{Ra}
current	$7.4 imes10^{-30}$	$5.5 imes10^{-27}$	$4.2 imes 10^{-22}$
expected	-	$5.0 imes10^{-29}$	$1.0 imes10^{-27}$

Low-energy operators

- At low scales, three types of operators contribute:
 - qEDM: $\bar{q}\sigma^{\mu\nu}\gamma_5 qF_{\mu\nu}$
 - qCEDM: $\bar{q}\sigma^{\mu\nu}T^a\gamma_5 qG^a_{\mu\nu}$
 - Weinberg: $f^{abc} \epsilon_{\mu\nu\alpha\beta} G^{a}_{\alpha\beta} G^{b}_{\mu\rho} G^{c,\rho}_{\nu}$
- Hadronic matrix elements:
 - qEDM \rightarrow lattice

[Battacharya et al., 1506.04196, 1506.06411]

• qCEDM: ChPT and NDA

[E.g. Pospelov & Ritz, hep-ph/0504231]

• Weinberg: No systematic calculation exists, even sign unknown

[NDA: Weinberg PRL 63 (1989) 2333, Sum rules: Demir et al. hep-ph/0208257]

Connection to Higgs

Modified Yukawa couplings

• We will look at modification

$$\mathcal{L}'_{Y} = -\frac{y_{f}}{\sqrt{2}}\kappa_{f}\bar{f}(\cos\phi_{f} + i\gamma_{5}\sin\phi_{f})fh$$

• Motivated by higher dimension operators

$$-rac{\lambda}{\Lambda^2}|H|^2ar{Q}_LHd_R\,,\quad -rac{\lambda'}{\Lambda^2}|H|^2ar{Q}_L ilde{H}u_R$$

• In the SM, $\kappa_f = 1$ and $\phi_f = 0$

Top Yukawa

Constraints from Higgs production and decay

- Input from [1606.02266]
- More sophisticated analyses, e.g. angular analysis of final state jets [Del Duca et al., hep-ph/0608158; Klamke et al., hep-ph/0703202]

Electron EDM – Barr-Zee contributions

- "Barr-Zee" diagrams induce electron EDM [Weinberg PRL 63 (1989) 2333, Barr & Zee PRL 65 (1990) 21]
- $|d_e/e| < 1.1 imes 10^{-29} \, {
 m cm}$ (90% CL) [ACME 2018]
- $\Rightarrow \kappa_t |\sin \phi_t| < 0.001$
- Constraint on ϕ_t vanishes if the Higgs does not couple to the electron

Hadronic EDMs – The Weinberg Operator

- Barr-Zee diagrams similar as in electron case
- Contribution of the Weinberg Operator: Higgs couples only to top quark
 - Get constraint even if couplings to light quarks vanish

Combined Constraints on Top Yukawa

Combined Constraints on Top Yukawa

Bottom Yukawa

Collider constraints

- Modifications of $gg \rightarrow h$, $h \rightarrow \gamma \gamma$ due to $\kappa_b \neq 1$, $\tilde{\kappa}_b \neq 0$ are subleading
- \Rightarrow Main effect: modifications of branching ratios

$$Br(h \to b\bar{b}) = \frac{\kappa_b^2 Br(h \to b\bar{b})_{SM}}{1 + (\kappa_b^2 - 1)Br(h \to b\bar{b})_{SM}}$$
$$Br(h \to X) = \frac{Br(h \to X)_{SM}}{1 + (\kappa_b^2 - 1)Br(h \to b\bar{b})_{SM}}$$

• Input from [1606.02266]

"Naive" Barr-Zee

- Generate three operators:
 - EDM (d_q) : $\bar{q}\sigma^{\mu\nu}\gamma_5 qF_{\mu\nu}$
 - CEDM (\tilde{d}_q) : $\bar{q}\sigma^{\mu\nu}T^a\gamma_5qG^a_{\mu\nu}$

