
A
n

a
ly

s
is

 t
e

c
h
n

iq
u

e
s
, 
C

E
R

N
 A

c
c
e

le
ra

to
r 

S
c
h

o
o

l,
 J

u
n
e

 2
0
1

9

1

Non Linear Dynamics -

Phenomenology
Yannis PAPAPHILIPPOU

Accelerator and Beam Physics group

Beams Department

CERN Accelerator School

Advanced Accelerator Physics Course 2019

Konferencecenter Metalskolen Jørlunde, Slangerup, Denmark

9-21 June 2017



A
n

a
ly

s
is

 t
e

c
h
n

iq
u

e
s
, 
C

E
R

N
 A

c
c
e

le
ra

to
r 

S
c
h

o
o

l,
 J

u
n
e

 2
0
1

9

2

Summary
Phase space dynamics – fixed point analysis

Poincaré map

Motion close to a resonance

Onset of chaos

Chaos detection methods

Dynamic Aperture

Lyapunov exponent

Frequency map analysis

Numerical applications
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Phase space dynamics

- Fixed point analysis
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Phase space dynamics

 Valuable description when examining 

trajectories in phase space 

 Existence of integral of motion imposes 

geometrical constraints on phase flow

 For the simple harmonic oscillator     

phase space curves are ellipses around  

the equilibrium point parameterized by the 

Hamiltonian (energy)
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Phase space dynamics

 Valuable description when examining 

trajectories in phase space 

 Existence of integral of motion imposes 

geometrical constraints on phase flow

 For the simple harmonic oscillator     

phase space curves are ellipses around  

the equilibrium point parameterized by the 

Hamiltonian (energy)

 By simply changing the sign of the 

potential in the harmonic oscillator, the 

phase trajectories become hyperbolas, 

symmetric around the equilibrium point 

where two straight lines cross, moving 

towards and away from it
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Non-linear oscillators

 Conservative non-linear oscillators have Hamiltonian                                

with the potential being a general (polynomial) function of positions

 Equilibrium points are associated with extrema of the potential
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Non-linear oscillators

 Conservative non-linear oscillators have Hamiltonian                                

with the potential being a general (polynomial) function of positions

 Equilibrium points are associated with extrema of the potential

 Considering three non-linear oscillators

 Quartic potential (left): two minima and one maximum

 Cubic potential (center): one minimum and one maximum

 Pendulum (right): periodic minima and maxima



A
n

a
ly

s
is

 t
e

c
h
n

iq
u

e
s
, 
C

E
R

N
 A

c
c
e

le
ra

to
r 

S
c
h

o
o

l,
 J

u
n
e

 2
0
1

9

8

Fixed point analysis

 Consider a general second order system 

 Equilibrium or “fixed” points                                            are 

determinant for topology of trajectories at their vicinity
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Fixed point analysis

 Consider a general second order system 

 Equilibrium or “fixed” points                                            are 

determinant for topology of trajectories at their vicinity

 The linearized equations of motion at their vicinity are

 Fixed point nature is revealed by eigenvalues of         , i.e. 

solutions of the characteristic polynomial  

Jacobian matrix
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Fixed point for conservative systems

 For conservative systems of 1 degree of freedom, the 

second order characteristic polynomial for any fixed point has 

two possible solutions:

 Two complex eigenvalues with opposite sign, corresponding to 

elliptic fixed points. Phase space flow is described by ellipses, with 

particles evolving clockwise or anti-clockwise

elliptic
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Fixed point for conservative systems

 For conservative systems of 1 degree of freedom, the 

second order characteristic polynomial for any fixed point has 

two possible solutions:

 Two complex eigenvalues with opposite sign, corresponding to 

elliptic fixed points. Phase space flow is described by ellipses, with 

particles evolving clockwise or anti-clockwise

 Two real eigenvalues with opposite sign, corresponding to 

hyperbolic (or saddle) fixed points. Flow described by two lines (or 

manifolds), incoming (stable) and outgoing (unstable)

elliptic
hyperbolic
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Pendulum fixed point analysis
 The “fixed” points for a pendulum can be found at 

