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Simulation performance R&D

• GeantV: a general performance study for the full simulation workflow
• How to improve the steering framework
• Track-level parallelism, basket rather than single track workflow
• Improving instruction and data locality
• Leveraging vectorization techniques (VecCore)
• Adaptable to new hardware and accelerators

• How to improve individual simulation components
• VecGeom: new geometry modeler using efficient template programming to 

handle single/multi particle queries
• New physics framework, more simple and efficient, vectorization-aware
• VecMath: new SIMD-aware RNG and math algorithms
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GeantV multi-particle processing
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Where are we today?

• Full EM shower simulation with full complexity
• Realistic geometry and physics configuration

• Possible to run full EM simulation in the context of a LHC experiment
• User interfaces scoring efficiently in multi-event multi-threaded environment

• Ongoing integration exercise with CMSSW by CMS
• First demonstrator for RNG reproducibility
• A set of pre-beta tags available

• Thorough ongoing performance study
• Detailed comparisons: different GeantV modes and Geant4

• Hotspots, performance counters, MT
• Preliminary set of conclusions including:

• Vectorization and locality: benefits and limitations
• Current limits for multi-threading in basketizing environments
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What we compare

• Examples: simplified sampling calorimeter and a full CMS simulation
• GeantV: several configurations
• Basketization ON/OFF for different components: geometry, final state

sampling (physics), field propagation, MSC
• Field ON/OFF
• Single track mode ON/OFF
• Basket dispatching to vectorized vs. scalar code

• Geant4: equivalent physics list, geometry setup and cuts
• Single threaded or MT mode
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General performance FullCMS

• Overall performance improvements of
1.9 – 2.1 for the most efficient 
configurations
• Gains from vectorization benefits 

visible for just a subset of stages (up to 
~15% overall)
• Benefits from stage-local workflow

visible only for up to 15%, dependent 
on machine topology
• The rest of performance gain coming 

from other improvements/ code 
simplification (see next)
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Vectorization performance

• Intrinsic vectorization gains per 
model visible in profiling
• Lower that the speed-ups in (ideal) 

unit tests (1.3-2.5)
• Overall intrinsic gain of only 1.3, 

lower than data gathering/scattering 
loss!

• Important gains for some methods
• Field propagation: x%, multiple 

scattering angle/shift sampling y%

• Performance loss in case of “small”
hotspots (e.g geometry volumes)
• Basketizing is efficient only when 

applied to “dense FLOP” algorithms
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A more detailed performance view

• Implemented a special “single track” mode
• GeantV workflow using stack-like approach, transporting single tracks through all stages

• Different levels of performance loss in single track mode
• From 0 to ~15-20%, depending on the test machine
• Still not understood what contributes to results being different
• Next step: single track mode only for selected stages

• Performance indicators give already valuable (but not comprehensive) hints on locality

CPU time G4/GV single/default FPC IPC FMO
TLB_DM 
G4/GV TLB_IM G4/GV

L1_DCM 
G4/GV L1_ICM G4/GV

GV-4kgauss 2827 1.76 0.26 1.06 0.56 0.74 11.16 1.38 7.63
GV-4kgauss-
strk 3270 1.52 1.16 0.21 1.05 0.47 0.4 7.72 1.33 2.04
G4-4kgauss 4987 0.13 0.8 0.33

GV-nofield 1754 2.09 0.25 1.1 0.51 0.71 24.97 1.28 16.65
GV-strk-nofield 2031 1.81 1.16 0.21 1.15 0.41 0.6 38.72 1.39 3
G4-nofield 3668 0.13 0.85 0.32
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Preliminary conclusions for single thread 
performance
• GeantV executes much less instructions for the same number of FLOP
• Much less TLB/L1 cache misses (to be quantified in %time)
• Implicit better numbers for instructions per cycle (IPC), computation intensity, 

CPU utilization

• The gains from locality (~15%) and vectorization (~15%) explain only a 
small part of the factor of ~2x speedup
• Simplified/more efficient code, library size, less deep call stack and less virtual

calls – just some of the possible reasons
• Quantifying these effects is very important

• The limits of applicability of the GeantV “basket” model now visible
• Reasonably “hot” computation hotspots show clear benefits
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Multi-threading performance

• Track workload shared among threads
• Event tails spread across threads require frequent flushing (less efficient)
• Flushing baskets de-balances the work

• Several improvements to reduce Amdahl, partially successful
• Work stealing queues, memory contention reduced

• A compromise requires less track sharing at the expense of more
memory used
• Sets of events owned by or having affinity to threads
• Different degrees of event affinity for threads under investigation
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Current MT performance
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Short-term work plan

• Continue the performance analysis
• The goal is to quantify where the bulk of the gain (~60-70%) is coming from
• Consolidate and complete the performance numbers

• Dependence on the architecture and machine features
• Conversion of cache misses into absolute/relative time

• More detailed locality study
• Single track mode for selected stages only

• Final fixes and consolidations for the beta release (now at pre-beta4)

• Understand the most profitable directions to work on to improve 
Geant4
• Code simplification: physics framework and step management
• Areas where locality can be improved, by adopting a basket-like workflow
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Where we go from here?

• GeantV R&D at a stage where we can measure/evaluate
• The actual benefits of the main idea and of the side developments
• Things that work and things that don’t

• Preparing a detailed technical document on our study
• Facts, numbers and lessons learned
• A hopefully useful guide with performance hints for other applications

• Decide on the best strategy to follow to bring the benefits of this 
study in production
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