Beam Instrumentation and Diagnostics (Lecture 1)

CAS 2019

Slangerup, Denmark

9th – 21st June, 2019

Dr. Rhodri Jones

Head of the CERN Beam Instrumentation Group
Introduction

• What do we mean by beam instrumentation?
 – The “eyes” of the machine operators
 • i.e. the instruments that observe beam behaviour
 • An accelerator can never be better than the instruments measuring its performance!

• What does work in beam instrumentation entail?
 – Design, construction & operation of instruments to observe particle beams
 – R&D to find new or improve existing techniques to fulfill new requirements
 – A combination of the following disciplines
 • Applied & Accelerator Physics; Mechanical, Electronic & Software Engineering

• What beam parameters do we measure?
 – Beam Position
 • Horizontal and vertical throughout the accelerator
 • At a specific location for tune, coupling & chromaticity measurements
 – Beam Intensity (& lifetime measurement for a storage ring/collider)
 • Bunch-by-bunch charge and total circulating current
 – Beam Loss
 • Especially important for high brightness and superconducting machines
 – Beam profiles
 • Transverse and longitudinal distribution
What is meant by Beam Diagnostics?

- Beam Diagnostics
 - Making use of beam instrumentation

What do we consider as beam diagnostics?

- Operating the accelerators
 - Using instrumentation to measure and correct standard parameters
 - Orbit, tune, chromaticity control etc.

- Improving the performance of the accelerators
 - Understanding current performance to allow future improvements
 - Requires the measurement of performance indicators
 - Luminosity, brilliance (intensity and size) etc.

- Understanding accelerator limitations
 - Beam loss, instabilities, emittance growth etc.

- Detecting equipment faults
 - Aperture restrictions, polarity inversions, wrong settings etc.
How do we Qualify Beam Measurements?

- **Accuracy, Precision, Resolution**
 - Very often confused in day-to-day language
 - **Accuracy** – also known as the trueness of a measurement
 - **Precision** – how well a measurement can be reproduced
 - **Resolution** – the smallest possible difference measurable

<table>
<thead>
<tr>
<th>Accurate</th>
<th>Inaccurate (systematic error)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precise</td>
<td></td>
</tr>
<tr>
<td>Imprecise (reproducibility error)</td>
<td></td>
</tr>
</tbody>
</table>

- **Example for a BPM**
 - Mechanical & electrical offsets and gain factors influence accuracy
 - Various noise sources or timing jitter influence the precision
 - Number of bits in the ADC will limit the resolution
Beam Position Systems
Measuring Beam Position – The Principle

[Diagram showing beam particles and detector elements]
Wall Current Monitor – The Principle
Wall Current Monitor – Beam Response

\[f_H = \frac{1}{2\pi RC} \]

\[f_L = \frac{R}{2\pi L} \]
Electrostatic Monitor – The Principle
Electrostatic Monitor – Beam Response

\[f_L = \frac{1}{2\pi RC} \]

Response (V) vs. Frequency (Hz) graph

Diagram showing a circuit with a capacitor (C) and resistor (R) connected to a voltage source \(V_B \) and an output voltage \(V \).
Electrostatic Beam Position Monitor
Electrostatic Monitor – The Principle
Electrostatic Pick-up – Button

✓ Low cost ⇒ most popular
× Non-linear
 • requires correction algorithm when beam is off-centre

For Button with Capacitance C_e & Characteristic Impedance R_0

Transfer Impedance:

$$Z_T(f >> f_c) = \frac{A}{(2\pi r) \times c \times C_e}$$

Lower Corner Frequency:

$$f_L = \frac{1}{2\pi R_0 C_e}$$
Normalising the Position Reading

- To make it independent of intensity
- 3 main methods: \(V_A \propto I \times P_A \) and \(V_B \propto I \times P_B \)
 - Difference/Sum: \(\frac{(V_A - V_B)}{(V_A + V_B)} = \frac{\Delta}{\Sigma} = \frac{(P_A - P_B)}{(P_A + P_B)} = \frac{\Delta P}{Aperture} \)
 - Phase: \(\text{ArcTan} \left(\frac{V_A}{V_B} \right) = \text{ArcTan} \left(\frac{P_A}{P_B} \right) \)
 - Logarithm: \(\log \left(\frac{V_A}{V_B} \right) = \log \left(\frac{P_A}{P_B} \right) = \log(V_A) - \log(V_B) \)
• BPM electrodes typically give “intensity signals” with some position dependence!
 – Need to remove intensity content to get to the position
 – Difficult to do electronically without some intensity information leaking through
 • When looking for small differences this leakage can dominate the measurement

