Baryogenesis and dark matter from CPV in B meson oscillations

Ann Nelson, University of Washington, talk given at Pitt Pacc workshop "BSM circa 2020" U. Pittsburgh, March 2, 2019

Ipek, McKeen, AEN, <u>arXiv:1407.8193</u> Ghalsasi, McKeen, AEN, <u>arXiv:1508.05392</u> McKeen, AEN, <u>arXiv:1512.05359</u> Aitken, McKeen, Neder, AEN, <u>arXiv:1708.01259</u> Elor, Escudero, AEN, <u>arXiv:1810.00880</u> AEN, Xiao, <u>arXiv:1901.08141</u> Elor, Alonso Alvarez, AEN, Xiao, in progress

Why 'post sphaleron' baryogenesis is compelling

- Consistent with wide range of cosmology/inflation models.
 - over production, axion isocurvature perturbations)

• No high temperature required (avoids many cosmological issues, e.g. gravitino

• Electroweak baryogenesis requires 1st order weak transition, CPV in Higgs sector – very constrained by electric dipole moment of electron, mass of Higgs.

High scale Leptogenesis requires very high postinflation reheat temperature

Many high scale models with scalars have isocurvature perturbation constraints

Inflation's end and reheating

- reheat temp T_r set by time at which inflaton dumps its energy into radiation (simple model: set by inflaton lifetime)
- $t^{-1} \sim \Gamma \sim H \sim T_r^2 / M_{pl}$
- T_r typically assumed to be very high, ~ 10¹² GeV, but could be as low as 4 MeV
 - lower bound set by nucleosynthesis, v abundance (N_{eff})
 - upper bound set by energy density during inflation

Cosmology with low reheat scale: Either

or

- "slow reheating" inflaton decays late (.01 s)
- thermalized radiation dominated universe never hotter than ~10 MeV
- economical picture: inflation \rightarrow something \rightarrow B hadrons+...
- something could be oscillating Inflaton or modulus or …
- could CPV in B oscillations/decays yield BAU and dark matter?

• "Early matter domination" — postinflation energy density dominated by late (.01 s) decaying particle

• could decay to top or Higgs or weak bosons—always gives B hadrons decaying out of equilibrium

- Baryogenesis at low scales requires departure from thermal equilibrium at low scales, very weak couplings
- CPV requires new phase, quantum mechanics, effects usually very small (loop effects)
- CPV effects can be large in particle oscillations
- oscillations require near degeneracy (e.g. particle-antiparticle)

sufficient CPV at low energy

CPV from particle/anti particle Oscillations

- CPV requires common final state between particle and antiparticle
- Charge asymmetry requires $m_{12}\neq 0, \Gamma_{12}\neq 0, \arg(m_{12}\Gamma_{12}^*)\neq 0$
- maximum effect: $\Delta\Gamma \sim \Delta m \sim \Gamma$, arg (m_{12})
- theory: $\Delta \Gamma < \Delta m$, Γ Н
 - Kaons: $\Delta \Gamma \sim \Delta m \sim \Gamma$, $\arg(m_{12}\Gamma_{12}^*) < <$
 - $B_{d}: \Delta\Gamma << \Delta m \sim \Gamma$, $\arg(m_{12}\Gamma_{12}^*) << l$ (theory)
 - $B_{s}: \Delta\Gamma << \Gamma << \Delta m$, $\arg(m_{12}\Gamma_{12}^{*}) << 1$ (theory)
 - $D^0: \Delta\Gamma \sim \Delta m < \Gamma$, $\arg(m_{12}\Gamma_{12}^*) < <1$

$$= \begin{pmatrix} m - i\frac{\Gamma}{2} & m_{12} - \frac{i}{2}\Gamma_{12} \\ m_{12}^* - \frac{i}{2}\Gamma_{12}^* & m - i\frac{\Gamma}{2} \\ m_{12}^* - \frac{i}{2}\Gamma_{12}^* & m - i\frac{\Gamma}{2} \end{pmatrix}$$

Effects of charge asymmetry $H = \begin{pmatrix} m - i\frac{\Gamma}{2} & m_{12} - \frac{i}{2}\Gamma_{12} \\ m_{12}^* - \frac{i}{2}\Gamma_{12}^* & m - i\frac{\Gamma}{2} \end{pmatrix}$

- rate(particle → antiparticle) ≠ rate(antiparticle → particle)
- start with equal amounts of particles and antiparticles (e.g.K $^0\,\bar{K}^0)$
- semileptonic charge asymmetry: flavor asymmetry in decays
- *kaon semileptonic asymmetry* a_{sl}^{K} : more e⁺ than e⁻ \Rightarrow more \overline{s} than s decays.

