Multi-Higgs solution to flavor anomalies and implications for neutrino physics

Martti Raidal

NICPB, Tallinn

arXiv:1805.08189 arXiv:1901.08290

Carlo Marzo, Luca Marzola

27.05.2019

The R_D and R_K - before Moriond 2019

•
$$\mathbf{R}_{\mathbf{D}}$$
 $R_{D^{(*)}} = \frac{\mathcal{B}(\bar{B} \to D^{(*)}\tau\bar{\nu})}{\mathcal{B}(\bar{B} \to D^{(*)}\ell\bar{\nu})}$

 $\begin{array}{rcl} {\cal R}_D^{\rm SM} & = & 0.300 \pm 0.008 \,, & {\cal R}_D^{\rm exp} & = & 0.407 \pm 0.039 \pm 0.024 \,, \\ {\cal R}_{D^*}^{\rm SM} & = & 0.252 \pm 0.003 \,, & {\cal R}_{D^*}^{\rm exp} & = & 0.306 \pm 0.013 \pm 0.007 \,, \end{array}$

Several $\sim 2\sigma$ deviations by BaBar, Belle, LHCb combine to a 4.1 σ anomaly

The R_D and R_K - after Moriond 2019

• R_D by Belle

 $\mathcal{R}_D^{\text{Belle}} = 0.307 \pm 0.037 \pm 0.016$ and $\mathcal{R}_{D^*}^{\text{Belle}} = 0.283 \pm 0.018 \pm 0.014$, 1.2 σ dev.

• R_{K} by LHCb and $R_{K^{*}}$ by Belle

$$R_{K} = \frac{\text{BR}(B \to K\mu\mu)}{\text{BR}(B \to Kee)} = 0.846 \stackrel{+0.060}{_{-0.054}} \stackrel{+0.016}{_{-0.014}}, \quad \text{for } 1.1 \,\text{GeV}^2 < q^2 < 6 \,\text{GeV}^2, \ 2.5\sigma \text{ dev.}$$

$$R_{K^*} = \frac{\text{BR}(B \to K^*\mu\mu)}{\text{BR}(B \to K^*ee)} = \begin{cases} 0.90 \stackrel{+0.27}{_{-0.21}} \pm 0.10, & \text{for } 0.1 \,\text{GeV}^2 < q^2 < 8 \,\text{GeV}^2, \\ 1.18 \stackrel{+0.52}{_{-0.32}} \pm 0.10, & \text{for } 15 \,\text{GeV}^2 < q^2 < 19 \,\text{GeV}^2. \end{cases}$$

• The overall picture has not changed much. The significance has been mildly reduced, the same NP explanations are valid.

The peculiar properties of the anomalies require an explanation W Leptonic Branching Ratios ALEPH DELPHI

- Lepton flavor universality violation!
 - In the SM this refers to the scalar sector interactions.

- Very different scales of new physics
 - R_D NP competes with tree level SM amplitude requires 1 TeV scale NP + large coupling
 - R_K NP competes with loop level SM amplitude requires 10 TeV scale NP

Is a common NP explanation needed and possible?

Should we work on anomalies?

Should we work on anomalies? We do not have a choice!

Every discovery is preceded by a deviation but the opposite is not true

Remain reasonable with interpretations, use your common sense

Is a common NP explanation possible?

• Need NP with many freely adjustable parameters

 Majority of flavor physics community has adopted leptoquark explanation to the anomalies

Extraordinary claim requires extraordinary evidence

What is my interest to the anomalies?

- To show that non-exotic, ``SM-like NP" can simultaneously fit data
- To show that models with many scalars can fit the data
- To determine the minimal scalar model that can explain both observables

Notice: we do allow for GeV scale right-handed neutrinos – new interactions available

Model independent explanations to the anomalies

$$\begin{split} \mathcal{L}_{eff}^{b \to c \ell \bar{\nu}} &= \frac{2G_F V_{cb}}{\sqrt{2}} \left(C_{VL}^{\ell} \mathcal{O}_{VL}^{\ell} + C_{AL}^{\ell} \mathcal{O}_{AL}^{\ell} + C_{SL}^{\ell} \mathcal{O}_{PL}^{\ell} + C_{VR}^{\ell} \mathcal{O}_{VR}^{\ell} \right) \\ &+ C_{AR}^{\ell} \mathcal{O}_{AR}^{\ell} + C_{SR}^{\ell} \mathcal{O}_{SR}^{\ell} + C_{PR}^{\ell} \mathcal{O}_{PR}^{\ell} \right) , \\ \mathcal{O}_{VX}^{\ell} &= [\bar{c}\gamma^{\mu}b] \left[\bar{\ell}\gamma_{\mu}P_{X}\nu_{\ell} \right] , \\ \mathcal{O}_{AX}^{\ell} &= [\bar{c}\gamma^{\mu}\gamma_{5}b] \left[\bar{\ell}\gamma_{\mu}P_{X}\nu_{\ell} \right] \\ \mathcal{O}_{SX}^{\ell} &= [\bar{c}b] \left[\bar{\ell}P_{X}\nu_{\ell} \right] , \\ \mathcal{O}_{PX}^{\ell} &= [\bar{c}\gamma_{5}b] \left[\bar{\ell}P_{X}\nu_{\ell} \right] , \\ \mathcal{O}_{PX}^{\ell} &= [\bar{$$

$$C_{VL} = -C_{AL} = 1.$$
 $C_9 - C_9^{SM} \simeq -1.21 \text{ or } C_9 - C_9^{SM} = -(C_{10} - C_{10}^{SM}) \simeq -0.67$

0. Vector (or axial vector) operators are strongly favoured by global fits to data in both cases1. Small fraction of scalar contribution improves the global fit

27.05.2019

R_D model independently

- Scalar operators strongly constrained by B_c lifetime allowing 10% (30%) deviations
- Vector operators are OK

27.05.2019

New RH interactions Enhancement by light, GeV mass RHNs

Does 2HDM+v_R work?