• Solution – cavity BPM allowing sub micron resolution
 – Design the detector to collect only the difference signal
 • Dipole Mode \(\text{TM}_{11} \) proportional to POSITION OFFSET (& intensity)
 • Shifted in frequency with respect to intensity dependent Monopole Mode \(\text{TM}_{01} \)
Cavity Beam Position Monitors

Obtain signal using waveguides that only couple to dipole mode for further Monopole Suppression

Courtesy of D. Lipka, DESY, Hamburg
Today’s State of the Art BPMs

- **Prototype BPM for ILC Final Focus**
 - Required resolution of 2nm (yes nano!) in a 6×12mm diameter beam pipe
 - Achieved World Record (so far!) resolution of 8.7nm at ATF2 (KEK, Japan)

![Prototype BPM Image](image1)

![Prototype BPM Image](image2)

![Histogram Image](image3)
Comparison of BPM Resolution

- **XFEL Data from 2017 Commissioning**
 - Standard Button BPMs: 78 mm & 40.5 mm aperture (RED)
 - Re-entrant cavity BPMs: 78 mm aperture (GREEN)
 - Cavity BPMs: 40.5 mm and 10 mm aperture (BLUE)
Processing System Families

Legend:
- `/` = Single channel
- `Wide Band`
- `Narrow band`

- **Normaliser Processor**
- **Active Circuitry**

- **Electrodes A, B**
 - Multiplexed
 - Hybrid Δ / Σ
 - Individual Treatment
 - Passive Normalisation

- **Automatic Gain Control on Σ**

- **Functional Blocks:**
 - Heterodyne
 - Synchronous Detection
 - Homodyne Detection
 - Down Conversion
 - Direct Digitisation
 - Logarithmic Amplifiers
 - Differential Amplifier
 - Amplitude to Time
 - Limiter, Δt to Ampl.
 - Limiter, ϕ to Ampl.
 - Amplitude to Phase

- **DIGITISER**
 - POS = (A-B)
 - No turn by turn
 - POS = Δ / Σ

 | POS = Δ / Σ |
 | POS = Δ / Σ |
 | POS = $[\log(A/B)]$ |
 | POS = $[\log(A) - \log(B)]$ |
 | POS = $[A/B]$ |
 | POS = $[\text{ATN}(A/B)]$ |

- **Turn by turn**

All rely on normalisation
- Making the position signal independent of intensity
Modern BPM Read-out Electronics

• Based on the individual treatment of the electrode signals
 – Use of frequency domain signal processing techniques
 • Developed for telecommunications market
 – Rely on high frequency & high resolution analogue to digital converters
 • Minimising analogue circuitry
 • Frequency down-conversion used if necessary to adapt to ADC sampling rate
 • All further processing carried out in the subsequent digital electronics

A-Electrode Analogue Conditioning

B, C, D Channels treated the same as A
Diagnostics using Beam Position Systems
Initial Commissioning

- Threading the first pilot bunch round the LHC
 - One beam at a time, one hour per beam
 - Collimators used to intercept the beam
 - Correct trajectory, open collimator and move on

Courtesy of CMS

L1Calo Stream

first beam event seen in ATLAS

Courtesy of ATLAS
The Machine β-Function

$\beta (m)$

$\text{Beam Size} \propto \sqrt{\beta}$
The Machine β-Function

$\beta (m)$

π

θ

$-\pi$

Oscillation Amplitude and Beam Size $\propto \sqrt{\beta}$
The Machine β-Function

$$\beta_{\text{measured}} = \beta_{\text{model}} \left(\frac{\cot \varphi_{12} - \cot \varphi_{13}}{\cot \varphi_{12} - \cot \varphi_{13}} \right)_{\text{measured}}$$