meson CPV

- B mesons oscillate and decay in $C\overline{PV}$ violating way
- Dark matter and baryon production
- Currently embedding mechanism in U(1) SUS

Dark matter — carries Z_2 and anti baryon number. chiral superfield added to SUSY) Currently exploring whether could be right handed neutrino (sterile sneutring carries baryon number)

Decay kinematics: $m_{\phi} + m_{\varepsilon} \leq m_{\psi}$ DM stability: $|\mathfrak{M}_{\mathfrak{F}} = \mathfrak{M}_{\mathfrak{B}}| \leq \mathfrak{M}_{\mathfrak{F}} \neq \mathfrak{M}_{\mathfrak{F}}$ $m_{\psi} > m_{\phi} > 1.2 \, \mathrm{GeV}$ Neutron star stability: $m_{\psi} < m_B - m_{\Lambda}$ adequate decay rate:

Summary of Baryon/DM production mechanism

Essential new martialac

Field	Spin	Q_{EM}	Baryon no.	\mathbb{Z}_2	Mass
Φ	0	0	0	+1	$11 - 100 \mathrm{GeV}$
Y	0	-1/3	-2/3	+1	$\mathcal{O}({ m TeV})$
ψ	1/2	0	-1	+1	$\mathcal{O}({ m GeV})$
ξ	1/2	0	0	-1	$\mathcal{O}({ m GeV})$
ϕ	0	0	-1	-1	$\mathcal{O}({ m GeV})$

 $\mathcal{L} \supset y_d \bar{\psi} \phi \xi + y_{ub} Y^* \bar{u} \bar{b} + y_{\psi s} Y$

$$Z\psi \bar{s} + h.c.$$

$U(1)_R$ SUSY and dark sector

- to a $U(1)_R$

- to "right handed Bino"
- no constraints from neutron oscillations
- from neutron oscillations

• With extended Higgs sector and Dirac gauginos, can extend R parity

• $\overline{u}_i \overline{d}_i \overline{d}_k$ in superpotential: Baryon number + U(1)_R breaks to U(1)_{RB} • all superpartners carry baryon number! none of usual ones are stable. • can add dark matter supermultiplet—single chiral superfield, coupled

• small breaking of $U(1)_R$ from anomaly mediation \Rightarrow weak constraints

12

B mesons in early universe

- b quarks quickly hadronize, mostly into mesons
- mesons decay, annihilate, scatter off e⁺, e⁻, γ (charge radius)
 - (annihilation numerically unimportant)
- neutral mesons oscillate and decohere due to scattering off e+, e-, model via decoherence function
 - At I0-30 MeV

Decoherence mostly affects $B_{\rm d}$

$$f_{\rm deco}^q = e^{-\Gamma\left(e^{\pm}B_q^0 \to e^{\pm}B_q^0\right)/\Delta m_{B_q}}$$

Early Universe Boltzmann equations

Reheating of universe to ~ 10 MeV from reheaton decay:

 $\frac{dn_B}{dt} + 3$ **Production and decay of B mesons**

Production and annihilation of dark matter

Prod

 $\frac{dn_{\phi}}{dt} + 3Ht$

 $\frac{dn_{\phi^{\star}}}{dt} + 3Ht$

Dark matter asymmetry=Baryon asymmetry

 $d(n_{\phi}-n_{\phi})$

Hubble parameter:

$$H^{2} \equiv \left(\frac{1}{a}\frac{da}{dt}\right)^{2} = \frac{8\pi}{3m_{Pl}}\left(\rho_{\rm rad} + m_{\Phi}n_{\Phi}\right)$$

$$\frac{dn_{\Phi}}{dt} + 3Hn_{\Phi} = -\Gamma_{\Phi}n_{\Phi}$$
$$\frac{d\rho_{\rm rad}}{dt} + 4H\rho_{\rm rad} = +\Gamma_{\Phi}m_{\Phi}n_{\Phi}$$

$$3Hn_{B} = \Gamma_{\Phi} Br_{\Phi \to B} n_{\Phi} - \Gamma_{B} n_{B} - \langle \sigma v \rangle n_{B}^{2}$$

$$Puction of B-mesons$$

$$B meson decays$$

$$B meson decays$$

$$B meson decays$$

from reheaton decay

(numerically negligible)

$$\frac{dn_{\xi}}{dt} + 3Hn_{\xi} = -\langle \sigma v \rangle_{\xi} \left(n_{\xi}^2 - n_{\mathrm{eq},\xi}^2 \right) + 2\Gamma_{\Phi}^B n_{\Phi}$$

