FNAL Column Analysis Tools

Lindsey / Nick

12 December 2018

What is this package?

- It's a prototyping area for tools to use in the columnar analysis pattern
 - Typically biased towards the "striped" database implemented by Igor Mandrichenko
 - i.e. you get a 20000xN_cols chunk of data as numpy arrays and are tasked to process it as accurately and quickly as possible
 - Heavy use of awkward array from Jim Pivarski
 - Allows expressive/compact representation of data and operations upon it
 - Try to make things as close to "standard" analysis as possible, just no loops
 - Use lightweight wrappers where needed to make operations on data expressive to a physicist
 - Large suite of tools for doing corrections typical to analysis
 - Scale factor and smearing lookups from root, json, b-tag csv, JEC,
 JER (last two are work-in-progress)

Example: Z-peak with Scale Factors

- https://github.com/lgray/CoffeaMaker/blob/master/zpeak_lg.ipynb
 - Selected electron and muon Z candidates, trigger match (optional), plot results with scale factors
 - 100kHz per stripe, ~10 MHz with all workers
 - Sufficiently fast for a reasonably complex selection

```
electronCols = PhysicalColumnGroup(events, "Electron", "p4", "charge", "tightID")
electrons new = jaggedFromColumnGroup(electronCols)
muonCols = PhysicalColumnGroup(events, "Muon", "p4", "charge", "tightID")
muons new = jaggedFromColumnGroup(muonCols)
electrons new['SF'] = weights eval["eleScaleFactor TightId POG"](electrons new.eta,
                                                                   electrons new.pt)
muons new['SF'] = weights eval["muScaleFactor TightId Iso"](np.absolute(muons new.eta),
                                                              muons new.pt)
electrons trig = electrons new#[events triggered]
muons trig = muons new#[events triggered]
electron selection = ( (electrons trig.pt > 20) &
                        (np.abs(electrons trig.eta) < 2.5) ₺
                        (electrons trig.tightID > 0) )
muon_selection = ( (muons_trig.pt > 20) &
                    (np.abs(muons trig.eta) < 2.4) ₺</pre>
                    (muons trig.tightID > 0) )
```


How do you get this package?

- pip install fnal-column-analysis-tools
- import fnal_column_analysis_tools
 - Three sub-packages:
 - lookup_tools : read in and apply scale factors / etc.
 - analysis_objects: wrapper for turning groups of numpy columns into analysis objects
 - striped : small conversion / management layer for getting data from striped

Current Status of Lookup Tools (dev6)

- In fnal-column-analysis-tools you can read in:
 - Histograms in json and root file formats
 - Evaluation of histogram lookup runs at 50 MHz
 - Over/underflows are clamped to the highest/lowest bin
 - b-tagging scale factors from BTV csv files
 - Evaluation runs at ~2 MHz due to hitting a python loop
 - Working on fixing this, performance should improve drastically

histogram lookup

btagSF lookup

```
In [7]: print(eta.size)
a = {}
a["out"] = weights_eval['CSVv2_0_comb_central_0'](np.abs(eta), pt, x)
%timeit a["out"] = weights_eval['CSVv2_0_comb_central_0'](np.abs(eta), pt, x)

1000000
1 loop, best of 3: 444 ms per loop
```


What's in Development?

- JEC calculation/application
 - Waiting on new version of awkward-array
 - Need to have numpy-like indexing trick to make extracting list of corrected jet energies straightforward
 - Implementation mostly using numpy, should be fast
- Integrate awkward v0.7 features into candidate
 - Nested pairs for generator and cross-cleaning matching
 - Wrap into more user-friendly functions