 The Jacobian matrix is 

 The eigenvalues are



A
n

a
ly

s
is

 t
e

c
h
n

iq
u

e
s
, 
C

E
R

N
 A

c
c
e

le
ra

to
r 

S
c
h

o
o

l,
 J

u
n
e

 2
0
1

9

13

Pendulum fixed point analysis
 The “fixed” points for a pendulum can be found at 

 The Jacobian matrix is 

 The eigenvalues are

 Two cases can be distinguished: 

 , for which

corresponding to elliptic fixed points

elliptic
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elliptic

Pendulum fixed point analysis
 The “fixed” points for a pendulum can be found at 

 The Jacobian matrix is 

 The eigenvalues are

 Two cases can be distinguished: 

 , for which

corresponding to elliptic fixed points 

 , for which

corresponding to hyperbolic fixed points

 The separatrix are the stable and unstable  

manifolds through the hyperbolic points,     

separating bounded librations and unbounded rotations

hyperbolic
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Phase space for time-dependent systems

 Consider now a simple harmonic oscillator 

where the frequency is time-dependent 

 Plotting the evolution in phase space, provides 

trajectories that intersect each other 

 The phase space has time as extra dimension
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Phase space for time-dependent systems

 Consider now a simple harmonic oscillator 

where the frequency is time-dependent 

 Plotting the evolution in phase space, provides 

trajectories that intersect each other 

 The phase space has time as extra dimension

 By rescaling the time to become and 

considering every integer interval of the new

“time” variable, the phase space looks like the 

one of the harmonic oscillator 

 This is the simplest version of a Poincaré

surface of section, which is useful for studying 

geometrically phase space of multi-dimensional 

systems
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Phase space for time-dependent systems

 Consider now a simple harmonic oscillator 

where the frequency is time-dependent 

 Plotting the evolution in phase space, provides 

trajectories that intersect each other 

 The phase space has time as extra dimension

 By rescaling the time to become and 

considering every integer interval of the new

“time” variable, the phase space looks like the 

one of the harmonic oscillator 

 This is the simplest version of a Poincaré

surface of section, which is useful for studying 

geometrically phase space of multi-dimensional 

systems

 The fixed point in the surface of section is now 

a periodic orbit
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Poincaré map
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 First recurrence or Poincaré map 

(or surface of section) is defined by the 

intersection of trajectories of a dynamical 

system, with a fixed surface in phase space

Poincaré map 
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 First recurrence or Poincaré map 

(or surface of section) is defined by the 

intersection of trajectories of a dynamical 

system, with a fixed surface in phase space

 For an autonomous Hamiltonian system 

(no explicit time dependence), it can be chosen to be 

any fixed surface in phase space, e.g.

 For a non-autonomous Hamiltonian system 

(explicit time dependence), which is periodic, it can be 

chosen as the period 

Poincaré map 
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 First recurrence or Poincaré map 

(or surface of section) is defined by the 

intersection of trajectories of a dynamical 

system, with a fixed surface in phase space

 For an autonomous Hamiltonian system 

(no explicit time dependence), it can be chosen to be 

any fixed surface in phase space, e.g.

 For a non-autonomous Hamiltonian system 

(explicit time dependence), which is periodic, it can be 

chosen as the period 

 In a system with degrees of freedom (or

including time), the phase space has           

(or ) dimensions 

 By fixing the value of the Hamiltonian to , the 

motion on a Poincaré map is reduced to           

(or )

Poincaré map 
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 Particularly useful for a system with 2 degrees of freedom, or 

1 degree of freedom + time, as the motion on Poincaré map is 

described by 2-dimensional curves

 For continuous system, numerical techniques exist to 

compute the surface exactly (e.g. M.Henon Physica D 5, 1982)

Poincaré map 
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 Particularly useful for a system with 2 degrees of freedom, or 

1 degree of freedom + time, as the motion on Poincaré map is 

described by 2-dimensional curves

 For continuous system, numerical techniques exist to 

compute the surface exactly (e.g. M.Henon Physica D 5, 1982)

 Example from Astronomy: the logarithmic galactic potential

Poincaré map 
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 Record the particle coordinates at 

one location in a ring

 Unperturbed motion lies on a circle in 

normalized coordinates (simple rotation)

Poincaré Section for a ring
Poincaré Section:

y

x

s

U

U '

f U

U '

turn

3

12
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 Record the particle coordinates at 

one location in a ring

 Unperturbed motion lies on a circle in 

normalized coordinates (simple rotation)

 Resonance condition corresponds to 

a periodic orbit or fixed points in phase 

space 

 For a non-linear kick, the radius will 

change by and the particles 

stop lying on circles

Poincaré Section for a ring

U

U '

f

Poincaré Section:

y

x

s

U

U '

2pn0

U

U '

turn

3

12
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 Simple map with single 

octupole kick with integrated 

strength       + rotation with 

phase advances  

 Restrict motion in 

plane i.e.