$$n_{\phi} = -\langle \sigma v \rangle_{\phi} (n_{\phi} n_{\phi^{\star}} - n_{\mathrm{eq},\phi} n_{\mathrm{eq},\phi^{\star}}) + \Gamma_{\Phi}^{B} n_{\Phi} \times \left[1 + \sum_{q} A_{\ell\ell}^{q} \operatorname{Br}(\bar{b} \to B_{q}^{0}) f_{\mathrm{deco}}^{q} \right]$$
$$n_{\phi^{\star}} = -\langle \sigma v \rangle_{\phi} (n_{\phi} n_{\phi^{\star}} - n_{\mathrm{eq},\phi} n_{\mathrm{eq},\phi^{\star}}) + \Gamma_{\Phi}^{B} n_{\Phi} \times \left[1 - \sum_{q} A_{\ell\ell}^{q} \operatorname{Br}(\bar{b} \to B_{q}^{0}) f_{\mathrm{deco}}^{q} \right]$$

$$\frac{1}{2\phi^{\star}} + 3H(n_{\phi} - n_{\phi^{\star}}) = 2\Gamma_{\Phi}^{B} \sum_{q} \operatorname{Br}(\bar{b} \to B_{q}^{0}) A_{\ell\ell}^{q} f_{\text{deco}}^{q} n_{\Phi}$$

Is Standard model CPV sufficient?

- SM charge asymmetry in B_d is negative (wrong sign)
- SM charge asymmetry in B_s is positive (but small)
- Decoherence effects much larger for B_d (because they oscillate more slowly) so asymmetry from B_s dominates
- Detailed computations—not quite. Still need some small new contribution to B_s mixing (can make consistent with B CPV observations)

Results

lower bound on new **B** physics

BaBar K-tag [84 BaBar *ll* [107] Belle *ll* [85] LHCb [83, 104] D0 [86, 108, 109 World average [SM

- Interesting observables:

 - (b \rightarrow diquark + dark matter) \Rightarrow B meson \rightarrow Baryon+ dark matter+ mesons
 - BAU \sim (f_d a_{sl}^d + f_s a_{sl}^s)Br (B meson \rightarrow Baryon+ dark matter+...)
 - $f_{d,s}$ =fraction of b quarks which hadronize as $B_{d,s}$ mesons times decoherence function

Table 4. Summary of the latest results for the B^0 mixing (a_{sl}^d) and B_s^0 mixing (a_{sl}^s) CP asymmetries, as well as the inclusive dimuon asymmetry A_{sl}^{b} measured at D0. In all cases the statistical uncertainty is quoted first and the systematic second. All values are percentages. The world averages [12] are from a fit to all a_{sl}^d , a_{sl}^s and A_{sl}^b results, except for the latest LHCb a_{sl}^s result [104]; an earlier result [105] is included instead. The latest SM predictions [9, 101] are given for comparison.

	a_{sl}^d (%)	a_{sl}^{s} (%)	A^b_{sl} (%)
4, 106]	$0.06 \pm 0.17 {}^{+0.38}_{-0.32}$		
	$-0.39 \pm 0.35 \pm 0.19$		
	$-0.11 \pm 0.79 \pm 0.70$		—
	$-0.02 \pm 0.19 \pm 0.30$	$0.39 \pm 0.26 \pm 0.20$	—
9]	$0.68 \pm 0.45 \pm 0.14$	$-1.12 \pm 0.74 \pm 0.17$	$-0.496 \pm 0.153 \pm 0.072$
12]	-0.15 ± 0.17	-0.75 ± 0.41	
	-0.00047 ± 0.00006	0.0000222 ± 0.0000027	-0.023 ± 0.004

• semileptonic charge asymmetry a_{sl}^d (asymmetry between b and \bar{b} quarks at time of decay)

 $Br(B \to \xi \phi + Baryon) \simeq 10$

The branchin	g fr	act	ibr	cca nebi	s be	onstrahe	need d
	Field	Spin	Q_{EM}	Baryon no.	\mathbb{Z}_2	Mass	
Direct searc	hes	s or	B	$ ightarrow \phi \xi +$	Ba	ryon ^{0-Ge} V	(bo
	Y	0	-1/3	-2/3	+1	$\mathcal{O}({ m TeV})$	
B-factories	hav	e _{1/2}	gðð	d-hand	e ta		gien
Constraints	fro	$\mathbf{m}^{1/2}\mathbf{O}$	$\mathbf{Id}^{0}\mathbf{B}$	aBar a	n d	Belle dat	ata a are
	ϕ	0	0	-1	-1	$\mathcal{O}({ m GeV})$	

$$csb\psi, udb\psi, cdb\psi$$

$$csb\psi, udb\psi, cdb\psi$$

$$m + X) = 5 \times 10^{-4} - 0.1$$

$$\overline{b} \to \psi us$$

$$D^{-3} \left(\frac{m_B - m_{\psi}}{2 \text{ GeV}}\right)^4 \left(\frac{1 \text{ TeV}}{m_Y} \frac{\sqrt{y_{ub}y_{\psi s}}}{0.53}\right)^4$$

