


## Impedance models, operational experience and expected limitations (20 + 10 min, 17 slides)

Elias Métral for the impedance and instability team (BE-ABP-HSC and BE-ABP) in close collaboration with collimation team Many thanks to many HL-LHC colleagues!



International Review of the HL-LHC Collimation System, CERN, 11-12/02/2019

# Contents

#### Introduction

- Experience from Run 1 and Run 2
- Expectations for HL-LHC
- Impedance reduction tests
- Further ways to reduce impedance effects
- Conclusion and outlook

#### ACRONYMS

LO = Landau Octupoles

**Q'** = Chromaticity

**TD** = Transverse Damper

**ATS** = Achromatic Telescopic Squeeze

**DA** = Dynamic Aperture

**TCBI** = Transverse Coupled-Bunch Instability

**TMCI** = Transverse Mode-Coupling Instability

**CFC** = Carbon Fiber-reinforced Composite

**Mo** = Molybdenum

**MoGr** = Molybdenum Graphite

**MD** = Machine development



# Contents

### Introduction

- Experience from Run I and Run II
- Expectations for HL-LHC
- Impedance reduction tests
- Further ways to reduce impedance effects
- Conclusion and outlook

#### ACRONYMS

LO = Landau Octupoles

**Q'** = Chromaticity

**TD** = Transverse Damper

**ATS** = Achromatic Telescopic Squeeze

**DA** = Dynamic Aperture

TCBI = Transverse Coupled-Bunch Instability

**TMCI** = Transverse Mode-Coupling Instability

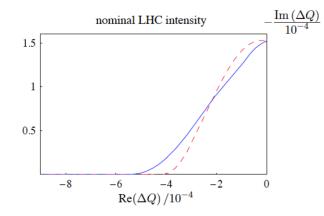
**CFC** = Carbon Fiber-reinforced Composite

**Mo** = Molybdenum

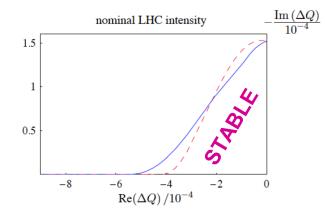
MoGr = Molybdenum Graphite

**MD** = Machine development




- Collimators => Impedance => Beam instabilities => 3 main mitigation methods for both LHC and HL-LHC
  - Landau Octupoles (LO) => Possible boost from ATS optics
  - Chromaticity (Q')
  - Transverse Damper (TD)

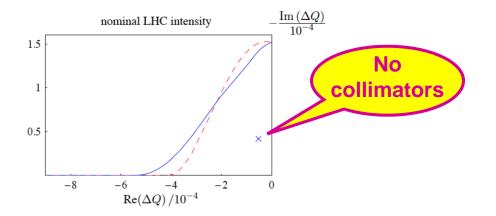



- Collimators => Impedance => Beam instabilities => 3 main mitigation methods for both LHC and HL-LHC
  - Landau Octupoles (LO) => Possible boost from ATS optics
  - Chromaticity (Q')
  - Transverse Damper (TD)
- Trade-off with Dynamic Aperture (DA) and beam lifetime
  - **LO**: value and sign to be optimised
  - **Q'**: value and sign to be optimised
  - TD: gain / bandwidth / noise to be optimised => Important for HL-LHC

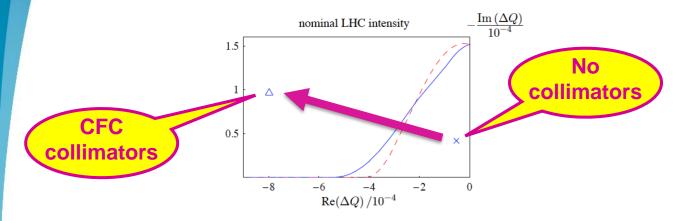




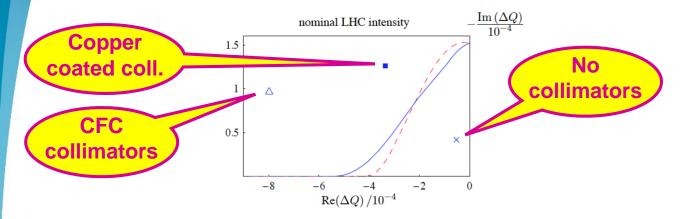




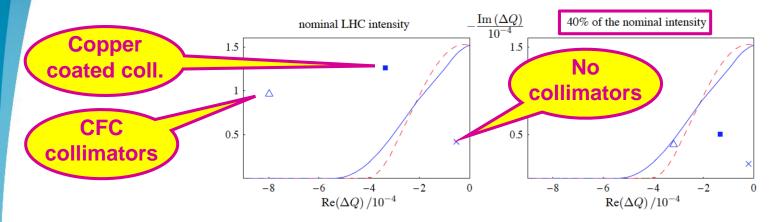


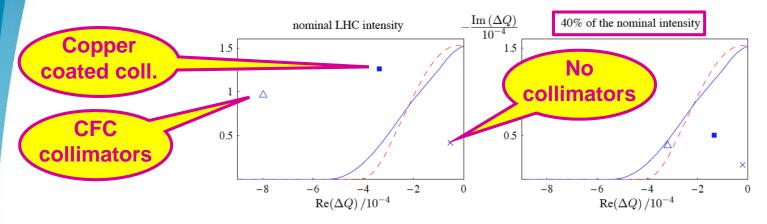




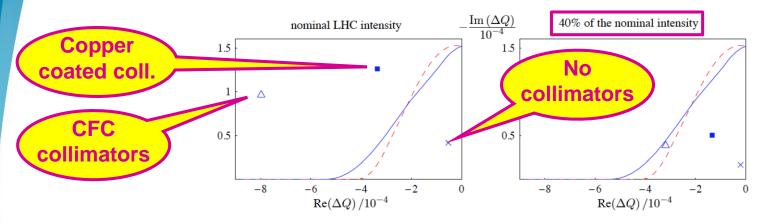








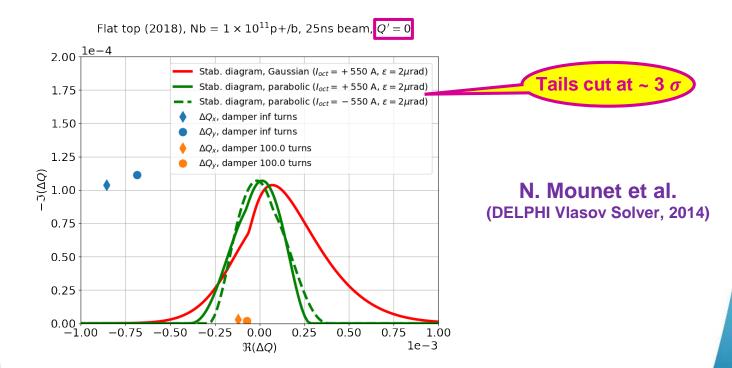



- LO: maximum current (550 A) => N.B.: 570 A for HL-LHC
- Q' = 0 => Not best for TCBI but best for DA
- TD = 0 => Worry about TD-induced emittance growth



## LHC from design report (2004) at 7 TeV => LO stability diagram (TCBI)

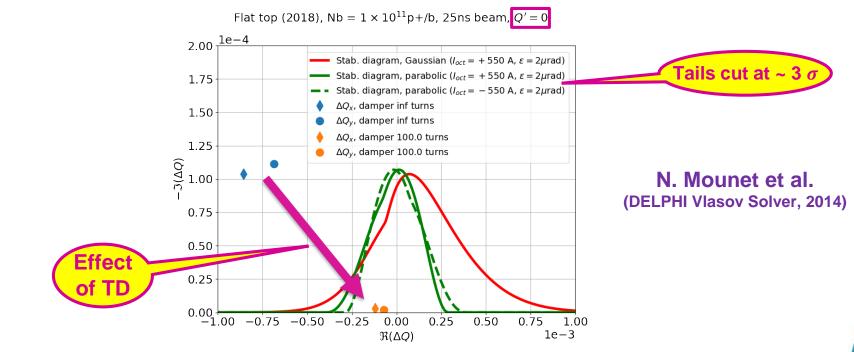



- LO: maximum current (550 A) => N.B.: 570 A for HL-LHC
- Q' = 0 => Not best for TCBI but best for DA
- TD = 0 => Worry about TD-induced emittance growth

=> **TD** and/or **Q**' absolutely needed to reach beam stability (due to collimators)!