 Iterate for a number of 

“turns” (here 1000) 

Example: Single Octupole
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 Simple map with single 

octupole kick with integrated 

strength       + rotation with 

phase advances  

 Restrict motion in 

plane i.e.

 Iterate for a number of 

“turns” (here 1000) 

Example: Single Octupole
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 Appearance of invariant 

curves (“distorted” circles), 

where “action” is an integral of 

motion

 Resonant islands with 

stable and separatrices with 

unstable fixed points

 Chaotic motion

 Electromagnetic fields 

coming from multi-pole 

expansions (polynomials) do 

not bound phase space and 

chaotic trajectories may 

eventually escape to infinity 

(Dynamic Aperture)

 For some fields like beam-

beam and space-charge this is 

not true, i.e. chaotic motion 

leads to halo formation

Example: Single Octupole
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Motion close to a 

resonance
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Secular perturbation theory
 The vicinity of a resonance , 

can be studied through secular perturbation theory 

(see appendix) or transforming the 1-turn map (see 

Etienne’s lectures)

 A canonical transformation is applied such that the 

new variables are in a frame remaining on top of the 

resonance

 If one frequency is slow, one can average the motion 

and remain only with a 1 degree of freedom 

Hamiltonian which looks like the one of the 

pendulum

 Thereby, one can find the location and nature of the 

fixed points measure the width of the resonance
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Fixed points for general multi-pole

 For any polynomial perturbation of the form the 

“resonant” Hamiltonian is written as

 With the distance to the resonance defined as  

 The non-linear shift of the tune is described by the term

 The conditions for the fixed points are

 There are fixed points for which and the 

fixed points are stable (elliptic). They are surrounded by 

ellipses

 There are also    fixed points for which and 

the fixed points are unstable (hyperbolic). The trajectories 

are hyperbolas 
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Fixed points for 3rd order resonance

 The Hamiltonian for a sextupole close to a third order 

resonance is 

 Note the absence of the non-linear tune-shift term (in this 1st

order approximation!)

 By setting the Hamilton’s equations equal to zero, three fixed 

points can be found at

 For all three points are unstable

 Close to the elliptic one at 

the motion in phase space is 

described by circles that they get 

more and more distorted to end 

up in the “triangular” separatrix

uniting the unstable fixed points 

 The tune separation from the 

resonance is 
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 Simple map with single 

sextupole kick with integrated 

strength       + rotation with 

phase advances  

 Restrict motion in 

plane i.e.

 Iterate for a number of 

“turns” (here 1000) 

Example: Single Sextupole



A
n

a
ly

s
is

 t
e

c
h
n

iq
u

e
s
, 
C

E
R

N
 A

c
c
e

le
ra

to
r 

S
c
h

o
o

l,
 J

u
n
e

 2
0
1

9

34

 Simple map with single 

sextupole kick with integrated 

strength       + rotation with 

phase advances  

 Restrict motion in 

plane i.e.

 Iterate for a number of 

“turns” (here 1000) 

Example: Single Sextupole
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 Appearance of 3rd order 

resonance for certain phase 

advance

 … but also 4th order 

resonance

Example: Single Sextupole
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 Appearance of 3rd order 

resonance for certain phase 

advance

 … but also 4th order 

resonance 

Example: Single Sextupole
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 Appearance of 3rd order 

resonance for certain phase 

advance

 … but also 4th order 

resonance

… and 5th order resonance

Example: Single Sextupole
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 Appearance of 3rd order 

resonance for certain phase 

advance

 … but also 4th order 

resonance

… and 5th order resonance

… and 6th order and 7th

order and several higher 

orders…

Example: Single Sextupole
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Fixed points for an octupole
 The resonant Hamiltonian close to the 4th order resonance 

is written as 

 The fixed points are found by taking the derivative over the 

two variables and setting them to zero, i.e.