BPM 1 BPM 2 BPM 3
Analysis of BPM Data

- On line analysis of BPM Data
 - Polarity errors easily identified with 45° BPM sampling
 - Quick indication of phase advance errors
 - Used to verify optics functions
 - e.g. matching from transfer lines into ring
Beam Intensity Monitors
AC (Fast) Current Transformers

Image Current

Core of high relative permeability

Ceramic Gap

Image Current

Beam

CoFe based amorphous alloy
Vitrovac: $\mu_r = 10^5$
AC (Fast) Current Transformers

\[I_{BCT} \]

\[V_{BCT} \]

Beam

\(B_B \)
AC (Fast) Transformer Response

- **Low cut-off**
 - Impedance of secondary winding decreases at low frequency
 - Results in signal droop and baseline shift
 - Mitigated by baseline restoration techniques (analogue or digital)
The DC transformer

- AC transformers can be extended to very low frequency but not to DC (no $\text{d}I/\text{d}t!$)
- DC measurement is required in storage rings
- To do this:
 - Take advantage of non-linear magnetisation curve
 - Use 2 identical cores modulated with opposite polarities
DCCT Principle – Case 1: no beam

Hysteresis loop of modulator cores

Modulation Current - Core 1
Modulation Current - Core 2
DCCT Principle – Case 1: no beam

\[V \propto \frac{dB}{dt} \]

\[dB/dt \text{ - Core 1 (V1)} \]
\[dB/dt \text{ - Core 2 (V2)} \]

Output voltage = \(V_1 - V_2 \)
DCCT Principle – Case 2: with beam

Beam Current I_B

- Output signal is at TWICE the modulation frequency
- dB/dt - Core 1 (V_1)
- dB/dt - Core 2 (V_2)
- Output voltage = $V_1 - V_2$
Zero Flux DCCT Schematic

\[V = R \times I_{\text{beam}} \]

Compensation current \(I_{\text{feedback}} = -I_{\text{beam}} \)
Diagnostics using Beam Intensity Monitors
Monitoring Electron Cloud Activity

- **Secondary Emission Yield [SEY]**
 - SEY > Threshold \(\Rightarrow\) avalanche effect (multipacting)

- **Possible consequences:**
 - Instabilities, emittance growth, vacuum degradation, background
 - Energy deposition in cryogenic surfaces

- **Electron bombardment can reduce SEY of a material**
 - A function of the delivered electron dose
 - This technique of “scrubbing” can suppress electron cloud build-up
Electron Cloud in LHC
- Electron cloud creates instability in tail of bunch trains
- Increases the size of the bunches towards the end of each bunch train
- Leads to losses for these bunches
- Adjustments made to counter this effect
 - Chromaticity
 - Transverse feedback
 - Beam scrubbing

Diagnostics
- LHC fast BCT
 - Allows bunch by bunch intensity measurement
- LHC Synchrotron Light Monitor
 - Gated intensified Camera
 - Allows bunch by bunch profile measurement
Bad RF Capture of a single LHC Batch in the SPS (72 bunches)
Beam Loss Monitors
Beam Loss Detectors

• **Role of a BLM system:**
 – Protect the machine from damage
 – Dump the beam to avoid magnet quenches (for superconducting magnets)
 – Diagnostic tool to improve the performance of the accelerator

• **E.g. LHC**

<table>
<thead>
<tr>
<th>Stored Energy</th>
<th>Quench and Damage at 7 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam 7 TeV</td>
<td>2 x 362 MJ</td>
</tr>
<tr>
<td></td>
<td>Quench level: (\approx 1 \text{mJ/cm}^3)</td>
</tr>
<tr>
<td></td>
<td>Damage level: (\approx 1 \text{ J/cm}^3)</td>
</tr>
</tbody>
</table>

- **SPS incident**
 – June 2008
 – 2 MJ beam lost at 400GeV
Beam Loss Detectors

• Common types of monitor
 – Long ionisation chamber (charge detection)
 • Up to several km of gas filled hollow coaxial cables
 • Position sensitivity achieved by comparing direct & reflected pulse
 – e.g. SLAC – 8m position resolution (30ns) over 3.5km cable length
 • Dynamic range of up to 10^4

 – Fibre optic monitors
 • Electrical signals replaced by light produced through Cerenkov effect
Beam Loss Detectors