Experimental Prospects: Exotic b-flavored baryon decays

Operator	Initial State	Final state	$\Delta M \ ({ m MeV})$
	B_d	$\psi + \Lambda \left(usd ight)$	4163.95
al bare	B_s	$\psi + \Xi^0 \ (uss)$	4025.03
$\psi 0 u s$	B^+	$\psi + \Sigma^+ (uus)$	4089.95
	Λ_b	$\bar{\psi} + K^0$	5121.9
	B_d	$\psi + n (udd)$	4340.07
als b ar d	B_s	$\psi + \Lambda \left(u d s ight)$	4251.21
$\psi o u u$	B^+	$\psi + p\left(duu ight)$	4341.05
	Λ_b	$ar{\psi}+\pi^0$	5484.5
	B_d	$\psi + \Xi_c^0 \ (csd)$	2807.76
als h c c	B_s	$\psi + \Omega_c \left(css ight)$	2671.69
$\psi v c s$	B^+	$\psi + \Xi_c^+ \left(csu \right)$	2810.36
	Λ_b	$\bar{\psi} + D^- + K^+$	3256.2
ψbcd	B_d	$\psi + \Lambda_c + \pi^- \left(c d d \right)$	2853.60
	B_s	$\psi + \Xi_{c}^{0} \left(c d s ight)$	2895.02
	B^+	$\psi + \Lambda_c \left(dcu ight)$	2992.86
	Λ_b	$ar{\psi}+\overline{D}^0$	3754.7

 $Br(\Lambda_b^0 \to Mesons + DM)$ $Br(B \to Baryon + DM)$

Summary

- 3 quarks

Baryogenesis is strong motivation for (new) CPV in heavy flavors

Search for dark matter in B meson decays to Baryon+ X+ missing

Backups

Constraints on semileptonic asymmetry

24

New contribution to CPV in B mixing

Flavor constraints on SUSY with light Dirac Bino

CPV in oscillations of unstable states

- Only requires 2 oscillating states
- Observed in neutral kaon anti-kaon and neutral B mesonanti-B meson oscillations

-0.2 -0.3

-0.4

Figure 2: Time-dependent asymmetry $(N_{\overline{B}^0} - N_{B^0})/(N_{\overline{B}^0} + N_{B^0})$. Here, N_{B^0} $(N_{\overline{B}^0})$ is the number of $B^0 \to J/\psi K_s^0$ decays with a B^0 ($\overline{B}{}^0$) flavour tag. The data points are obtained with the *sPlot* technique, assigning signal weights to the events based on a fit to the reconstructed mass distributions. The solid curve is the signal projection of the PDF. The green shaded band corresponds to the one standard deviation statistical error.

A search for baryon-number-violating \varXi^0_b oscillations is performed with a sample of pp collision data recorded by the LHCb experiment, corresponding to an integrated luminosity of 3 fb⁻¹. The baryon number at the moment of production is identified by requiring that the Ξ_b^0 come from the decay of a resonance $\Xi_b^{*-} \to \Xi_b^0 \pi^-$ or $\Xi_b^{\prime-} \to \Xi_b^0 \pi^-$, and the baryon number at the moment of decay is identified from the final state using the decays $\Xi_b^0 \to \Xi_c^+ \pi^-$, $\Xi_c^+ \to p K^- \pi^+$. No evidence of baryon number violation is found, and an upper limit is set on the oscillation rate of $\omega < 0.08 \text{ ps}^{-1}$, where ω is the associated angular frequency.