## LHC in 2018 at 6.5 TeV => Predicted effect of TD




#### LHC in 2018 at 6.5 TeV => Predicted effect of TD

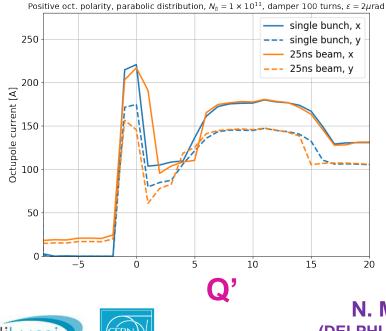




4

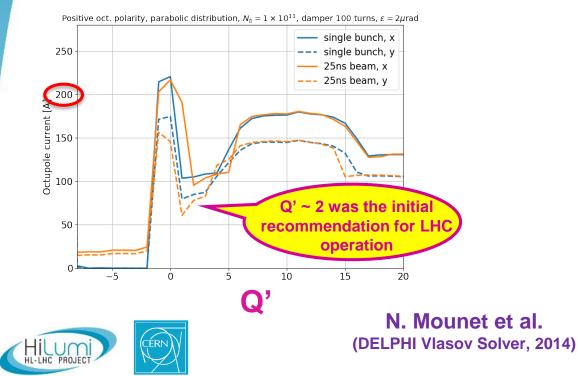
#### LHC in 2018 at 6.5 TeV => Predicted effect of TD



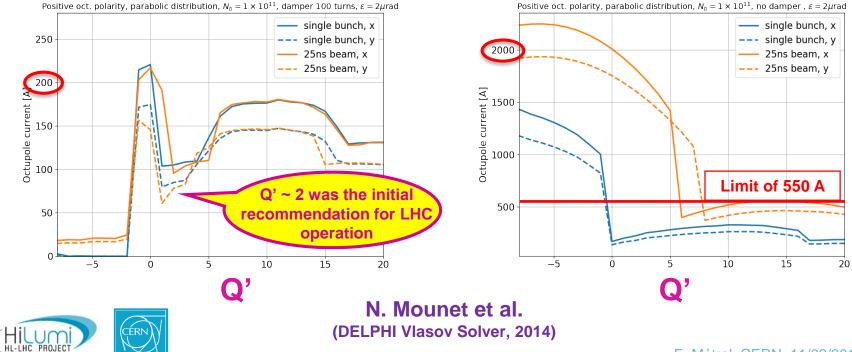



4

## LHC in 2018 at 6.5 TeV => Predicted effect of Q'




# LHC in 2018 at 6.5 TeV => Predicted effect of Q' With TD




N. Mounet et al. (DELPHI Vlasov Solver, 2014)

# LHC in 2018 at 6.5 TeV => Predicted effect of Q' With TD



# LHC in 2018 at 6.5 TeV => Predicted effect of Q' With TD Without TD



# Contents

#### Introduction

- Experience from Run 1 and Run 2
- Expectations for HL-LHC
- Impedance reduction tests
- Further ways to reduce impedance effects
- Conclusion and outlook

#### ACRONYMS

LO = Landau Octupoles

**Q'** = Chromaticity

- **TD** = Transverse Damper
- **ATS** = Achromatic Telescopic Squeeze

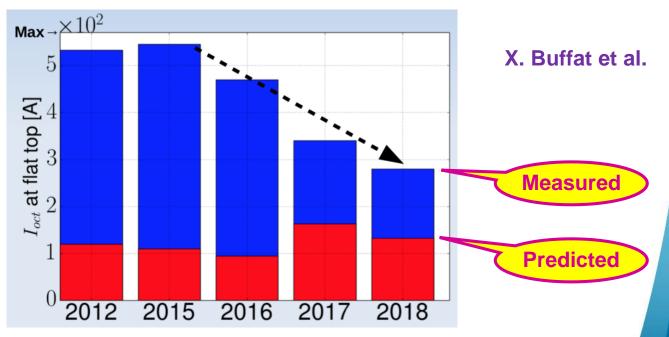
**DA** = Dynamic Aperture

TCBI = Transverse Coupled-Bunch Instability

**TMCI** = Transverse Mode-Coupling Instability

**CFC** = Carbon Fiber-reinforced Composite

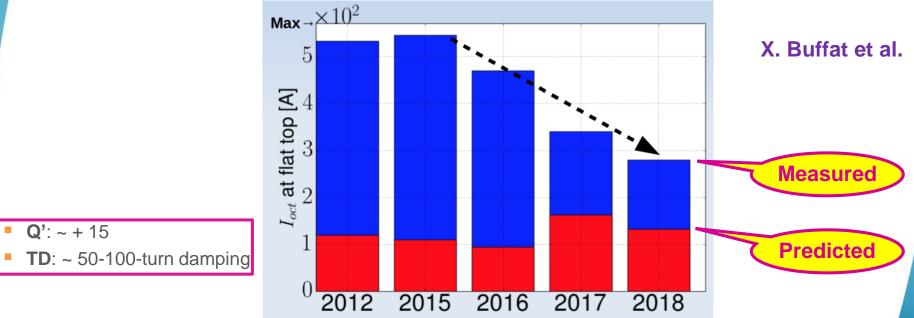
**Mo** = Molybdenum


**MoGr** = Molybdenum Graphite

**MD** = Machine development



# Experience from Run 1 and Run 2 (1/3)


 LHC is now running closer to the LO limit (factor ~ 2) with a better control of the machine year after year





## Experience from Run 1 and Run 2 (1/3)

 LHC is now running closer to the LO limit (factor ~ 2) with a better control of the machine year after year





## Experience from Run 1 and Run 2 (2/3)

Lessons learned => In a machine like the LHC, not only all the mechanisms have to be understood separately, but (ALL) the possible interplays between the different phenomena need to be analysed in detail => To highlight only few of them



## Experience from Run 1 and Run 2 (2/3)

- Lessons learned => In a machine like the LHC, not only all the mechanisms have to be understood separately, but (ALL) the possible interplays between the different phenomena need to be analysed in detail => To highlight only few of them
  - **TD** to be included in beam stability analyses (also with Beam-Beam)
  - LO (> 0 or < 0) with Beam-Beam effects (both Long-Range and Head-On)</p>
  - Destabilising effect of linear coupling
  - Destabilising effect of **TD**
  - Destabilising effect of noise => Currently under study (demonstrated in 2018) as possible main contributor to the remaining factor ~ 2 in LO

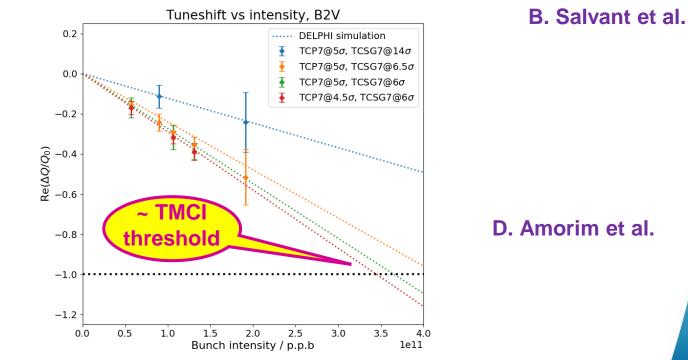


## Experience from Run 1 and Run 2 (2/3)

- Lessons learned => In a machine like the LHC, not only all the mechanisms have to be understood separately, but (ALL) the possible interplays between the different phenomena need to be analysed in detail => To highlight only few of them
  - **TD** to be included in beam stability analyses (also with Beam-Beam)
  - LO (> 0 or < 0) with Beam-Beam effects (both Long-Range and Head-On)</p>
  - Destabilising effect of linear coupling
  - Destabilising effect of **TD**
  - Destabilising effect of noise => Currently under study (demonstrated in 2018) as possible main contributor to the remaining factor ~ 2 in LO
  - N.B.: E-cloud effects not discussed here (issue for stability mainly at injection after scrubbing, while impedance and Beam-Beam effects mainly at high energy)