27.05.2019

$$\begin{array}{c} \textbf{3HDM+v}_{R} \\ \textbf{H}_{0} = \left(\begin{array}{c} \textbf{H}_{0}^{+} \\ \textbf{H}_{0}^{0} \end{array} \right), \ \textbf{H}_{1} = \left(\begin{array}{c} \textbf{H}_{1}^{+} \\ \textbf{H}_{1}^{0} \end{array} \right), \ \textbf{H}_{2} = \left(\begin{array}{c} \textbf{H}_{2}^{+} \\ \textbf{H}_{2}^{0} \end{array} \right) \end{array}$$

 $-\mathcal{L} \supset \bar{Q}_L \tilde{H}_1 \mathcal{Y}_1^u u_R + \bar{Q}_L \tilde{H}_2 \mathcal{Y}_2^u u_R + \bar{L}_L H_1 \mathcal{Y}_1^\ell \ell_R + \bar{L}_L H_2 \mathcal{Y}_2^\ell \ell_R + \bar{L}_L \tilde{H}_1 \mathcal{Y}_1^\nu \nu_R + \bar{L}_L \tilde{H}_2 \mathcal{Y}_2^\nu \nu_R + \bar{Q}_L H_1 \mathcal{Y}_1^d d_R + h.c.$

$$\mathcal{Y}_{1}^{\nu} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & f_{\bar{c}_{L}t_{R}} \\ 0 & f_{\bar{b}_{L}c_{R}} & 0 \end{pmatrix}, \quad \mathcal{Y}_{1}^{d} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & f_{\bar{c}_{L}b_{R}} \\ 0 & 0 & 0 \end{pmatrix}, \quad \mathcal{Y}_{2}^{\nu} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & g_{\bar{b}_{L}t_{R}} \end{pmatrix},$$

$$\mathcal{Y}_{1}^{\nu} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & f_{\bar{\nu}_{L}\nu_{R}} & 0 \\ 0 & 0 & f_{\bar{\nu}_{L}\nu_{R}} \end{pmatrix}, \quad \mathcal{Y}_{1}^{\ell} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & f_{\bar{\tau}_{L}\tau_{R}} \end{pmatrix}, \quad \mathcal{Y}_{2}^{\nu} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & g_{\bar{\nu}_{L}\nu_{R}} & 0 \\ 0 & 0 & g_{\bar{\nu}_{L}\nu_{R}} \end{pmatrix}, \quad \mathcal{Y}_{2}^{\ell} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & g_{\bar{\nu}_{L}\tau_{R}} \end{pmatrix}, \quad \mathcal{Y}_{2}^{\ell} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & g_{\bar{\nu}_{L}\tau_{R}} \end{pmatrix},$$

Textures constructed to fit all observables simultaneously consistently with constraints

27.05.2019

R_D in our model

Must be maximized

Must be minimized

We require that all existing exp. constraints are satisfied

Benchmark points for R_D and vector operators

Benchmark points for R_D and scalar operators

The related Yukawa couplings must be small

27.05.2019

R_K in our model

Is needed to explain the R_{K} anomaly

Can R_K be explained simultaneously? Yes!

• Couplings inducing R_{K} enter to denominator of $R_{D^{(*)}} = \frac{\mathcal{B}(\bar{B} \to D^{(*)}\tau\bar{\nu})}{\mathcal{B}(\bar{B} \to D^{(*)}\ell\bar{\nu})}$

Any correlation is numerically small

ε'/ε anomaly?

 $Re(\epsilon'/\epsilon) = 1.38(5.15)(4.59) \times 10^{-4}$, $Re(\epsilon'/\epsilon)_{exp} = (16.6 \pm 2.3) \times 10^{-4}$.

If there is an anomaly, no problem to explain it simultaneously with others. There is enough free parameters.

$$Re\left(\epsilon'/\epsilon
ight)_{8g}\sim-\left(1.85 imes10^{5}GeV
ight) imes Im\left(C_{8g}^{-}
ight)$$
 ,

$$C_{8g}^{-} = -\frac{G_F}{\sqrt{2}} V_{ts}^* V_{td} \left(m_d C_{8g}' - m_s C_{8g} \right) \; .$$

ε'/ε anomaly in our model

Distinctive prediction of the scenario

• RH neutrino masses must be below 10 GeV

 $m_{vR} < 10 \text{ GeV}$

- Flavour anomalies are related to the leptogenesis and neutrino masses
- v_R can be produced and discovered at SHIP

This scenario is predictive and testable

Conclusions

- All the considered flavor anomalies can be simultaneously explained in $3HDM + v_{R}$
- RH neutrinos must be light, induce baryogenesis and neutrino masses, and may show up at SHIP experiment