IR collimation upgrades -incoming beam-

Hector Garcia Morales, Roderik Bruce, Stefano Redaelli

Acknowledgments for the material to: Francesco Cerutti, Andrea Tsinganis, Antonello Sbrizzi

IR optics: LHC vs HL-LHC v1.3

- Significant change in IR optics and layout from current LHC to HL-LHC v1.3.
- Need to review the protection of the inner triplet (and upstream magnets) in the new environment.

Motivation for IR layout upgrade

HL challenges for IR cleaning

- Higher luminosity (peak and integral)
- Higher bunch intensity and brightness
- Complexity of operational modes with tight collimation hierarchy (levelling)
- Tighter aperture requested in the matching section magnets in addition to the triplet

Required upgrade of the present layouts

- Additional bottleneck observed in Q4-Q5 region demands an additional pair of TCT in cell 6 to protect them while keeping TCT in cell 4 for triplet protection.
- Need for fixed masks on the outgoing beams (in addition to movable TCLs)
- More robust collimator materials to withstand impacts from asynchronous dumps (H)
- In-jaw BPM design for all new IR collimators: flexibility and efficiency (=availability) for considered levelling scenarios with $\beta *$ and crossing

Current IR layout and foreseen upgrade

- Tertiary collimators of type "TCTPXH, TCTPXH, TCTP, ..." \rightarrow TCT
- Physics debris collimators "TCLPX, TCLP, …" \rightarrow TCL
- Append the cell number. Example: "TCT.4" is the TCT in cell 4

Current IR layout and foreseen upgrade

Collimator	Setting (LHC – 3.5 µm)	Setting (HL – 2.5 µm)
TCP7	5.7	6.7
TCS7	7.7	9.1
TCSP6	8.5	10.1
TCDQ6	8.5	10.1
TCT IR1/5	8.8	10.4
Aperture IR1/5	10.0	11.9

Contents of the presentation

- Verify protection with new collimator layout in cleaning and asynchronous dump scenarios.
- What is the energy deposition in the experimental insertion?
 - What are the effects on downstream magnets?
 - What are the effects on the experiment?

- Inner triplet is the global machine bottleneck in collision.
- Additional bottlenecks at Q4/Q5 also critical for HL-LHC.
- Reduction of triplet aperture represents different sources of errors (beta-beating, misalignment...).
- Betatron cleaning efficiency evaluated with SixTrack for different triplet, Q4 and Q5 apertures and TCT settings.

LHC layout in IR1 with aperture that collimation system should protect (emit = 2.5 um, beta*=15cm).

Aperture reduced to 10.9 (optics V1.3 beta = 15cm)

- Cleaning satisfactory in new layout with nominal TCT setting, even with very pessimistic aperture
- Example shown:
 - margin of ~1 sigma MQX/TCT
 - LHC 2018: ~1.5 sigma (see RB's talk).
- If TCTs are more open than aperture, already for a perfect machine significant losses appear in triplet as expected

- Cleaning efficiency as a function of TCT4/6 apertures.
- Aperture reduced to 10.3 sigma (very pessimistic case).
- No losses observed for TCT settings below 9.8 sigma.

H.Garcia-Morales: CERN-ACC-NOTE-2017-0023

Recap: Asynchronous dump

- Asynchronous dump:
 - The MKD fires not synchronized with the abort gap and the beam receives a kick.
- This might have an severe impact if beam oscillations drive the beam towards the TCTs.
- Beta* reach very much determined by a well matched phase advance between the MKD and the TCTs.
 - Also allows tighter collimator hierarchy.

Cleaning efficiency in IR1/5 - Asynchronous dump

- SixTrack simulations for worst case scenario type-2 single module pre-fire.
- Several bunches simulated each receiving different kicks.
- Phase advance between MKD and TCT improved from optics version v1.2 to v1.3.

Cleaning efficiency in IR1/5 - Asynchronous dump

- Scans of TCT settings.
- Excellent improvement of v1.3 due to the new phase advance.
- For TCT settings beyond 14 sigma, the triplet starts to be exposed for ideal triplet aperture.
- Only secondary losses reach triplet.
- Based on tracking simulations using v1.3 both tertiary collimators and triplet are fully safe over a realistic range of TCT settings.
- Shower studies needed for full assessment of downstream elements.

Recap. on failure scenarios

- See also introduction by RB
- Study case of single bunch on the TCT as design case for material choice and impact on :
 - **Downstream magnets**: quench or even SC coil damage
 - (newer) quench protection
 - Detectors
- Dedicated studies for effect on TCT jaw from **diffused halo that escapes IR6**
- Benchmark case against innermet TCT destructive test in HRM
 - Talk by A. Bertarelli in 2012
- Complex tools (Geant4, FLUKA, Autodyne...)

