

Pseudo-Goldstone Dark Matter in the \mathbb{Z}_3 Scalar Singlet Model

Kristjan Kannike

NICPB, Estonia

K.K., Kaius Loos, Martti Raidal

Helsinki, Non-Minimal Higgs ♦ May 28, 2019

- 2 Dark Matter Exists...
 - Dark matter constitutes 27% of the energy content of the Universe
 - Plenty of evidence: rotation curves of galaxies, the CMB, cosmological large scale structure, Bullet Cluster

...But Has Not Been Detected

Xenon1T Collaboration, arXiv:1805.12562

3

4 Motivation

- Direct detection puts strong bounds on usual WIMP dark matter
- Is there something else or does the WIMP still work?
- Pseudo-Goldstone dark matter produces a negligible direct detection signal Gross, Lebedev, Toma, arXiv:1708.02253
- Can it produce gravitational wave signals via first-order cosmic phase transitions?

5 Pseudo-Goldstone Dark Matter

- Higgs boson H and complex singlet S
- *V* is invariant under U(1) symmetry $S \rightarrow e^{i\alpha}S$, broken only softly
- Breaking U(1) by a vacuum expectation value for s produces a pseudo-Goldstone particle

Gross, Lebedev, Toma, arXiv:1708.02253

Lots of phenomenological interest

Alanne, Heikinheimo, Keus, Koivunen, Tuominen, arXiv:1812.05996; Huitu, Koivunen, Lebedev, Mondal, Toma, arXiv:1812.05952

6 Pseudo-Goldstone Dark Matter $v = v_0 + v_{soft}$

with

$$egin{aligned} V_0 &= rac{1}{2} \mu_H^2 |H|^2 + rac{1}{2} \mu_S^2 |S|^2 + rac{1}{2} \lambda_H |H|^4 \ &+ rac{1}{2} \lambda_{HS} |H|^2 |S|^2 + rac{1}{2} \lambda_S |S|^4 \end{aligned}$$

• For explicit $U(1) \to \mathbb{Z}_2$ breaking,

$$V_{\rm soft} = \frac{1}{4} \mu_S^{\prime 2} (S^2 + S^{*2})$$

Gross, Lebedev, Toma, arXiv:1708.02253

This \mathbb{Z}_2 is $S \to -S$ Another \mathbb{Z}_2 symmetry: $S \to S^{\dagger}$

7 Pseudo-Goldstone Dark Matter

In our vacuum, we decompose the fields as

$$S = rac{v_s + s + i\chi}{\sqrt{2}}, \quad H = \begin{pmatrix} 0 \\ rac{v_h + h}{\sqrt{2}} \end{pmatrix}$$

- \mathbb{Z}_2 symmetry $S \to S^{\dagger}$ the same as $\chi \to -\chi$
- Pseudo-Goldstone χ is dark matter
- h and s mix into $h_1 \equiv h_{\rm SM}$ and h_2
- $v_h \equiv v = 246.22 \text{ GeV}, m_1 = m_h = 125.09 \text{ GeV}$

$$\propto \sin\theta\cos\theta\left(rac{m_2^2}{t-m_2^2}-rac{m_1^2}{t-m_1^2}
ight)\simeq 0$$

- Dark matter *x* interacts with SM particles *only* via *h*₁ and *h*₂
- Amplitude suppressed by small transfer momentum t

9 Direct Detection

- Amplitude suppressed by small transfer momentum t
- Small contribution at one-loop level Ishiwata & Toma, arXiv:1810.08139;

Azevedo, Duch, Grzadkowski, Huang, Iglicki, Santos, arXiv:1810.06105

10 Pseudo-Goldstone Dark Matter

 In the original pseudo-Goldstone dark matter model, all phase transitions are *second*-order

II \mathbb{Z}_3 Complex Scalar Singlet Model The scalar potential

$$V = \mu_H^2 |H|^2 + \lambda_H |H|^4 + \mu_S^2 |S|^2 + \lambda_S |S|^4 + \lambda_{SH} |S|^2 |H|^2 + \frac{\mu_3}{2} (S^3 + S^{\dagger 3})$$

is invariant under the \mathbb{Z}_3 transformation

• The Higgs doublet $H \to H$

•
$$S \rightarrow e^{i2\pi/3}S$$

and also under $S \to S^{\dagger}$

• Explicit breaking $U(1) \rightarrow \mathbb{Z}_3$

Ma, arXiv:0708.3371; Bélangèr, K.K., Pukhov, Raidal, arXiv:1211.1014; Arcadi, Queiroz & Siqueira, arXiv:1706.02336; Cai & Spray, arXiv:1807.00832; Hektor, Hryczyk, K.K., arXiv:1901.08074