• Weinberg (w):

$$-\frac{1}{3}f^{abc} G^{a}_{\mu\sigma}G^{b,\sigma}_{\nu}\widetilde{G}^{c,\mu\nu}$$

$$\begin{split} d_q(\mu_W) &\simeq -4e \, Q_q \, N_c \, Q_b^2 \, \frac{\alpha}{(4\pi)^3} \sqrt{2} G_F \, m_q \, \kappa_q \kappa_b \sin \phi_b \, \frac{m_b^2}{M_h^2} \left(\log^2 \frac{m_b^2}{M_h^2} + \frac{\pi^2}{3} \right) \,, \\ \tilde{d}_q(\mu_W) &\simeq -2 \, \frac{\alpha_s}{(4\pi)^3} \sqrt{2} G_F \, m_q \, \kappa_q \kappa_b \sin \phi_b \, \frac{m_b^2}{M_h^2} \left(\log^2 \frac{m_b^2}{M_h^2} + \frac{\pi^2}{3} \right) \,, \\ w(\mu_W) &\simeq -g_s \, \frac{\alpha_s}{(4\pi)^3} \, \sqrt{2} G_F \, \kappa_b^2 \sin \phi_b \cos \phi_b \, \frac{m_b^2}{M_h^2} \left(\log \frac{m_b^2}{M_h^2} + \frac{3}{2} \right) \,. \end{split}$$

"Naive" Barr-Zee

- Generate three operators:
 - EDM (d_q): $\bar{q}\sigma^{\mu\nu}\gamma_5 qF_{\mu\nu}$
 - CEDM (\tilde{d}_q) : $\bar{q}\sigma^{\mu\nu}T^a\gamma_5qG^a_{\mu\nu}$

• Weinberg (w):

$$-\frac{1}{3}f^{abc} G^{a}_{\mu\sigma}G^{b,\sigma}_{\nu}\widetilde{G}^{c,\mu\nu}$$

$$\begin{split} d_q(\mu_W) &\simeq -4e \, Q_q \, N_c \, Q_b^2 \, \frac{\alpha}{(4\pi)^3} \sqrt{2} G_F \, m_q \, \kappa_q \kappa_b \sin \phi_b \, \frac{m_b^2}{M_h^2} \left(\log^2 \frac{m_b^2}{M_h^2} + \frac{\pi^2}{3} \right) \,, \\ \tilde{d}_q(\mu_W) &\simeq -2 \, \frac{\alpha_s}{(4\pi)^3} \sqrt{2} G_F \, m_q \, \kappa_q \kappa_b \sin \phi_b \, \frac{m_b^2}{M_h^2} \left(\log^2 \frac{m_b^2}{M_h^2} + \frac{\pi^2}{3} \right) \,, \\ w(\mu_W) &\simeq -g_s \, \frac{\alpha_s}{(4\pi)^3} \, \sqrt{2} G_F \, \kappa_b^2 \sin \phi_b \cos \phi_b \, \frac{m_b^2}{M_h^2} \left(\log \frac{m_b^2}{M_h^2} + \frac{3}{2} \right) \,. \end{split}$$

• $\alpha_s(M_h)^2 \sim 0.01?$ $\alpha_s(m_b)^2 \sim 0.045?$ $[\alpha_s(2 \, \text{GeV})^2 \sim 0.07?]$

RG analysis of the *b*-quark contribution to EDMs

- Factor \approx 5 scale uncertainty in CEDM Wilson coefficient
- Related to different scales in problem: $\alpha_s \log(M_h/m_b) \sim 1$ is large!
- Use techniques of effective theory and the renormalization group:
 - Sum $\alpha_s^n \log^n(M_h/m_b)$ to all orders ("LL") [Brod, Haisch, Zupan, 1310.1385]

RG in a nutshell

More RG in a nutshell

• This contribution dominates over two-loop Barr-Zee by a factor of $\approx 10!$

