LHeC IR status update

R. Martin

LHeC IR status update December 11, 2018

New Magnets (May 2018)

Magnet	Gradient [T/m]	Aperture radius [mm]
Q1a	252	20
Q1b	164	32
Q2	186	40
Q3	175	45

- Larger beam separation in Q1a ⇒ Synchrotron radiation increases
- Increase *L** to 15 m to keep Synchrotron radiation low

Magnet designs for Q1a and Q1b by B. Parker.

LHeC interaction region design: $\beta^* = 10 \text{ cm}$

	50 GeV, 6.4 mA	50 GeV, 20 mA	60 GeV, 6.4 mA	60 GeV, 20 mA	
P _{synch}	13 kW	40 kW	27 kW	83 kW	
E _{crit}	296 keV		513 keV		

Beam optics: colliding beam with $\beta^* = 10 \text{ cm}$

- June workshop: Assumed beam stay clear of 12.3 σ will require local protection and specific phase advances in the ring
- Specifically between extraction kicker and EVERY IP
- More difficult than expected since ATS locks phases between IP1 and LHeC
- ⇒ Reintegrated in HL-LHC (V1.3) lattice, extending ATS to another arc
 - Chromaticity correction and dynamic aperture studies presented by E. Cruz-Alaniz

Colliding beam: Issues

- Q6 needs more strength AND aperture
- Some tuning quadrupoles in dispersion suppressor too strong
- Polarity of left Q4-Q5 ⇒ compatible with injection optics?
- 15 mm residual dispersion at IP ⇒ can maybe be reduced with better correction macros

Beam optics: non-colliding beam

- Unchanged since June workshop
- Optics for injection and collision energy exist
- Aperture bottleneck in Q6 (reminder: Q6 on colliding beam is also too strong)
- Reintegration in new lattice neccessary
- To be adressed: Arc 2-3 optics at collision ⇒ ATS? Chromaticity correction?

Next steps beyond CDR

- $\beta^* = 7$ cm? \Rightarrow new triplet, larger apertures, larger separation \Rightarrow more synchrotron radiation
- Recombination dipole design ⇒ escape line for neutral particles?
- Rematch and reintegrate non-colliding beam
- Injection and collision optics (very different because of ATS)
- Solution for aperture/strength/polarity issue of quadrupoles
- Address unbalanced chromaticity in both beams ⇒ ATS in both cases? Asymmetric sextupoles?
- Electron IR