 The fixed points are at

 For half of them, there is a minimum in the potential as

and they are elliptic and half of them 

they are hyperbolic as
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Topology of an octupole resonance
 Regular motion near the 

center, with curves getting more 

deformed towards a rectangular 

shape 

 The separatrix passes 

through 4 unstable fixed points, 

but motion seems well contained

 Four stable fixed points 

exist and they are surrounded by 

stable motion (islands of 

stability)

 Question: Can the central 

fixed point become hyperbolic

(answer in the appendix)

SFP

UFP
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Octupole with hyperbolic central fixed point

 Now, if the solution for the action is

 So there is no minima in the potential, i.e. the central fixed 

point is hyperbolic
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 As for the sextupole, the octupole 

can excite any resonance

 Multi-pole magnets can excite any 

resonance order

 It depends on the tunes, strength

of the magnet and particle 

amplitudes

Single Octupole
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 Adding a sextupole and an 

octupole increases the chaotic 

motion region, when close to the 4th

order resonance

Single Octupole + Sextupole
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 Adding a sextupole and an 

octupole increases the chaotic 

motion region, when close to the 4th

order resonance

 But also allows the appearance of 

3rd order resonance stable fixed 

points

Single Octupole + Sextupole
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Onset of chaos
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Path to chaos
 When perturbation becomes higher, motion around the 

separatrix becomes chaotic (producing tongues or 

splitting of the separatrix)

 Unstable fixed points are indeed the source of chaos 

when a perturbation is added
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Chaotic motion
 Poincare-Birkhoff theorem states that under 

perturbation of a resonance only an even 

number of fixed points survives (half stable 

and the other half unstable)

 Themselves get destroyed when perturbation 

gets higher, etc. (self-similar fixed points)

 Resonance islands grow and resonances

can overlap allowing diffusion of particles
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Resonance overlap criterion
 When perturbation grows, the resonance island width grows

 Chirikov (1960, 1979) proposed a criterion for the overlap of two 

neighboring resonances and the onset of orbit diffusion

 The distance between two resonances is

 The simple overlap criterion is
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Resonance overlap criterion
 When perturbation grows, the resonance island width grows

 Chirikov (1960, 1979) proposed a criterion for the overlap of two 

neighboring resonances and the onset of orbit diffusion

 The distance between two resonances is

 The simple overlap criterion is

 Considering the width of chaotic layer and secondary islands, the “two 

thirds” rule apply

 Example: Chirikov’s standard map
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Resonance overlap criterion
 When perturbation grows, the resonance island width grows

 Chirikov (1960, 1979) proposed a criterion for the overlap of two 

neighboring resonances and the onset of orbit diffusion

 The distance between two resonances is

 The simple overlap criterion is

 Considering the width of chaotic layer and secondary islands, the “two 

thirds” rule apply

 The main limitation is the geometrical nature of the criterion (difficulty

to be extended for > 2 degrees of freedom)
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Increasing dimensions
 For , i.e. by adding another 

degree of freedom chaotic motion is enhanced
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Increasing dimensions
 For , i.e. by adding another 

degree of freedom chaotic motion is enhanced

 At the same time, analysis of phase space on 

surface of section becomes difficult to interpret, as 

these are projections of 4D objects on a 2D plane
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Chaos detection methods
 Computing/measuring dynamic aperture (DA) or 

particle survival

 Computation of Lyapunov exponents

 Variance of unperturbed action (a la Chirikov)

 Fokker-Planck diffusion coefficient in actions

 Frequency map analysis

A. Chao et al., PRL 61, 24, 2752, 1988;

F. Willeke, PAC95, 24, 109, 1989.

F. Schmidt, F. Willeke and F. Zimmermann, PA, 35, 249, 1991;

M. Giovannozi, W. Scandale and E. Todesco, PA 56, 195, 1997

B. Chirikov, J. Ford and F. Vivaldi, AIP CP-57, 323, 1979 

J. Tennyson, SSC-155, 1988;

J. Irwin, SSC-233, 1989

T. Sen and J.A. Elisson, PRL 77, 1051, 1996
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Dynamic aperture
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Dynamic Aperture
 The most direct way to evaluate the non-linear dynamics 

performance of a ring is the computation of Dynamic 
Aperture

 Particle motion due to multi-pole errors is generally non-
bounded, so chaotic particles can escape to infinity