Asynchronous dump - FLUKA simulations

Different scenarios:

- **Pessimistic**: single bunch (half or full) impact on one jaw.
- Realistic: fractions of several bunches impact on both jaws.

FLUKA model:

- Losses from SixTrack loaded at appropriate location.
- Radiation propagated towards the experiment.
- Different jaw materials considered

(Innermet, MoGr, CuCD).

Asynchronous dump - FLUKA simulations

Impact on TCT4

- All values below damage limit (1kJ/cm³)
- Only D1 would quench with Inermet TCT4.
- The choice of the material has a significant impact on protection effectiveness.

Impact on TCT6

- All values drop with respect to TCT4 case but quenches are not excluded.
- Baseline with TCT pairs in cell 4 and 6, is safely below the material damage threshold (over the Q1 - Q5 region) for all TCT jaw material options

A. Tsinganis et al.: https://indico.cern.ch/event/647714/contributions/2646539/

Damage in the experiments - ATLAS

Beam impact on TCTs due to asynchronous dump generate secondary showers that reach the experimental area.

HL-LHC configuration:

- •7 TeV, beta* = 15cm
 - HL-LHC v1.2

•TCT4 opened to be on the limit of protecting the triplet (13.3 sigma)

• Assuming dump protection is misaligned and single bunches can directly hit the TCT4. Magnetic tracking from dump kicker of miskicked bunch to the TCT4.

•Cases considered:

- Full/half bunch impact on TCT4
- Tungsten alloy or MoGr

A Sbrizzi et al

TCT4	Scenario	Np[1e11]	dEdep/dEthr [%]	
			TAS D = 60 cm	TAS D= 34 cm
W alloy	Half-bunch	1.167	0.0048	0.0016
MoGr	Half-bunch	1.167	0.17	0.038
MoGr	Full bunch	2.184	0.30	0.078

Worst case scenario:

ATLAS damage threshold = 10¹³ MIP/cm²

energy deposit = 0.3% of the damage threshold

Experimental background during operation

Dedicated studies of beam halo background in ATLAS allowed to quantify the measured background per lost proton on TCPs.

- •With present beam lifetime and TCT settings total background in physics is less than 1% of beam gas background.
- •Beam halo background is not a strong driver for TCT material and layout choice.

R Kwee

Impact on triplet from asynchronous dump

- In case of magnet quench, due to large inductive currents, there is an increase of voltage-to-ground.
- Circuit protection simulations done to study electric behavior of triplet (M. Mentink)
- Asynchronous beam dump hitting TCT6 in CuCD, 1 full bunch
 - Risk to quench Q2b, but not Q3
- In very pessimistic scenario with simultaneous failure of single quench heater and an inhomogeneous conductor distribution:
 - Voltage to ground is 1876 V. Allowed: 1900 V
 - Compare: only single heater failure and inhomogeneous conductor distribution:
 - Voltage to ground is 1647 V
 - **Conclusion: there is no worry for the triplet for CuCD** extremely pessimistic scenario
 - In reality, **very unlikely** with the simultaneous failures
 - Situation will improve with matched MKD-TCT phase or if TCT is made of tungsten alloy
 - Comparison with **MoGr**:
 - risk to quench Q3 and create short to ground
 - Very unlikely, but still not recommended to use MoGr TCTs

M.Mentink: HL-MCF Meeting #29

Conclusions

- New layouts of high-luminosity experiments interaction region for the incoming beam protection at the HL-LHC.
- The **baseline adds a pair of TCTs in cell 6** to protect critically exposed matching section quadrupoles in addition to the triplet
- Very extensive simulation campaigns for regular and abnormal losses show adequate protection levels for all design cases
- New, more robust, materials in the horizontal plane protect adequately for the (pessimistic) design case of single bunch lost in the IR, with sufficient margin to known possible limiting factors:
 - Magnet protection, including voltage to ground.
 - experiment electronics
- Choice of **CuCD seems appropriate**, while inermet would maximise absorption at the TCT but collimator would not survive.

Backup

D2 - Q5 exposure: comparison of the two cases

Peak energy density profile in the inner coils (Impact on TCTH6)

- Some losses observed for large apertures when only TCT6 is included.
- When both TCT4 and TCT6 are included slight improvement with respect to TCT6 only.

Damage limits on tertiary collimators

TABLE IV. Damage limits calculated for the tungsten collimator jaw for the three cases discussed in the paper.

Material damage	Thresholds (number of protons)		
	Case 1	Case 2	Case 3
Plastic deformation	1.2×10^{11}	4.6×10^{9}	6.9×10^{9}
Fragment ejection	7×10^{11}	1.8×10^{10}	2.6×10^{10}
Catastrophic damage	1.1×10^{12}	1.4×10^{11}	1.7×10^{11}