Effective Lagrangian

$$\mathcal{L}_{\text{eff}} = -\sqrt{2}G_{F}\left\{\sum_{q \neq q'} \left[\sum_{i=1,2} C_{i}^{qq'} O_{i}^{qq'} + \frac{1}{2} \sum_{i=3,4} C_{i}^{qq'} O_{i}^{qq'}\right] + \sum_{q} \sum_{i=1,...,4} C_{i}^{q} O_{i}^{q} + O_{w}\right\}$$

$$\begin{split} O_{1}^{qq'} &= (\bar{q}q) \left(\bar{q}' \, i\gamma_{5}q' \right), \\ O_{2}^{qq'} &= (\bar{q} \, T^{*}q) \left(\bar{q}' \, i\gamma_{5} \, T^{*}q' \right), \\ O_{3}^{qq'} &= (\bar{q}\sigma_{\mu\nu}q) \left(\bar{q}' \, i\sigma^{\mu\nu}\gamma_{5}q' \right), \\ O_{4}^{qq'} &= (\bar{q}\sigma_{\mu\nu} \, T^{*}q) \left(\bar{q}' \, i\sigma^{\mu\nu}\gamma_{5} \, T^{*}q' \right) \end{split}$$

$$\begin{split} O_1^q &= \left(\bar{q}q\right) \left(\bar{q}\,i\gamma_5 q\right), \\ O_2^q &= \left(\bar{q}\sigma_{\mu\nu}q\right) \left(\bar{q}\,i\sigma^{\mu\nu}\gamma_5 q\right), \\ O_3^q &= \frac{ieQ_q}{2}\frac{m_q}{g_s^2}\,\bar{q}\sigma^{\mu\nu}\gamma_5 q\,F_{\mu\nu}\,, \\ O_4^q &= -\frac{i}{2}\,\frac{m_q}{g_s}\,\bar{q}\sigma^{\mu\nu}\,T^a\gamma_5 q\,G_{\mu\nu}^a\,, \\ O_w &= -\frac{1}{3\,g_s}f^{abc}\,G_{\mu\sigma}^a\,G_{\nu}^{b,\sigma}\,\widetilde{G}^{c,\mu\nu}\,. \end{split}$$

,

Leading-logarithmic results

Tree-level matching

• One-loop running [Hisano et al., 1205.2212, Misiak et al., hep-ph/9409454]

- LL RG sums $\alpha_s^n \log^n$ to all orders
- Still factor 2 uncertainty after LL resummation
- \Rightarrow need NLO analysis

NLO calculation

- One-loop matching:
 - Cancels linear $\log \mu$ dependence in LL running
 - Finite part is scheme dependent

- Two-loop running:
 - $\mathcal{O}(1000)$ two-loop diagrams
 - Sums $\alpha_s^{n+1} \log^n$ to all orders
 - Cancels scheme dependence of one-loop initial conditions

Next-to-leading-logarithmic results

Joachim Brod (U Cincinnati)

Next-to-leading-logarithmic results

Joachim Brod (U Cincinnati)

Contribution to hadronic EDMs

- Hadronic matrix elements:
 - qEDM \rightarrow lattice: $g_T^u = -0.204(11)(10)$, $g_T^d = 0.784(28)(10)$, $g_T^s = 0.0027(16)$ (MS @ 2 GeV) [Battacharya et al., 1808.07597]
 - qCEDM, Weinberg op.: ChPT and NDA [E.g. Pospelov & Ritz, hep-ph/0504231]
- Exp. bound: $|d_n/e| < 2.9 \times 10^{-26} \, {
 m cm} \, \left(90\% \, {
 m CL}
 ight)$ [Baker et al., hep-ex/0602020]

$$\frac{d_n}{e} = 1.1(\tilde{d}_d + 0.5\tilde{d}_u) - \left(\frac{g_T^u}{e}d_u + \frac{g_T^d}{e}d_d + \frac{g_T^s}{e}d_s\right) \pm 2.2 \cdot 10^{-2}w$$