 This is not true for all non-linearities (e.g. the beam-beam 
force)

 Need a symplectic tracking code to follow particle trajectories 
(a lot of initial conditions) for a number of turns (depending 
on the given problem) until the particles start getting lost. This 
boundary defines the Dynamic aperture

 As multi-pole errors may not be completely known, one has to 
track through several machine models built by random 
distribution of these errors

 One could start with 4D (only transverse) tracking but certainly 
needs to simulate 5D (constant energy deviation) and finally 
6D (synchrotron motion included)
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Dynamic Aperture plots

 Dynamic aperture plots show the maximum initial values 

of stable trajectories in x-y coordinate space at a 

particular point in the lattice, for a range of energy 

errors.

 The beam size can be shown on the same plot.

 Generally, the goal is to allow some significant margin in the 

design - the measured dynamic aperture is often smaller than 

the predicted dynamic aperture.

5inj

5inj
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Dynamic aperture including damping

0.12 ms 0.6 ms 1.2 ms

1.8 ms 2.4 ms 3 ms

3.6 ms 4.2 ms 4.8 ms

 Including radiation damping and 
excitation shows that 0.7% of the 
particles are lost during the damping

 Certain particles seem to damp away 
from the beam core, on resonance 
islands
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DA scanning for the LHC

 Min. Dynamic Aperture 

(DA) with intensity vs 

crossing angle, for nominal 

optics (β*= 40 cm) and BCMS 

beam (2.5 μm emittance), 15 

units of chromaticity

 For 1.1x1011 p

 At θc/2 = 185 μrad  (~12 

σ separation), DA around 6 σ

(good lifetime observed)

 At θc/2 = 140 μrad (~9 σ

separation), DA below 5 σ

(reduced lifetime observed)

 Improvement for low 

octupoles, low chromaticity 

and WP optimisation

(observed in operation)

500 A

270 A

D.Pellegrini
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Genetic Algorithms for lattice optimisation

 MOGA –Multi Objective 
Genetic Algorithms are 
being recently used to 
optimise linear but also 
non-linear dynamics of 
electron low emittance
storage rings

 Use knobs quadrupole
strengths, chromaticity 
sextupoles and 
correctors with some 
constraints

 Target ultra-low 
horizontal emittance, 
increased lifetime and 
high dynamic aperture
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Measuring Dynamic Aperture
 During LHC design phase, 

DA target was 2x higher 
than collimator position, 
due to statistical 
fluctuation, finite mesh, 
linear imperfections, short 
tracking time, multi-pole 
time dependence, ripple 
and a 20% safety margin

 Better knowledge of the 
model led to good 
agreement between 
measurements and 
simulations for actual LHC

 Necessity to build an 
accurate magnetic model 
(from beam based 
measurements)

E.Mclean, PhD thesis, 2014
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DA guiding machine performance
 B1 suffering from lower 

lifetime in the LHC

 DA simulations predicted 

the required adjustment

 Fine-tune scan performed 

and applied in operation, 

solving B1 lifetime problem

D. Pellegrini et al., 2016



A
n

a
ly

s
is

 t
e

c
h
n

iq
u

e
s
, 
C

E
R

N
 A

c
c
e

le
ra

to
r 

S
c
h

o
o

l,
 J

u
n
e

 2
0
1

9

62

Aggressive DA

 Reduction of crossing angle at constant luminosity, reduces pileup 

density (by elongating the luminous region) and triplet irradiation

Relaxed DA
DA [σ]
Luminosity [1034𝑠−1𝑐𝑚−2]

r.m.s Luminous 

Region  Length [cm]

Baseline

Relaxed (6 σ)

Aggressive (5 σ)

Ultimate aggressive (5 σ)

HL-LHC operational scenario

YP, N. Karastathis and D. Pellegrini et al., 2018
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Lyapunov exponent
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Lyapunov exponent
 Chaotic motion implies sensitivity to initial 

condition

 Two infinitesimally close chaotic trajectories in 

phase space with initial difference will end-up 

diverging with rate

with      

the maximum Lyapunov exponent

 There is as many exponents as the phase space 

dimensions (Lyapunov spectrum)