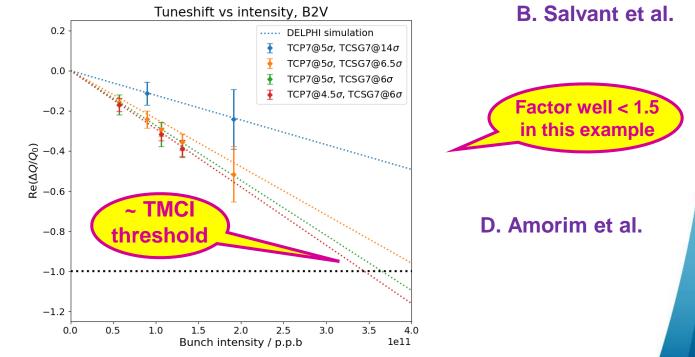
## Experience from Run 1 and Run 2 (3/3)


Best estimate of transverse impedance (B1H, B1V, B2H, B2V): larger than predicted by factor ~ 1.5 as an upper limit

B. Salvant et al.



## Experience from Run 1 and Run 2 (3/3)


Best estimate of transverse impedance (B1H, B1V, B2H, B2V): larger than predicted by factor ~ 1.5 as an upper limit





## Experience from Run 1 and Run 2 (3/3)

 Best estimate of transverse impedance (B1H, B1V, B2H, B2V): larger than predicted by factor ~ 1.5 as an upper limit





# Contents

- Introduction
- Experience from Run 1 and Run 2
- Expectations for HL-LHC
- Impedance reduction tests
- Further ways to reduce impedance effects
- Conclusion and outlook

#### ACRONYMS

LO = Landau Octupoles

**Q'** = Chromaticity

**TD** = Transverse Damper

**ATS** = Achromatic Telescopic Squeeze

**DA** = Dynamic Aperture

**TCBI** = Transverse Coupled-Bunch Instability

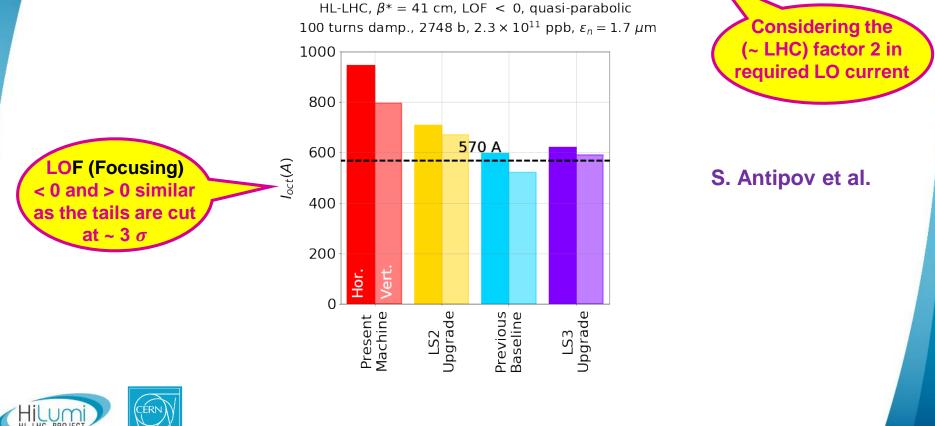
**TMCI** = Transverse Mode-Coupling Instability

**CFC** = Carbon Fiber-reinforced Composite

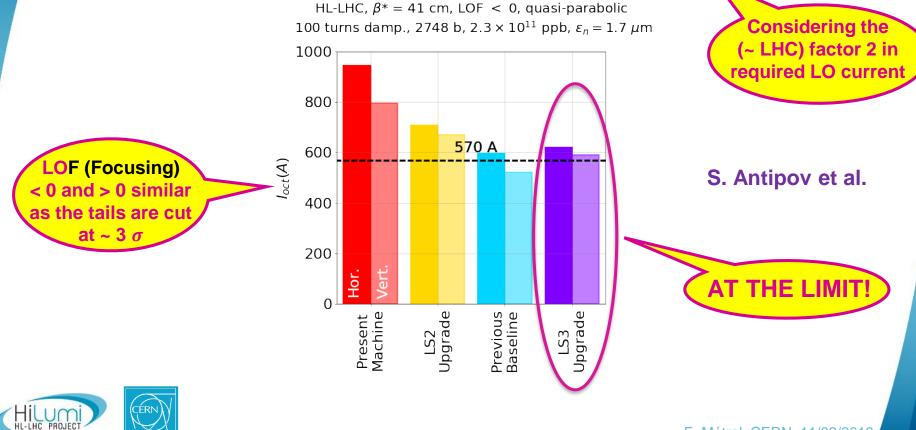
**Mo** = Molybdenum

**MoGr** = Molybdenum Graphite

**MD** = Machine development



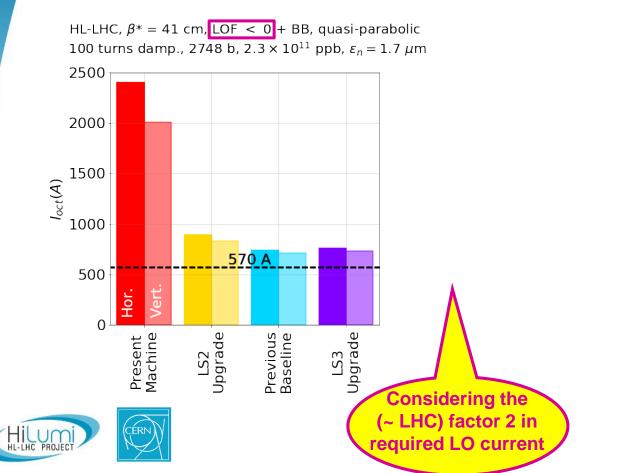

## **Expectations for HL-LHC (1/3): 1-beam stability**


Considering the (~ LHC) factor 2 in required LO current

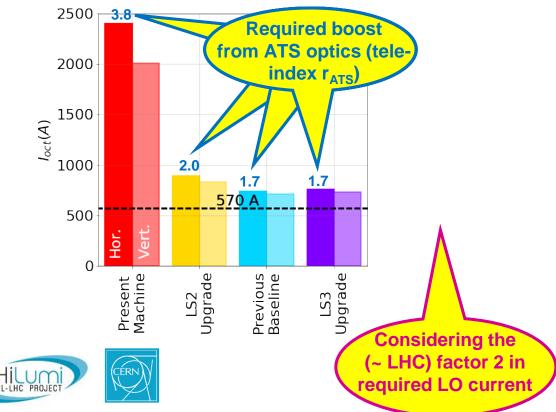


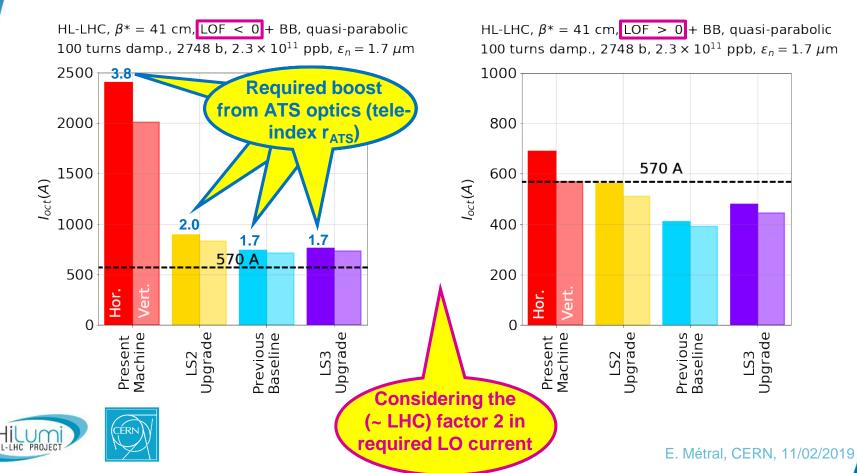
## **Expectations for HL-LHC (1/3): 1-beam stability**