• $d_{\rm Hg}/e = 7.2 (\tilde{d}_d - \tilde{d}_u) \times 10^{-4} < 7.4 \times 10^{-30} \ (95\% \ {\rm CL})$

Combined Constraints on Bottom Yukawa

Combined Constraints on Bottom Yukawa

Combined Constraints on Charm Yukawa

Current bounds on the charm Yukawa

Light-Fermion Yukawas

Light fermions: electron

- \ldots + 117 more two-loop diagrams (use background-field gauge)
- Complete analytic result [Altmannshofer, Brod, Schmaltz, 1503.04830]
 - See also [Czarnecki & Gribouk hep-ph/0509205]
- Electron EDM: $|d_e/e| < 1.1 imes 10^{-29} \, \text{cm} \ (90\% \, \text{CL})$ [ACME 2018]
- ... leads to $\kappa_e |\sin \phi_e| < 0.002$

Light fermions: 1st generation quarks

• Complete analytic result [Brod, Skodras, 1811.05480], e.g.

•
$$\tilde{d}_u(\mu_{had}) = (14.0 \pm 3.0) \times 10^{-26} \text{ cm}$$

• $\tilde{d}_d(\mu_{had}) = (31.8 \pm 6.4) \times 10^{-26} \text{ cm}$

•
$$d_n/e = 1.1(\tilde{d}_d + 0.5\tilde{d}_u) + \dots$$

•
$$d_{
m Hg}/e = 7.2(ilde{d}_d - ilde{d}_u) imes 10^{-4}$$

Combined Constraints on Up Yukawa

Combined Constraints on Down Yukawa

Combined Constraints on Strange Yukawa

Summary

- EDMs yield strong constraints on new sources of CP violation
- Many competing contributions to EDMs
 - Only top quark important for electroweak baryogenesis
 - What is the contribution of all other Yukawas?
- Combine more EDMs: xenon, radium, proton,...
 - Cancellations, hadronic uncertainties,... [See, e.g., Chien et al., 1510.00725]
- Perform a "global analysis" [Brod, Cornell, Skodras, Stamou; work in progress]
- Study implications for models of baryogenesis

Appendix

EDMs as probes of CP violation

• T² acts on any one-particle state as

$$\Gamma^2 \Psi_{
ho,\sigma} = (-1)^{2j} \Psi_{
ho,\sigma}$$

• For odd number of non-interacting spin-1/2 particles, have

 $T^2 \Psi = -\Psi$

- Remains true if interactions are T-invariant (e.g. static electric fields)
- Since Hamiltonian H commutes with T, both Ψ and T Ψ are eigenstates
- They cannot be the same state, since $\Psi = \zeta \Psi$ implies

$$\mathsf{T}^{2}\Psi=\mathsf{T}(\zeta\Psi)=\zeta^{*}\mathsf{T}\Psi=|\zeta|^{2}\Psi=\Psi$$

- An EDM would entirely remove this degeneracy in a static electric field
- Thus, EDMs are forbidden by T(CP) invariance

Other low-energy constraints

• No effects in dim. six operators

• $\mathcal{O}(100)$ effects allowed by data

Electron Yukawa – Collider bounds

• Light quarks: $|y_u/y_b^{SM}| \sim |y_d/y_b^{SM}| \sim |y_s/y_b^{SM}| \lesssim 1.0$ [Kagan et al. 1406.1722] • Electron:

$$\mathsf{Br}(h \to e^+ e^-) = \frac{\left(\kappa_e^2 + \tilde{\kappa}_e^2\right)\mathsf{Br}(h \to e^+ e^-)_{\mathsf{SM}}}{1 + \left(\kappa_e^2 + \tilde{\kappa}_e^2 - 1\right)\mathsf{Br}(h \to e^+ e^-)_{\mathsf{SM}}}$$