0.08 ps⁻¹~5 x 10⁻¹⁴ GeV Г~4.5 x 10-13 GeV (Dinucleon decay bound~10⁻¹⁰ GeV)

Search for baryon-number-violating Ξ_{h}^{0} oscillations

LHCb collaboration[†]

Abstract

- New decay mode of neutral and charged B mesons into baryons and missing energy $Br(B \rightarrow \phi \xi + Baryon + X) > 2 \times 10^{-4}$
- New decay mode of b-flavored baryons into mesons and missing energy side bark Sectors

$$\langle \sigma v \rangle_{\rm dark} \simeq 25 \, \langle \sigma v \rangle_{\rm dark}$$

Annihilation into sterile neutrinos (massive, SM singlets)

Add dark sector particles charged under Lepton number

 $m_{\xi} > m_{\phi}$ $\mathcal{L} \subset y_N \phi \bar{\Psi} N_R + \text{h.c.}$

$$\langle \sigma \, v \rangle_{\phi^{\star}\phi \to NN} \, = \, y_N^4 \, \frac{m_N^2}{8\pi m_{\Psi'}^4} \left[1 + \frac{m_{\phi}^2}{6m_N^2} v^2 \right]$$

Note: s-wave suppressed cross sections so that CMB constraints are alleviated.

{WIMP} min $[m{\phi}, m_{\xi}]/\text{GeV}$

$$m_{\phi} > m_{\xi}$$

$$\mathcal{L} \qquad \subset \qquad y_N \, \xi \Phi' N_R + \text{h.c.}$$

$$m_{\chi}^2 = \sum_{n=1}^{\infty} \frac{2m_{\pi}^2}{n_{\pi}^2}$$

$$\langle \sigma v \rangle_{\xi\xi \to NN} = y_N^4 \frac{m_N^2}{32\pi m_{\Phi'}^4} \left[1 + \frac{2m_{\xi}^2}{3m_N^2} v^2 \right]$$

 $m_N < m_{\pi}$ Make sterile neutrino very heavy and we can consider annihilation to SM neutrinos (through mixing). But we do not expect a detectable signal given the required annihilation rate.

- New decay mode of neutral and charged B mesons into baryons and missing energy $Br(B \rightarrow \phi \xi + Baryon + X) > 2 \times 10^{-4}$
- New decay mode of b-flavored baryons into mesons and missing energy straige lark Sectors

Additional dark sector states carrying baryon number B = 1/3

 $\langle \sigma v \rangle_{\text{dark}} \simeq 25 \langle \sigma v \rangle_{\text{WIMP}} \min[m_{\phi}, m_{\xi}]/\text{GeV}$

Superpartners and SM particles have difficult can identify this with Baryon number.

Field	Spin	Q_{EM}	Baryon no.	\mathbb{Z}_2	Mass
Φ	0	0	0	+1	$11 - 100 \mathrm{GeV}$
Y	0	-1/3	-2/3	+1	$\mathcal{O}({ m TeV})$
ψ	1/2	0	-1	+1	$\mathcal{O}({ m GeV})$
ξ	1/2	0	0	-1	$\mathcal{O}({ m GeV})$
ϕ	0	0	-1	-1	$\mathcal{O}({ m GeV})$

Example Model

- NSW, Syrmetry a a Dia: Gally in 18
- Giewinier, Nelson, J. Alvanz, and H. Xiao (in progress)
- Superpartners and SM particles have different charge under an unbroken R-symmetry. We

Superpartners as dark baryons.

Gi wini ... Nelson, J. Avanz and H. Xiao (in progress)

Superpartners and SM particles have different charge under an unbroken R-symmetry. We can identify this with Baryon number. Superpartners as dark baryons.

	Field	Spin	Q_{EM}	Baryon no.	\mathbb{Z}_2	Mass
	Φ	0	0	0	+1	$11 - 100 \mathrm{GeV}$
MSSM Squark	\tilde{d}_R	0	-1/3	-2/3	+1	$\mathcal{O}({ m TeV})$
	ψ	1/2	0	—1	+1	$\mathcal{O}({ m GeV})$
	ξ	1/2	0	0	-1	$\mathcal{O}({ m GeV})$
	ϕ	0	0	—1	-1	$\mathcal{O}({ m GeV})$

Example Model

MSSM, R Symmetry, and Dirac Gauginos

Gi winder. Nelson, J. Alvanz and H. Xiao (in progress)

Superpartners and SM particles have different charge under an unbroken R-symmetry. We can identify this with Baryon number. Superpartners as dark baryons.

	Field	Spin	Q_{EM}	Baryon no.	\mathbb{Z}_2	Mass
	Φ	0	0	0	+1	$11 - 100 \mathrm{GeV}$
MSSM Squark	\tilde{d}_R	0	-1/3	-2/3	+1	$\mathcal{O}({ m TeV})$
Dirac Bino	$\left[\begin{array}{c} \tilde{B} \\ \lambda_s^{\dagger} \end{array}\right]$	1/2	0	—1	+1	$\mathcal{O}({ m GeV})$
	ξ	1/2	0	0	-1	$\mathcal{O}({ m GeV})$
	ϕ	0	0	-1	-1	$\mathcal{O}({ m GeV})$

Example Model

MSSM, R Symmetry, and Dirac Gauginos

Gi winder. Nelson, J. Alvanz and H. Xiao (in progress)

Superpartners and SM particles have different charge under an unbroken R-symmetry. We can identify this with Baryon number. Superpartners as dark baryons.