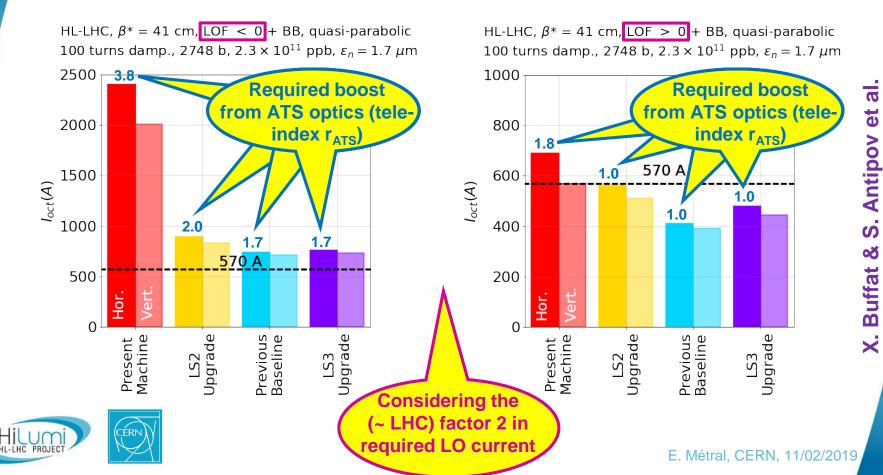

## **Expectations for HL-LHC (1/3): 1-beam stability**

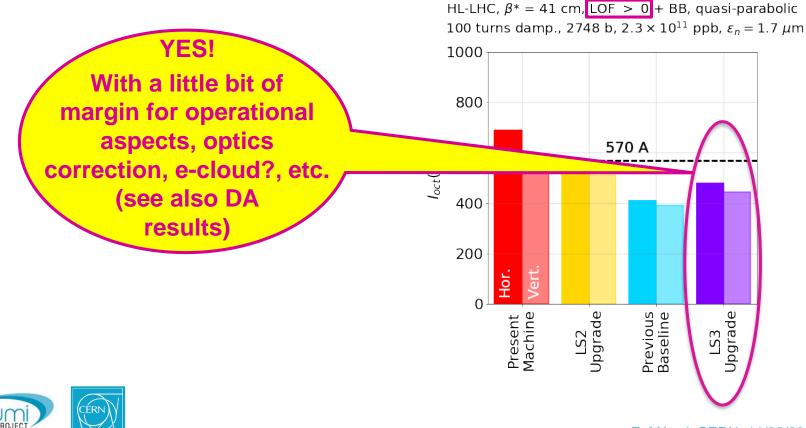



## **Expectations for HL-LHC (2/3): 2-beam stability**





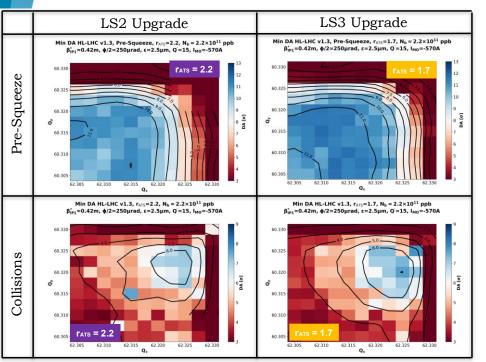


HL-LHC,  $\beta^* = 41$  cm, LOF < 0 + BB, quasi-parabolic 100 turns damp., 2748 b, 2.3 × 10<sup>11</sup> ppb,  $\varepsilon_n = 1.7 \ \mu$ m





al. S. Antipov et õ Buffat ×





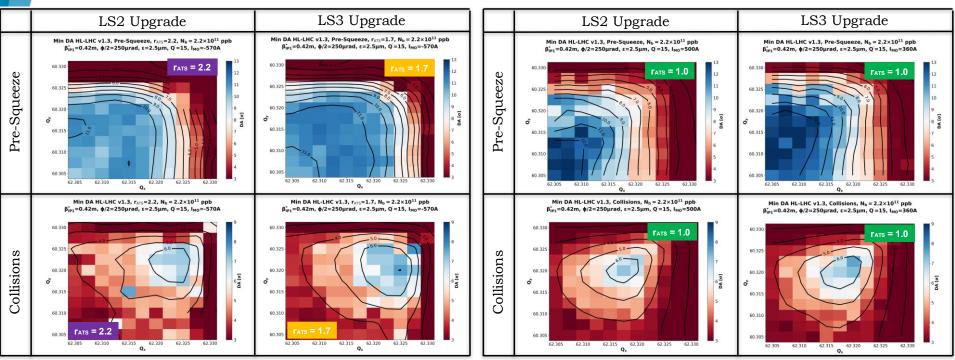

## Expectations for HL-LHC (3/3): DA => OK



## Expectations for HL-LHC (3/3): DA => OK

#### LOF < 0 => Slightly preferred






N. Karastathis et al.

# Expectations for HL-LHC (3/3): DA => OK

#### LOF < 0 => Slightly preferred

#### But LOF > 0 also OK (no margin & w/o errors)





#### N. Karastathis et al.

# Contents

- Introduction
- Experience from Run 1 and Run 2
- Expectations for HL-LHC
- Impedance reduction tests
- Further ways to reduce impedance effects
- Conclusion and outlook

#### ACRONYMS

LO = Landau Octupoles

**Q'** = Chromaticity

**TD** = Transverse Damper

**ATS** = Achromatic Telescopic Squeeze

**DA** = Dynamic Aperture

**TCBI** = Transverse Coupled-Bunch Instability

**TMCI** = Transverse Mode-Coupling Instability

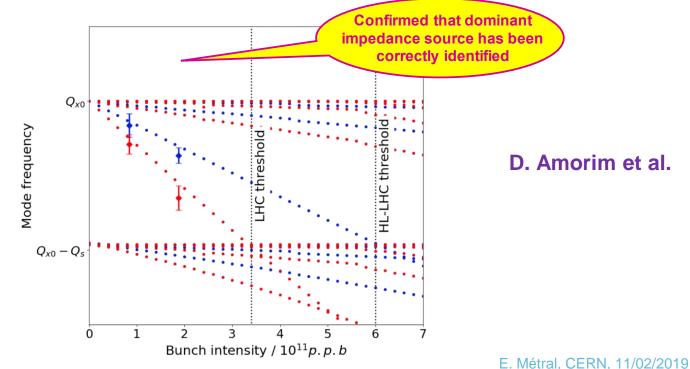
**CFC** = Carbon Fiber-reinforced Composite

**Mo** = Molybdenum

MoGr = Molybdenum Graphite

**MD** = Machine development



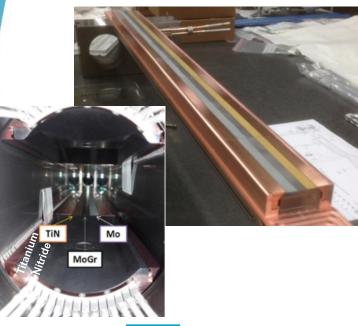

## Impedance reduction tests (1/4)

 Mimicking HL-LHC impedance reduction by opening the collimators (B1H)



