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High Level Goals
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• Investigate and develop solutions integrating: 

• Data Engineering/Big Data tools 

• Machine learning tools 

• Data analytics platform 

• Use Industry standard tools  

• Well known and maintained by a large community 



Use case
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• Topology classification with deep learning to improve real time event 
selection at the LHC  

[https://arxiv.org/abs/1807.00083] 

• Improve the purity of data samples selected in real time at the Large 
Hadron Collider 

• Triggers are designed to maximize efficiency (TP rate) 

• Inclusive selection rules: more than one topology selected by the 
same requirements (e.g. isolated lepton triggers) 

• This trigger selects events containing W and tt ̅but also QCD  

• Classify different event topology at trigger level



Datasets: simulated sample
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• Each event of the simulated sample consists of a list of 
Particle-Flow candidates.



HLF & LLF datasets
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• Each event of the simulated sample consists of a list of Particle-Flow 
candidates. 

• The trigger selection is emulated by requiring events to include one 
isolated electron/muon with pT>23GeV and particle based 
isolation<0.45  

• All particles are ranked in decreasing order of pT, where the isolated 
lepton is the first particle of the list 

• Low Level Feature dataset: First 801 particles of this list, each 
described by 19 features (four-momentum, origin, …) 

• High Level Feature dataset: List of 14 physics-motivated features 
computed from the LLF dataset



Models
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• HLF classifier: fully connected DNN taking as input the 14 high 
level features. It consists of 3 hidden layers with 50, 20, 10 
nodes and an output with 3 units. 

• Particle-sequence classifier: RNN taking as input the list of 
801 particles. Particles are sorted by a decreasing distance 𝜟R 
from the isolated lepton. Gated recurrent unit are used to 
aggregate the input sequence and the width of the recurrent 
layer was 50. 

• Inclusive classifier: In this model some physics knowledge is 
injected into the Particle-sequence classifier by concatenating 
the 14 HLF to the output of the GRU.



Machine Learning Pipeline
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The goals of this work are: 

• Produce an example of a ML pipeline using Spark 

• Test the performances of Spark at each stage
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Training

• Train the best 
model on the 
entire dataset
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Start from the output 
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Start from the output 
of the previous stage

Feature Preparation 
Prepare the input for 
each classifier and 
shuffle the dataframe
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Start from the output 
of the previous stage

Feature Preparation 
Prepare the input for 
each classifier and 
shuffle the dataframe

Elapsed time: 2h

Produce samples of 
different sizes

Undersampled 
dataset 

Test 
 dataset 



Comments on Spark for Data Engineering at Scale
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•  Spark scalability:  

• Allows to develop code 
locally and then deploy 
the same code on a 
arbitrary large cluster 

• We can connect a 
notebook to the cluster 
and performe an 
interactive analysis  

• Easy to do feature preparation at scale! 



Data  
Ingestion

Feature 
Preparation

Model  
Development Training

100k events 

!11

Test 
 dataset 



Data  
Ingestion

Feature 
Preparation

Model  
Development Training

Model #1 
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Tests made with the HLF classifier:

• Trained 162 different models 

changing topology and training 
parameters


• 3-fold cross validation

Each node (executor) 
has two cores

100k events 
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Different tools that can 
be used to train the 

best model

Once the best model 
is found we can train it 

on the full dataset
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Full 
 dataset 



Single machine with 
24 physical cores and 

500GBs of RAM  
GPU NVidia GeForce 

GTX1080

Yarn Cluster used with 
22 executors, 6 cores 

each
+


Keras
+


Keras
+


BigDL

Training 
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• Three models: 

• Hardware and configs (at present) available for the 
training:

i. High Level Feature (HLF) classifier  
ii. Particle-sequence classifier  
iii. Inclusive classifier



Throughput Measurements
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• BigDL + Spark on CPU performs and scales well for 
recurrent NN and deep NN.

Logarithmic 
scale!



BigDL Scales
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• Experiments changing the number of executors 
and cores per executor (HLF classifier)



Results
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• Trained models with BigDL on the Undersampled dataset 
(Equal number of events for each class) ~ 4M events



Results

!16

Compatible with results 
 presented in the paper

• Trained models with BigDL on the Undersampled dataset 
(Equal number of events for each class) ~ 4M events



Conclusions
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• Created an End-to-End scalable machine learning 
pipeline using Apache Spark and industry standard 
tools 

• Python & Spark allow to distribute computation in a 
simple way 

• BigDL easy to use, API similar to Keras 

• Interactive analysis using Notebooks connected to 
Spark 

• Easy to share and collaborate



Further work
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• Spark works well for Data Ingestion and Feature Preparation 

• There is still room for improvement: with simple changes to 
the code it is possible to halve the time required for the 
feature preparation 

• Test different tools and frameworks for the Training  

• multiple GPUs  

• Distributed Tensorflow, Kuberflow etc. 

• The next step is the Model Serving stage: 

• After training the model we can use it to do inference on 
streaming data 
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Training Time 
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Classifier
Keras 

Throughput 
(records/s)

GPU throughput 
(records /s)

BDL Throughput 
(records / s )

Time to train 
one epoch with 

BDL (s)

HLF 17500 8700 60000 66

Particle-
sequence 60 950 5200 770

Inclusive 60 942 5200 770