	Field	Spin	Q_{EM}	Baryon no.	\mathbb{Z}_2	Mass
	Φ	0	0	0	+1	$11 - 100 \mathrm{GeV}$
MSSM Squark	\tilde{d}_R	0	-1/3	-2/3	+1	$\mathcal{O}({ m TeV})$
Dirac Bino	$\left[\begin{array}{c} \tilde{B} \\ \lambda_s^{\dagger} \end{array}\right]$	1/2	0	—1	+1	$\mathcal{O}({ m GeV})$
lew dark sector	ξ	1/2	0	0	-1	$\mathcal{O}({ m GeV})$
chiral multiplet	ϕ	0	0	-1	-1	$\mathcal{O}(\text{GeV})$

Example Model

MSSM, R Symmetry, and Dirac Gauginos

Details of SUSY Embedding

Want SUSY embedding of:

$$\mathcal{L} \subset -y_{ub}Y^*\bar{u}b^c - y_{\psi s}Y$$

• Y/Squark-Quark Couplings:

$$W = y_u \mathbf{Q} \mathbf{H}_u \mathbf{U}^c - y_d \mathbf{Q} \mathbf{H}_d \mathbf{I}$$
$$+ \lambda_u^t \mathbf{H}_u \mathbf{T} \mathbf{R}_d + \lambda$$
$$+ \frac{1}{2} \lambda_{ijk}'' \mathbf{U}_i^c \mathbf{D}_j^c \mathbf{D}_k^c$$

Y/Squark-Quark-Dirac Gaugino: from usual gauge interaction

$$\mathcal{L}_{\text{gauge}} \supset -v$$
=
Dark Matter: $W \supset \int d^2 \theta$

 $\overline{\psi}s^c + \text{h.c.}$ and $\mathcal{L} \subset -y_d \overline{\psi}\phi\xi$

 $\mathbf{D}^{c} - y_{e}\mathbf{L}\mathbf{H}_{d}\mathbf{E}^{c} + \mu_{u}\mathbf{H}_{u}\mathbf{R}_{d} + \mu_{d}\mathbf{R}_{u}\mathbf{H}_{d}$ $\lambda_{d}^{t}\mathbf{R}_{u}\mathbf{T}\mathbf{H}_{d} + \lambda_{d}^{s}\mathbf{S}\mathbf{R}_{u}\mathbf{H}_{d}$ $\longrightarrow \quad \mathcal{L} \quad \supset \quad \lambda_{113}^{\prime\prime}\left(\tilde{d}_{R}^{*}u_{R}^{\dagger}b_{R}^{\dagger} + \tilde{u}_{R}^{*}d_{R}^{\dagger}b_{R}^{\dagger} + \tilde{b}_{R}^{*}u_{R}^{\dagger}d_{R}^{\dagger}\right)$

 $\sqrt{2}g(\phi T^a \psi^{\dagger})\lambda^{a\dagger} + \text{h.c.}$ $\Rightarrow -\sqrt{2}g(\tilde{d}_R d_R^{\dagger} \tilde{B}^{\dagger})$

 $(y_s \mathbf{S} \Phi \Phi + m_{\Phi} \Phi \Phi) \qquad \Phi = \phi^* + \sqrt{2} \theta^{\alpha} \xi_{\alpha} + \theta^2 F_{\Phi}$ $\mathbf{S}(y^{\mu}) = \phi_s + \sqrt{2} \lambda_s^{\alpha} \theta_{\alpha} + \theta^{\alpha} \theta_{\alpha} F_s$

Model: MSSM + R Symmetry + Dirac Gauginos

GE with A. Nelson, G. Alvarez, and H. Xiao (to appear)

• Contribution to oscillation asymmetry:

Collider searches $Br(B \to \xi \phi)$

$$\mathcal{L} \supset -g_{us}Y^{\star}\bar{u}s^{c} - y_{\psi b}Y\bar{\psi}b^{c} -$$

$$\Gamma_{b\to\phi\xi\bar{u}\bar{d}} \sim \frac{m_b\Delta m^4}{60(2\pi)^3} \left(\frac{g_{ud}y_{\psi b}}{m_Y^2}\right) \simeq 2 \times 10^{-15} \,\mathrm{GeV} \left(\frac{m_b - m_\psi}{2 \,\mathrm{GeV}}\right)^4 \left(\frac{1.2 \,\mathrm{TeV}}{m_Y/\sqrt{y_{\psi b}g_{ud}}}\right)^4$$
$$\mathrm{Br}(B \to \xi\phi + \mathrm{Baryon}) \simeq 6 \times 10^{-3} \left(\frac{\Delta m}{2 \,\mathrm{GeV}}\right)^4 \left(\frac{1.2 \,\mathrm{TeV}}{m_Y/\sqrt{g_{us}y_{\psi b}}}\right)^4$$

$$\Gamma_{b\to\phi\xi\bar{u}\bar{d}} \sim \frac{m_b\Delta m^4}{60(2\pi)^3} \left(\frac{g_{ud}y_{\psi b}}{m_Y^2}\right) \simeq 2 \times 10^{-15} \,\mathrm{GeV} \left(\frac{m_b - m_\psi}{2 \,\mathrm{GeV}}\right)^4 \left(\frac{1.2 \,\mathrm{TeV}}{m_Y/\sqrt{y_{\psi b}g_{ud}}}\right)^4$$
$$\mathrm{Br}(B \to \xi\phi + \mathrm{Baryon}) \simeq 6 \times 10^{-3} \left(\frac{\Delta m}{2 \,\mathrm{GeV}}\right)^4 \left(\frac{1.2 \,\mathrm{TeV}}{m_Y/\sqrt{g_{us}y_{\psi b}}}\right)^4$$

- sbottom searches directly apply $Y \to b\psi$
- $Y \rightarrow \bar{u}s$ Y searched for in dijet resonances

Collider Constraints

$$+ Baryon) = 10^{-4} - 10^{-2}$$

+ h.c.

$$1.2 \,\mathrm{TeV} < m_Y < 7 \,\mathrm{TeV}$$

Parameters

Parameter	Description	Range	Benchmark Value	Constraint?
m_{Φ}	Inflaton mass	$11 - 100 { m ~GeV}$	$15 \mathrm{GeV}$	$\rho_{\Phi}/\rho_{\rm rad} < 10^{-3} \text{ at } T = 3.5 {\rm MeV}$
Γ_{Φ}	Inflaton width	$10^{-21} > \Gamma_{\Phi}/\text{GeV} > 10^{-21}$	$10^{-22}\mathrm{GeV}$	Decay between $3.5 \mathrm{MeV} < T < 50 \mathrm{MeV}$
m_ψ	Dirac fermion mediator	$1.5 \mathrm{GeV} < m_\psi < 4.4 \mathrm{GeV}$	$3.3~{ m GeV}$	Lower limit from $m_{\psi} > m_{\phi} + m_{\xi}$
$m_{oldsymbol{\xi}}$	Majorana dark matter	$0.3 { m GeV} < m_{\xi} < 3.1 { m GeV}$	1.0 and 1.8 GeV	$ m_{\xi} - m_{\phi} < m_p - m_e$
$m_{oldsymbol{\phi}}$	Scalar dark matter	$1.2\mathrm{GeV} < m_{\phi} < 4\mathrm{GeV}$	1.5 and 1.3 GeV	$ m_{\xi} - m_{\phi} < m_p - m_e$
y_d	Yukawa for $L = y_d \phi \xi \psi$		0.3	
$Br(B \to \xi \phi)$	Br of $B \to ME + Baryon$	$10^{-2} - 10^{-5}$	1×10^{-4}	Is there any?
$A^d_{\ell\ell}$	Lepton Asymmetry B_d	Positive and $< 10^{-3}$	0	$A^d_{\ell\ell} = -0.0021 \pm 0.0017 \; [8]$
$A^s_{\ell\ell}$	Lepton Asymmetry B_s	Positive and $< 5 \times 10^{-3}$	10^{-3}	$A^s_{\ell\ell} = -0.0006 \pm 0.0028 \ [8]$
$\langle \sigma v angle_{\phi}^{\mathrm{SM}}$	Annihilation Xsec for ϕ		$4.4 \times 10^{-25} \mathrm{cm}^3/s$	
$\langle \sigma v angle_{\xi}^{ m SM}$	Annihilation X sec for ξ		$2.1 \times 10^{-22} \times v^2 \mathrm{cm}^3/s$	

- Limit on inflation width comes from living in a regime where we can neglect B oscillations compared to decays
- We assume no decoherence between B mesons and the plasma. For instance elastic scattering rate for

$$\Gamma \equiv \langle \sigma v \rangle n_e \simeq \sigma (E = 3T) n_e(T) \sim 3 \times 10^{-13} \,\text{GeV} \left(\frac{T}{10 \,\text{MeV}}\right)^5 \left(\frac{\langle r_{B_0}^2 \rangle}{0.187}\right)^2$$

$$\frac{\Delta n_B \Gamma_B}{\Delta n_B^2 \langle \sigma v \rangle} = \frac{\Gamma_B^2}{\Gamma_\Phi \langle \sigma v \rangle n_\Phi(t)} \frac{1}{\mathrm{Br}_{\Phi \to B}}$$