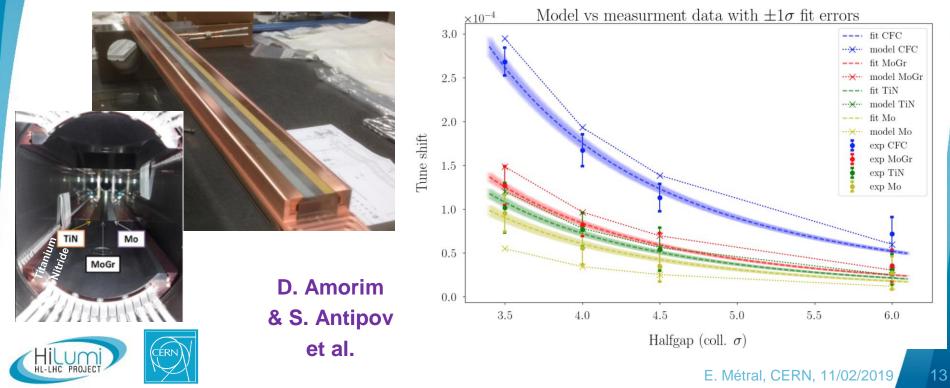
## Impedance reduction tests (1/4)

Mimicking HL-LHC impedance reduction by opening the collimators (B1H) => Significant increase of TMCI threshold



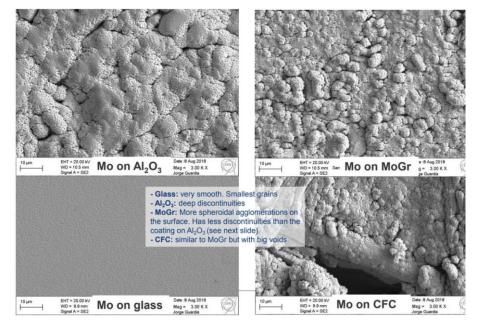






## Impedance reduction tests (2/4)

 Low-impedance prototype installed in LHC => Many lab and beam-based studies




## Impedance reduction tests (2/4)

 Low-impedance prototype installed in LHC => Many lab and beam-based studies



## Impedance reduction tests (3/4)

Mo resistivity seemed to be a factor ~ 5 higher than expected (~ 250 instead of ~ 50 nΩ.m) => Bench RF measurements suggested importance of microstructure (N. Biancacci et al.)







## Impedance reduction tests (4/4)

Measurement of coating resistivity on Mo coated samples with H011 cavity after Eddy current method (N. Biancacci et al.)



## Impedance reduction tests (4/4)

Measurement of coating resistivity on Mo coated samples with H011 cavity after Eddy current method (N. Biancacci et al.)

| Cavity w/o end cap       | Cavity w/ end cap | Cavity w/ DUT end cap   |  |
|--------------------------|-------------------|-------------------------|--|
|                          |                   |                         |  |
|                          | RF                | DC                      |  |
| Measured Mo (DTI)        | ~54 nOhm.m [1]    | 100 nOhm.m [2]          |  |
| Measured Mo (CERN)       | ~523 nOhm.m [1]   | 210 +/- 20 nOhm*m [3]   |  |
| Measured Mo (Politeknik) | ~418 nOhm.m [1]   | Not done by the company |  |
| Requirements             | ~<100nOhm.m       | ~<250nOhm.m             |  |

N. Biancacci & A. Kurtulus et al.



## Impedance reduction tests (4/4)

Measurement of coating resistivity on Mo coated samples with H011 cavity after Eddy current method (N. Biancacci et al.)

|                                                                 |                          |                   | <b>`</b>                |    |
|-----------------------------------------------------------------|--------------------------|-------------------|-------------------------|----|
|                                                                 | Cavity w/o end cap       | Cavity w/ end cap | Cavity w/ DUT end cap   |    |
|                                                                 |                          |                   |                         | N. |
|                                                                 |                          | RF                | DC                      |    |
|                                                                 | Measured Mo (DTI)        | ~54 nOhm.m [1]    | 100 nOhm.m [2]          |    |
|                                                                 | Measured Mo (CERN)       | ~523 nOhm.m [1]   | 210 +/- 20 nOhm*m [3]   |    |
|                                                                 | Measured Mo (Politeknik) | ~418 nOhm.m [1]   | Not done by the company |    |
|                                                                 | Requirements             | ~<100nOhm.m       | ~<250nOhm.m             |    |
| Measured resistivity consistent with microstructure observation |                          |                   |                         |    |



DTI company OK and chosen for production

N. Biancacci & A. Kurtulus et al.

# Contents

- Introduction
- Experience from Run 1 and Run 2
- Expectations for HL-LHC
- Impedance reduction tests
- Further ways to reduce impedance effects
- Conclusion and outlook



#### ACRONYMS

LO = Landau Octupoles

**Q'** = Chromaticity

**TD** = Transverse Damper

**ATS** = Achromatic Telescopic Squeeze

**DA** = Dynamic Aperture

**TCBI** = Transverse Coupled-Bunch Instability

**TMCI** = Transverse Mode-Coupling Instability

**CFC** = Carbon Fiber-reinforced Composite

**Mo** = Molybdenum

MoGr = Molybdenum Graphite

**MD** = Machine development



#### Why studying this?

- Previous estimates for HL-LHC based on (~ LHC) factor 2 more LO current required in 2018 => What will it really be for HL-LHC?
- Importance of noise revealed in MD in 2018 => Scaling wrt main parameters?
- Plans to reduce noise from TD and possibly power converters but...



#### Why studying this?

- Previous estimates for HL-LHC based on (~ LHC) factor 2 more LO current required in 2018 => What will it really be for HL-LHC?
- Importance of noise revealed in MD in 2018 => Scaling wrt main parameters?
- Plans to reduce noise from TD and possibly power converters but...
- If a fronts under study



## Why studying this?

- Previous estimates for HL-LHC based on (~ LHC) factor 2 more LO current required in 2018 => What will it really be for HL-LHC?
- Importance of noise revealed in MD in 2018 => Scaling wrt main parameters?
- Plans to reduce noise from TD and possibly power converters but...
- If a fronts under study

R. Bruce et al.

• **Optics** => To optimise  $\beta$ -functions at collimators



## Why studying this?

- Previous estimates for HL-LHC based on (~ LHC) factor 2 more LO current required in 2018 => What will it really be for HL-LHC?
- Importance of noise revealed in MD in 2018 => Scaling wrt main parameters?
- Plans to reduce noise from TD and possibly power converters but...
- If a fronts under study
  - **Optics** => To optimise  $\beta$ -functions at collimators A. Mereghetti et al.
  - Asymmetric collimation => To reduce impedance of collimators



R. Bruce et al.

## Why studying this?

- Previous estimates for HL-LHC based on (~ LHC) factor 2 more LO current required in 2018 => What will it really be for HL-LHC?
- Importance of noise revealed in MD in 2018 => Scaling wrt main parameters?
- Plans to reduce noise from TD and possibly power converters but...