• CMS limit Br
$$(h
ightarrow e^+e^-)$$
 < 0.0019 [CMS, 1410.6679] leads to $\sqrt{\kappa_e^2 + \tilde{\kappa}_e^2}$ < 611

- Estimated future sensitivities at hadron colliders:
 - 14 TeV LHC with 3000/fb: $\sqrt{\kappa_e^2 + \tilde{\kappa}_e^2} \sim 150$
 - 100 TeV collider with 3000/fb: $\sqrt{\kappa_e^2 + \tilde{\kappa}_e^2} \sim 75$
- Future e^+e^- colliders could be sensitive down to SM value

Pecularities of two-loop Calculation I

- Extract UV poles using dimensional regularization $(4 \rightarrow 4 2\epsilon)$
- This introduces infinitely many "evanescent" operators that affect the two-loop anomalous dimension
- For instance,

$$\begin{split} E_1^q &= (\bar{q} T^a q) (\bar{q} i \gamma_5 T^a q) + \frac{5}{12} O_1^q + \frac{1}{16} O_2^q \\ E_2^q &= (\bar{q} \sigma^{\mu\nu} T^a q) (\bar{q} \sigma_{\mu\nu} i \gamma_5 T^a q) + 3 O_1^q - \frac{1}{12} O_2^q \\ E_3^q &= (\bar{q} \gamma^{[\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma]} q) (\bar{q} \gamma_{[\mu} \gamma_{\nu} \gamma_{\rho} \gamma_{\sigma]} i \gamma_5 q) - 24 O_1^q \\ E_4^q &= (\bar{q} \gamma^{[\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma]} T^a q) (\bar{q} \gamma_{[\mu} \gamma_{\nu} \gamma_{\rho} \gamma_{\sigma]} i \gamma_5 T^a q) + 10 O_1^q + \frac{3}{2} O_2^q \\ E_5^q &= (\bar{q} \gamma^{[\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} \gamma^{\tau} \gamma^{\upsilon]} q) (\bar{q} \gamma_{[\mu} \gamma_{\nu} \gamma_{\rho} \gamma_{\sigma} \gamma_{\tau} \gamma_{\upsilon]} i \gamma_5 q) , \\ E_6^q &= (\bar{q} \gamma^{[\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} \gamma^{\tau} \gamma^{\upsilon]} T^a q) (\bar{q} \gamma_{[\mu} \gamma_{\nu} \gamma_{\rho} \gamma_{\sigma} \gamma_{\tau} \gamma_{\upsilon]} T^a i \gamma_5 q) , \end{split}$$

Pecularities of two-loop Calculation II

- Have traces with γ_5 for which $[\gamma^\mu,\gamma_5]=0$ is inconsistent
- Use 't Hooft Veltman scheme with mixed (anti-)commutation relations

$$[\tilde{\gamma}^{\mu},\gamma_5]=0\,,\qquad \{\hat{\gamma}^{\mu},\gamma_5\}=0$$

• More evanescents, e.g.

$$\hat{E}_1^q = \frac{ieQ_q}{2} \frac{m_q}{g_s^2} \,\bar{q} \left(\frac{i}{2} [\hat{\gamma}^\mu, \gamma^\nu] + \frac{i}{2} [\gamma^\mu, \hat{\gamma}^\nu] - \frac{i}{2} [\hat{\gamma}^\mu, \hat{\gamma}^\nu] \right) \gamma_5 q \, F_{\mu\nu}$$

• IR regulator mass breaks gauge invariance in intermediate steps

•
$$\Rightarrow$$
 Need gauge-variant counterterms, e.g. $N_2^q = \frac{im_q}{g_s} \bar{q} \begin{bmatrix} \overleftarrow{D} & \mathcal{G} - \mathcal{G} D \end{bmatrix} i \gamma_5 q$

• Ensure that physical result is gauge invariant and independent of arbitrary choices