 $e^{\pm}B_0 \to e^{\pm}B_0$

Will be higher then Hubble Rate: $H \sim 4 \times 10^{-17} \left(\frac{T}{10 \text{ MeV}}\right)^2 \text{ GeV}$

Dark Matter Cross Sections

$$\sigma v_{\phi^{\star}\phi \to \xi\xi} = \frac{y_d^4 \left(m_{\xi} + m_{\psi}\right)^2 \left(m_{\phi}^2 \left(m_{\phi} - m_{\xi}\right) \left(m_{\xi} + m_{\phi}\right)\right)^{3/2}}{2\pi m_{\phi}^6 \left(-m_{\xi}^2 + m_{\psi}^2 + m_{\phi}^2\right)^2}$$

$$\sigma v_{\xi\xi \to \phi^{\star}\phi} = \frac{v^2 y_d^4 \left(m_{\xi} - m_{\phi}\right) \left(m_{\xi} + m_{\phi}\right)}{48\pi \sqrt{m_{\xi}^4 - m_{\xi}^2 m_{\phi}^2} \left(m_{\xi}^2 + m_{\psi}^2 - m_{\phi}^2\right)^4} \left[6m_{\xi} m_{\psi}^5 + m_{\psi}^4 \left(9m_{\xi}^2 - 6m_{\phi}^2\right) + 8m_{\xi} m_{\psi}^3 \left(m_{\xi}^2 - m_{\phi}^2\right) + m_{\psi}^2 \left(-8m_{\xi}^2 m_{\phi}^2 + 5m_{\xi}^4 + 3m_{\phi}^4\right) + 2m_{\xi} m_{\psi} \left(m_{\phi}^2 - m_{\xi}^2\right)^2 + 3 \left(m_{\xi}^3 - m_{\xi} m_{\phi}^2\right)^2 + 3m_{\psi}^6\right]$$

$$\sigma v_{\xi\xi \to \phi^{\star}\phi}|_{m_{\phi}=0} = \frac{v^2 y_d^4 \left(2m_{\xi}^5 m_{\psi} + 5m_{\xi}^4 m_{\psi}^2 + 8m_{\xi}^3 m_{\psi}^3 + 9m_{\xi}^2 m_{\psi}^4 + 6m_{\xi} m_{\psi}^5 + 3m_{\xi}^6 + 3m_{\psi}^6\right)}{16\pi \sqrt{m_{\xi}^2 - m_{\phi}^2}}$$

$$\sigma v_{\xi\xi \to \phi^{\star}\phi} = \frac{v \, y_d \, (m_{\xi} - m_{\phi}) \, (m_{\xi} + m_{\phi})}{48\pi \sqrt{m_{\xi}^4 - m_{\xi}^2 m_{\phi}^2} \left(m_{\xi}^2 + m_{\psi}^2 - m_{\phi}^2\right)^4} \left[6m_{\xi} m_{\psi}^5 + m_{\psi}^4 \left(9m_{\xi}^2 - 6m_{\phi}^2\right) \right. \\ \left. + 8m_{\xi} m_{\psi}^3 \left(m_{\xi}^2 - m_{\phi}^2\right) + m_{\psi}^2 \left(-8m_{\xi}^2 m_{\phi}^2 + 5m_{\xi}^4 + 3m_{\phi}^4\right) \right. \\ \left. + 2m_{\xi} m_{\psi} \left(m_{\phi}^2 - m_{\xi}^2\right)^2 + 3 \left(m_{\xi}^3 - m_{\xi} m_{\phi}^2\right)^2 + 3m_{\psi}^6 \right] \right]$$

$$\sigma v_{\xi\xi \to \phi^{\star}\phi}|_{m_{\phi}=0} = \frac{v^2 y_d^4 \left(2m_{\xi}^5 m_{\psi} + 5m_{\xi}^4 m_{\psi}^2 + 8m_{\xi}^3 m_{\psi}^3 + 9m_{\xi}^2 m_{\psi}^4 + 6m_{\xi} m_{\psi}^5 + 3m_{\xi}^6 + 3m_{\psi}^6\right)^2 }{48\pi \left(m_{\xi}^2 + m_{\psi}^2\right)^4}$$

$$+ m_{\phi}) \Big)^{3/2}$$