## 3 fronts under study

- **Optics** => To optimise  $\beta$ -functions at collimators
- Asymmetric collimation => To reduce impedance of collimators
- ATS optics => To boost the LO: tele-index r<sub>ATS</sub> = 3.1 already successfully tested in 2018 during MDs with bunch trains (with both LO polarities)

#### S. Fartoukh et al.

A. Mereghetti et al.



#### R. Bruce et al.

# Contents

- Introduction
- Experience from Run 1 and Run 2
- Expectations for HL-LHC
- Impedance reduction tests
- Further ways to reduce impedance effects
- Conclusion and outlook

# HILUNI CERN

ACRONYMS

LO = Landau Octupoles

**Q'** = Chromaticity

**TD** = Transverse Damper

**ATS** = Achromatic Telescopic Squeeze

**DA** = Dynamic Aperture

TCBI = Transverse Coupled-Bunch Instability

TMCI = Transverse Mode-Coupling Instability

CFC = Carbon Fiber-reinforced Composite

**Mo** = Molybdenum

**MoGr** = Molybdenum Graphite

**MD** = Machine development

Baseline scenario provides stability with margin dictated by present experience compatibly with sufficient DA



- Baseline scenario provides stability with margin dictated by present experience compatibly with sufficient DA
- Impedance reduction with Mo-coated MoGr tested and validated with lab and beam-based measurements



- Baseline scenario provides stability with margin dictated by present experience compatibly with sufficient DA
- Impedance reduction with Mo-coated MoGr tested and validated with lab and beam-based measurements
- Measurements during Run 3 after LS2 installation and additional investigations key to confirm estimates and fully validate further impedance reduction during LS3



- Baseline scenario provides stability with margin dictated by present experience compatibly with sufficient DA
- Impedance reduction with Mo-coated MoGr tested and validated with lab and beam-based measurements
- Measurements during Run 3 after LS2 installation and additional investigations key to confirm estimates and fully validate further impedance reduction during LS3
- Investigations ongoing to further reduce uncertainties (noise, impedance estimate, why Q' ~ 0 seems much more critical than predicted, etc.) and potential mitigation paths (optics, asymmetric collimation, ATS optics)



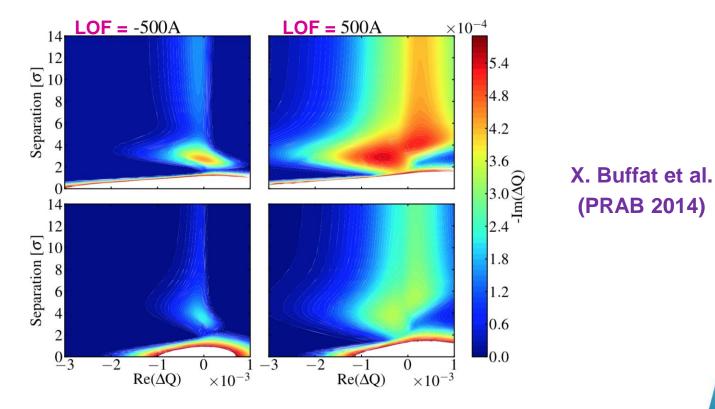


## Thank you for your attention!



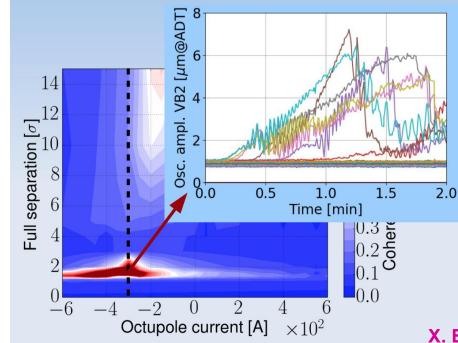
E. Métral, CERN, 11/02/2019

# Appendix




E. Métral, CERN, 11/02/2019

## Landau octupoles and beam-beam


2012

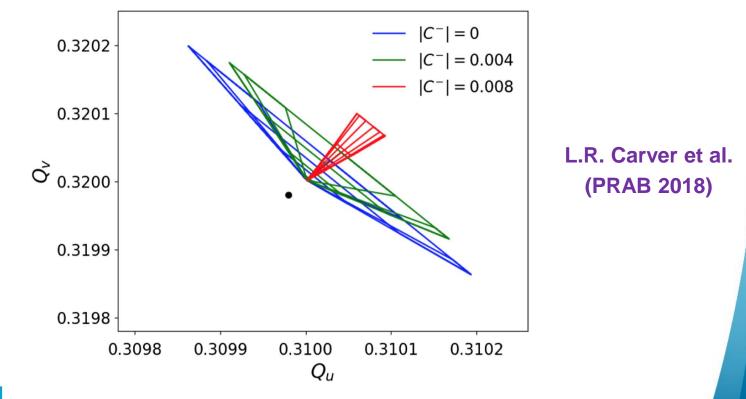






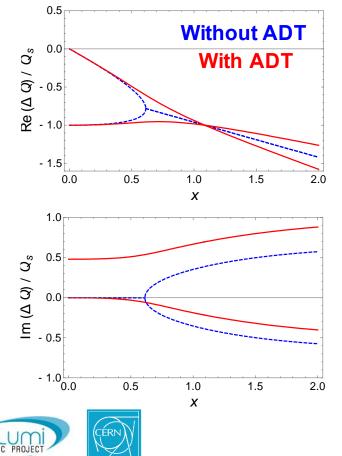
## Landau octupoles and beam-beam

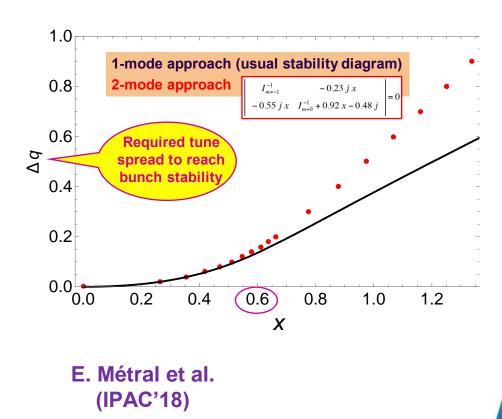



The instability expected with offset beams could be well reproduced in controlled conditions with the negative polarity (and Q'~15)

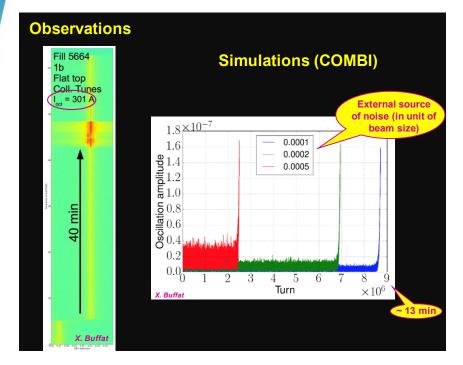
→ No beam dumps à la
2012, even with 733b, rather
a slow instability, slow
enough not to occur when
collapsing the separation
in one go