12 \mathbb{Z}_3 Complex Scalar Singlet Model

- Two phases that produce a dark matter candidate
- Z₃ symmetry stabilises
 S as a dark matter candidate
- If Z₃ is broken, the S → S[†] symmetry still stabilises the imaginary part χ of S

13 Phenomenology with Unbroken \mathbb{Z}_3

14 Direct Detection with Unbroken \mathbb{Z}_3

Hektor, Hryczyk, K.K., arXiv:1901.08074

15 Minima & Masses

The stationary point conditions are

$$h(2\lambda_{H}h^{2}+2\mu_{H}^{2}+\lambda_{SH}s^{2})=0,$$

 $s(4\lambda_{S}s^{2}+3\sqrt{2}\mu_{3}s+4\mu_{S}^{2}+2\lambda_{SH}h^{2})=0$

- Fully symmetric (0, 0)
- EW-symmetry-breaking $(v_h, 0)$
- U(1)-breaking $(0, v_s)$
- Mixed (v_h, v_s)

16 Minimum & Masses

- h and s mix into $h_1 \equiv h_{\rm SM}$ and h_2
- $v_h \equiv v = 246.22 \text{ GeV}, m_1 = m_h = 125.09 \text{ GeV}$
- The mass of the pseudoscalar χ is

$$m_{\chi}^2 = -\frac{9}{2\sqrt{2}}\mu_3 v_s$$

17 Constraints

- Unitarity & perturbativity
- Vacuum stability
- Globality of the (v_h, v_s) vacuum

Planck Collaboration, arXiv:1807.06209

- Higgs invisible $BR_{inv} < 0.17$ from $h_1 \rightarrow \chi \chi$ and $h_1 \rightarrow h_2 h_2$
- Mixing angle of h and s
 $|\sin \theta| < 0.5$ for $m_2 < m_1$ and
 $|\sin \theta| < 0.36$ for $m_2 > m_1$

Robens 🖉 Stefaniak, arXiv:1601.07880

18 Globality of the (v_h, v_s) Vacuum

Globality of the (v_h, v_s) vacuum implies that

$$m_{\chi}^2 < rac{9m_1^2m_2^2}{m_1^2\cos^2 heta + m_2^2\sin^2 heta}$$

For $\sin \theta \approx 0, m_{\chi} \lesssim 3m_2$

19 Thermal Corrections

In the high temperature approximation, the mass terms acquire thermal corrections:

$$\mu_{H}^{2}(T) = \mu_{H}^{2} + c_{H}T^{2}, \quad \mu_{S}^{2}(T) = \mu_{H}^{2} + c_{S}T^{2}$$

with the coefficients

$$egin{aligned} c_{H} &= rac{1}{48}(9g^2+3g'^2+12y_t^2+24\lambda_{H}+4\lambda_{SH}),\ c_{S} &= rac{1}{6}(2\lambda_{S}+\lambda_{SH}) \end{aligned}$$

20 Parameter Space Scan

- Free parameters m_{χ} , m_2 , $\sin \theta$ and v_s
- Fix v_s by relic density
- $m_{\chi} \in [25, 1000] \text{ GeV}$
- $m_2 \in [25, 4000]$ GeV
- $\sin \theta \in [-0.5, 0.5]$ GeV
- We use micrOMEGAs for relic density and CosmoTransitions for phase transitions

21 Phenomenology with *Broken* \mathbb{Z}_3

direct detection

m₂ = 250 GeV, sin θ = 0.2
 Resonances at m_h/2 and m₂/2

23 Direct Detection

• $\sigma_{\rm SI}$ roughly proportional to μ_3

• Largest signals due to the $(0, 0) \rightarrow (v_h, v_s)$ transition

25 Conclusions

- Direct detection puts strong bounds on WIMP dark matter
- Pseudo-Goldstone dark matter has a suppressed direct detection cross section
- Z₃ pseudo-Goldstone model has first-order phase transitions and can produce a potentially measurable stochastic gravitational wave background