- **Common types of monitor**
 - Ionisation chambers
 - Dynamic range of $< 10^8$
 - Slow response (μs) due to ion drift time

![Visualisation of ion chamber operation](image)
Beam Loss Detectors

• Common types of monitor
 – PIN photodiode (solid state ionisation chamber)
 • Detect coincidence of ionising particle crossing photodiodes
 • Count rate proportional to beam loss with speed limited by integration time
 • Can distinguish between X-rays & ionising particles
 • Dynamic range of up to 10^9
Beam Loss Detectors – New Materials

• **Diamond Detectors**
 - Fast & sensitive
 - Used in LHC to distinguish bunch by bunch losses
 - Investigations now ongoing to see if they can work in cryogenic conditions

Courtesy of E. Griesmayer
Diagnostics using Beam Loss Monitors
Example from Last LHC Run

- Beam continually lost due to losses
 - What is going on?

<table>
<thead>
<tr>
<th>24-Aug-2017 17:41:44</th>
<th>Fill #: 6128</th>
<th>Energy: 59 GeV</th>
<th>$l(B1): 0.00e+00$</th>
<th>$l(B2): 0.00e+00$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment Status</td>
<td>ATLAS</td>
<td>ALICE</td>
<td>CMS</td>
<td>LHCb</td>
</tr>
<tr>
<td>Instantaneous Lumi ($ub.s^{-1}$)</td>
<td>-0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>BRAN Luminosity ($ub.s^{-1}$)</td>
<td>0.6</td>
<td>0.0</td>
<td>2.3</td>
<td>0.0</td>
</tr>
<tr>
<td>Fill Luminosity (nb)$^{-1}$</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>540.173</td>
</tr>
<tr>
<td>Beam 1 BKGD</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Beam 2 BKGD</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

LHCb VELO Position: **OUT** Gap: -0.0 mm

Performance over the last 24 Hrs

Dump #1
5.9 TeV
RF issue

Dump #2
7 TeV

Dump #3
0.9 TeV

Dump #4
0.8 TeV
16L2 – First Event

• First beam dump event – as seen by the BLMs
 – Local aperture measurements did not reveal evident aperture restriction
 – Clear signature of losses from both beams
 • Both beams interacting with nuclei
BLM Diagnostics

- Time evolution of Losses

![BLM Diagnostics Graph](image-url)
Looking for constant losses

- Installation of additional BLMs!
 - Factor 15 improvement in sensitivity
BLM Diagnostics

- **Localisation**
 - BLM Spatial patterns clearly show losses originate from one specific interconnection
 - MQ16L2 (Cell 16 left of LHC Point 2)
 - Localisation possible to within 1m comparing with simulation
 - Losses can be on either beam
Additional Observations

- Beam not always dumped by BLMs in 16L2
 - Often dumped by BLMs near primary collimators
 - Indicating development of transverse instability

Losses at BLM

12 ms

Bunch by bunch position

Intra-bunch position
Head-Tail Instability Monitor

- Clearly shows instability in tail of bunch
 - Allowed simulations to try and re-create similar instability
 - Achieved when considering a large density of electrons over a short distance
 - Compatible with an ionised gas cloud

Measurement from head-tail monitor

Simulation
16L2 - Hypothesis

- **Something went wrong during vacuum pumpdown**
 - Air trapped on beam screen & cold bore of both beams
 - Solid nitrogen & oxygen formed
 - Falls into the beam & immediately vaporised
 - Creates local pressure rise with beam interaction producing ionized gas cloud
 - Leads to losses & beam instability
Summary of Lecture 1

• Today concentrated on beam position, intensity & loss monitors
 – Went into details of how they worked
 – Gave examples of their use as diagnostic tools

• Tomorrow we’ll continue with a look at
 – Beam profile monitoring & diagnostics
 – Tune, Coupling & Chromaticity measurement & feedback

For those that want to know more then I hope you’ve joined the Beam Instrumentation Afternoon Course!

• 3 Sessions on BPM design
 – Simulation software & “hands-on” laboratory measurements

• 1 Session on Tune Measurement
 – Simulate your own tune measurement system

• 2 Sessions on Profile Measurements
 – “Hands-on” laboratory measurements of transverse & longitudinal profile

• Final Session
 – Group presentation of your BI proposals for an accelerator