X. Buffat and S. Fartoukh et al. (ATS MD, 2018)

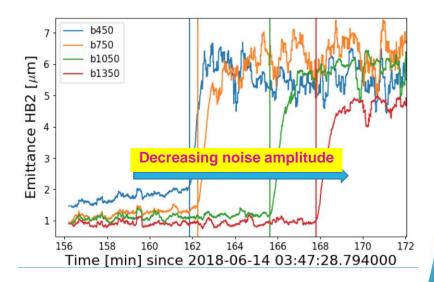




## **Destabilising effect of linear coupling**



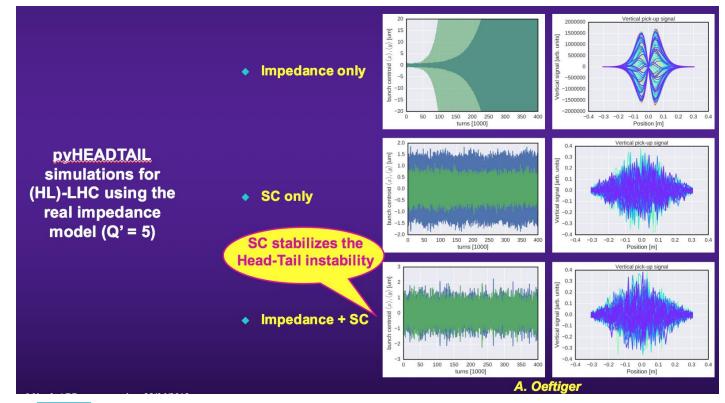



## **Destabilising effect of TD**



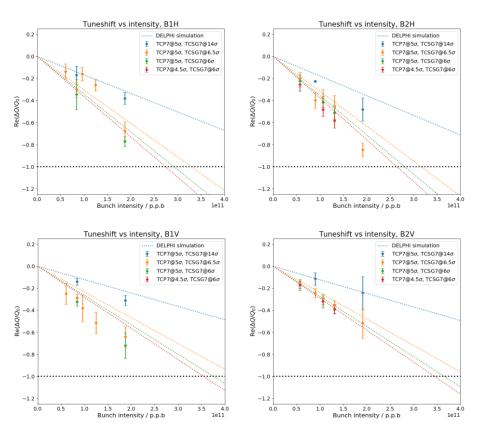



## **Destabilising effect of noise**




#### MD in 2018 (X. Buffat et al.)





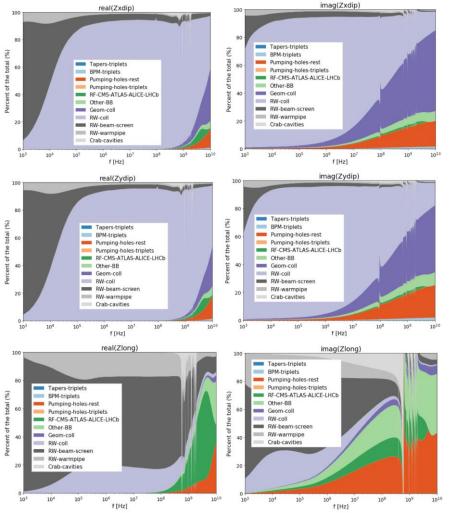

# Stabilising effect of space charge at low energies






# TMCI studies (D. Amorim et al.)



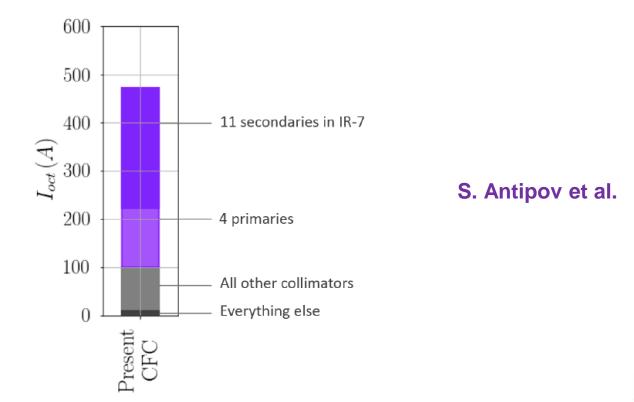



# HL-LHC impedance model at 7 TeV ( $\beta^* = 50$ cm)





#### D. Amorim et al.




#### D. Amorim et al.





#### Impedance contributors (BCMS, without factor 2)





### **Collimation upgrade in LSS7**

#### Phase 1 (LS2 Upgrade)

- Replacement of 2 primary collimators/beam with TCPPM low impedance collimators (MoGr)
- Replacement of 4 secondary collimators/beam with TCSPM low impedance collimators (Mo-Coated MoGr collimators)
- Construction of 2 spare TCPPM (MoGr)
- Construction of 2 spare TCSPM (Mo-coated MoGr)

Phase 2 (LS3 Upgrade) and pending results of the first part of Run 3

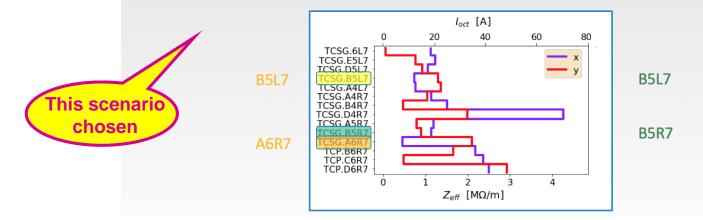
- Replacement of 5 (was 7 for previous baseline) secondary collimators/beam with low impedance collimators (Mo-coated MoGr collimators or Cu-coated graphite collimators)
- Construction of 2 spare TCSPM (Mo-coated MoGr collimators or Cu-coated graphite collimators)



### LS3 Upgrade (new baseline): keep 2 CFC collimators

### Two options to choose from

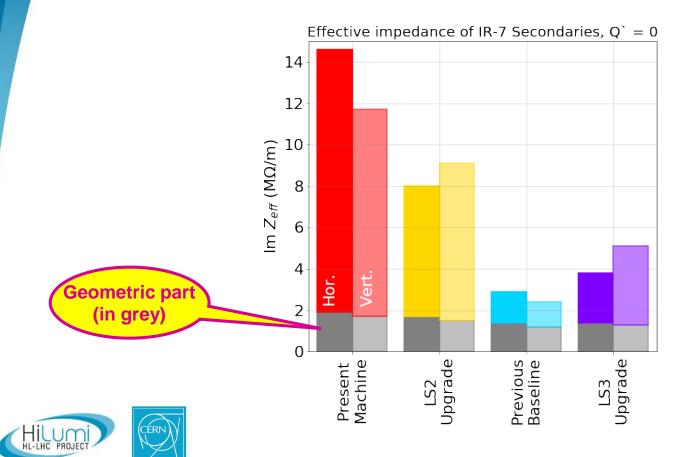
#### MINIMIZE HORIZONTAL IMPEDANCE


Horizontal plane – most critical from operation (*X. Buffat*)

Collimator tune shift measurements show higher shift than expected (*D. Amorim*)

Greater octupole current in the Vertical plane

Slight increase in **both** planes


ATTACK BOTH PLANES





S. Antipov et al.

# **Resistive-wall impedance vs. geometric**



S. Antipov & E. Carideo et al.

# 2-beam stability: LOF < 0 vs. LOF > 0

| X. Buffat  |                       | $I_{oct}$          | e < 0                | $I_{oct} > 0$      |                  |                    |                    |
|------------|-----------------------|--------------------|----------------------|--------------------|------------------|--------------------|--------------------|
|            | Asynchronous collapse |                    | Synchronous collapse |                    | Either           |                    |                    |
|            | $\phi_{CC} = 0$       | $\phi_{CC} = -180$ | $\phi_{CC} = 0$      | $\phi_{CC} = -180$ | $\phi_{CC} = 0$  | $\phi_{CC} = -180$ | $\phi_{CC} = -180$ |
| Scenario   | $\beta^* = 41 cm$     | $\beta^* = 41 cm$  | $\beta^* = 41 cm$    | $\beta^* = 41 cm$  | $\beta^* = 41cm$ | $\beta^* = 64 cm$  | $\beta^* = 41 cm$  |
| CFC        | -2400(3.8)            | <-2750 (>4.1)      | <-2750 (>4.1)        | -2600(4.0)         | >2750 (>5.7)     | 690(1.8)           | 620(1.5)           |
| LS2 upgr.  | -890(2.0)             | -1640(3.1)         | -1500(2.9)           | -1250(2.6)         | >2750 (>5.7)     | 560                | 500                |
| Full upgr. | -740 (1.7)            | -1230 (2.5)        | -1230 (2.5)          | -1100(2.3)         | >2750 (>5.7)     | 410                | 360                |

Tele-index required using the formula from StephaneF => To be confirmed once the optics are available



# **HL-LHC bunch brightness**

 The HL-LHC bunch brightness has already been reached! => In 2016 at 6.5 TeV, bunches of ~ 1.4 times higher brightness than for HL-LHC were brought into collision with very good lifetime (burn-off dominated)

| Parameter                            | LHC  | HL-LHC | LHC 2016 | Delta [%] |
|--------------------------------------|------|--------|----------|-----------|
| Energy [TeV]                         | 7    | 7      | 6.5      | - 7       |
| Bunch population [10 <sup>11</sup> ] | 1.15 | 2.2    | 1.9      | - 14      |
| Transv. emittance [µm]               | 3.75 | 2.5    | 1.5      | - 40      |
| Brightness [1011 / µm]               | 0.31 | 0.88   | 1.27     | + 44      |
|                                      |      |        |          |           |





#### Studies on alternative mitigation strategies ongoing (S. Redaelli et al.)

- New IR7 optics (proposal by N. Mounet) allowing larger physical collimator gaps being studied (R. Bruce)
- Reducing number of jaws at the beam => Asymmetric settings or fewer secondaries (A. Mereghetti & R. Bruce)
  - Impact on cleaning being studied
  - **MDs** in 2018 being analysed
  - Clearly, some scenarios only feasible if one can "trade" some cleaning performance (potential conflicts with the new Dispersion Suppressor layouts to be assessed)



## Further considerations on ATS optics (S. Fartoukh)

- For LOF < 0, requested tele-index strongly dependent on choice of Xing angle function in ramp (essentially end of ramp)
  - From instability perspective, Xing angle shall be maximised (possible because one has plenty of aperture)
  - From other perspectives, it may have to be minimised
- Combined ramp and squeeze: OP mechanics was already demonstrated with up to ~ 800 nominal (and 8b4e) bunches in MD in 2018
- Budget of tele-index is limited in relative (typically from 1 to 4)
  - If already eaten substantially in ramp, then  $\beta^*$  levelling in tele-mode in collision will not be possible
  - Strategy worked out for Run 3: deploy instead an anti-telescopic optics in ramp (and cross a tele-index of 1 later on but when beams are colliding)
  - Anti-telescopic optics are sensibly less flexible compared to telescopic optics (especially IR6), which in practice will limit the (effective anti-)tele-index to 2-2.5



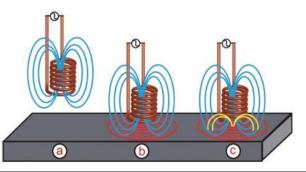
## Some reminders from the 2009 collimation review

The transverse feedback system should be able to damp instability rise-times of (We take a safety margin of a factor 2 compared to what was computed in the previous slides)

Strategy for the stabilization of the transverse coupled-bunch instab.

- Transverse feedback: at injection and top energy (seems OK)
- If pb ⇒ Landau octupoles (up to a certain intensity limit)

Phase 2: Copper and copper coated ceramics collimators are studied


The best way to reduce the collimator impedance remains to open the gaps and reduce the total length of the collimators!



# Eddy current method (to measure resistivity)

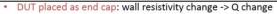
#### Introduction on Eddy Current Testing

- Method based on variation of a magnetic field in a coil, in reaction to magnetic or electric conductive materials in its vicinity.
- Coil of conductive wire excited with AC produces a (primary) magnetic field around itself. When the coil approaches a conductive material, this (primary) magnetic field induces electrical currents (eddy currents) in the conductive material.
- In practice it is like an electric transformer, where the coil acts as the primary winding and the conductive material acts as the secondary winding.
- Depending on the material, one can correlate the change in coil input impedance to the material characteristic.

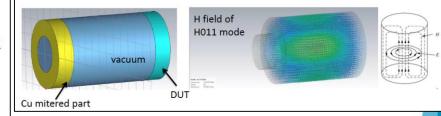


#### N. Biancacci et al.




## H011 cavity method (to measure resistivity): ~ 16.5 GHz

- Accurate measurement of coating surface resistance is needed to characterize the production process of HL-LHC baseline collimators jaws made of 5um Mo coated MoGr.
- Extensive characterization studies done in the past by means of eddy current coils at low frequency (10kHz – 2MHz).
- 2 companies called for large production (DTI, Politeknik) and compared to CERN production.
- Measurements of resistivity was done on small blocks based on eddy current testing (see https://indico.cern.ch/event/773228/contributions/3219381/attachments/17543


54/2843771/Outcome\_of\_recent\_Mo\_coating\_resistivity\_measurements.pdf ) with good outcome for DTI.

- Attempted measurement also on real (thicker and larger) blocks: more sensitivity to bulk not homogeneity affected the results and triggered the study of an alternative method (161th HSC meeting <u>https://indico.cern.ch/event/775773/</u>)
- Alternative approach quickly developed and based on the application of a pillbox cavity optimized for H011 mode operation -> huge transversal team work!

N. Biancacci & F. Caspers et al.



- Frequency of operation: mode H011 (most insensitive to cap contacts)
- Mitered internal part to separate adjacent E modes.
- Known methodology to make frequency meters (e.g. [1,2,3])





# **Some references**

- D. Amorim al.. HL-LHC impedance and related effects. 93 ٠ et D (https://cds.cern.ch/record/2652401/files/2018-12-11 HL-LHC-Project-Report-impedance.pdf) E. Métral et al., Update of the HL-LHC operational scenarios for proton operation, CERN-ACC-NOTE-2018-0002 ٠ (https://cds.cern.ch/record/2301292/files/CERN-ACC-NOTE-2018-0002.pdf) E. Métral et al., Collimation-driven impedance, LHC Phase II Collimation Review, CERN, 2009 ٠ (https://indico.cern.ch/event/55195/contributions/1207948/attachments/980349/1393466/CollimationDrivenImpedance ConceptualDesignReviewLHCPhaseIICollimation 02-04-09 v2.pdf) E. Métral, Single-bunch and coupled-bunch instability at LHC top energy vs. chromaticity, CERN RLC meeting, 21/04/2006 ٠ (http://emetral.web.cern.ch/emetral/CBIandSBIAtLHCInjectionandTopEnergy RLC 21-04-06.pdf) D. Amorim et al., Summary of impedance measurements over the years 2016/2017/2018, CERN HSC meeting, 18/02/2019 ٠ (https://indico.cern.ch/event/795854/contributions/3306471/attachments/1791211/2923590/2019-02-11\_tune-shifts\_measurements\_16-17-18\_v2.pdf) Χ. HSC Buffat. HL-LHC stability limits for positive CERN meetina. 21/01/2019 octupole current. ٠ (https://indico.cern.ch/event/783125/contributions/3279356/attachments/1781821/2899102/2019-01-14\_HLLHCWithPositivePolarity-expanded.pdf) 05/02/2019 N. Karastathis. DA with positive octupole polarity, CERN HL-LHC WP2 meetina. ٠ (https://indico.cern.ch/event/788835/contributions/3277310/attachments/1790599/2920548/nkarast\_wp2\_additionalMaterial.pptx) CERN HL-LHC WP2 S. Antipov. Whv coated collimators?. meetina. 28/08/2018 ٠ do we need (https://indico.cern.ch/event/751331/contributions/3113704/attachments/1705707/2748308/Why coat the collimators.pdf) N. Biancacci et al., Low-impedance collimators for HL-LHC, Proc. of IPAC'18 (http://accelconf.web.cern.ch/AccelConf/ipac2018/papers/weygbe4.pdf) ٠ N. Biancacci et al., Measurement of coating resistivity on Mo coated samples with H011 cavity, CERN HSC meeting, 10/12/2018 ٠ (https://indico.cern.ch/event/778893/contributions/3244242/attachments/1768261/2872129/Mo\_meas\_H011\_05122018\_NBAKEC.pdf) N. Mounet et al., A first trial to reduce collimation impedance by playing with the IR7 optics, CERN HSC meeting, 26/02/2014 ٠ (https://espace.cern.ch/be-dep-workspace/abp/HSC/Meetings/Impedance\_LHC\_IR7\_test.pdf) C. Accettura, J. Guardia, Microscopic investigation of different molybdenum coating, CERN Impedance meeting, 01/02/2019 ٠ (https://indico.cern.ch/event/794863/contributions/3302396/attachments/1788995/2913755/01022019 Coatingoutsourcing FIB v2.pdf)
- E. Carideo et al., Effect of the actual taper geometry on the collimator impedance and octupole thresholds of LHC and HL-LHC, CERN HSC meeting, 26/11/2018, (https://indico.cern.ch/event/775773/contributions/3228729/attachments/1758920/2853016/Presentation\_EMANUELA\_CARIDEO\_261118.pdf)