 The largest one is the Maximal Lyapunov 

exponent (MLE) is defined as
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Lyapunov exponent: chaotic orbit

Maximum Lyapounov exponent converges towards 

a positive value for a chaotic orbit
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Lyapunov exponent: regular orbit

Maximum Lyapounov exponent converges towards 

zero for a chaotic orbit
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Lyapunov exponent: regular orbit

Maximum Lyapounov exponent converges more 

slowly towards zero for a resonant orbit
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Lyapunov exponent: regular orbit

Maximum Lyapounov exponent converges more 

slowly towards zero for a resonant orbit, in 

particular close to the separatrix
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Frequency Map Analysis
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Frequency map analysis
 Frequency Map Analysis (FMA) is a numerical method 

which springs from the studies of J. Laskar (Paris 

Observatory) putting in evidence the chaotic motion in 

the Solar Systems 

 FMA was successively applied to several dynamical 

systems

 Stability of Earth Obliquity and climate stabilization (Laskar, 

Robutel, 1993)

 4D maps (Laskar 1993)

 Galactic Dynamics (Y.P and Laskar, 1996 and 1998)

 Accelerator beam dynamics: lepton and hadron rings (Dumas, 

Laskar, 1993, Laskar, Robin, 1996, Y.P, 1999, Nadolski and 

Laskar 2001)
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Motion on torus
 Consider an integrable Hamiltonian system of the usual form

 Hamilton’s equations give

 The actions define the surface of an invariant torus

 In complex coordinates the motion is described by

 For a non-degenerate system

there is a one-to-one correspondence between the actions 

and the frequency, a frequency map 

can be defined parameterizing 

the tori in the frequency space
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Quasi-periodic motion
 If a transformation is made to some new variables

 The system is still integrable but the tori are distorted

 The motion is then described by 

i.e. 

a quasi-periodic function of time, with

 For a non-integrable Hamiltonian,

and especially if the perturbation is small, most tori persist 

(KAM theory)

 In that case, the motion is still quasi-periodic and a 

frequency map can be built

 The regularity (or not) of the map reveals stable (or chaotic) 

motion
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Building the frequency map
When a quasi-periodic function in 

the complex domain is given numerically, it is 

possible to recover a quasi-periodic approximation 

in a very precise way over a finite time span      

several orders of magnitude more precisely than 

simple Fourier techniques

 This approximation is provided by the Numerical 

Analysis of Fundamental Frequencies – NAFF

algorithm

 The frequencies and complex amplitudes        

are computed through an iterative scheme. 
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The NAFF algorithm
 The first frequency       is found by the location of the 

maximum of 

where            is a weight function

 In most of the cases the Hanning window filter is 

used

Once the first term is found, its complex 

amplitude       is obtained and the process is 

restarted on the remaining part of the function 

 The procedure is continued for the number of desired 

terms, or until a required precision is reached
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Frequency determination
 The accuracy of a simple FFT even for a simple 

sinusoidal signal is not better than

 Calculating the Fourier integral explicitly

shows that 

the maximum lies in between the main peaks of the 

FFT
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Frequency determination

 A more complicated 

signal with two 

frequencies 

shifts slightly the 

maximum with 

respect to its real 

location
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Window function
 A window function like the Hanning filter 

kills side-lobs and 

allows a very accurate determination of the 

frequency  
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Precision of NAFF
 For a general window function of order

Laskar (1996) proved a theorem  stating that the 

solution provided by the NAFF algorithm converges 

asymptotically towards the real KAM quasi-periodic 

solution with precision

 In particular, for no filter (i.e. )  the precision 

is , whereas for the Hanning filter ( ), the 

precision is of the order of 
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Aspects of the frequency map

 In the vicinity of a resonance the system behaves like a 

pendulum

 Passing through the elliptic point for a fixed angle, a fixed 

frequency (or rotation number) is observed

 Passing through the hyperbolic point, a frequency jump is 

observed 
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Example: Frequency map for BBLR

 Simple Beam-beam 

long range (BBLR) 

kick and a rotation
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Example: Frequency map for BBLR

 Simple Beam-beam 

long range (BBLR) 

kick and a rotation
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Diffusion in frequency space

 For a 2 degrees of freedom Hamiltonian system, the 

frequency space is a line, the tori are dots on this lines, and 

the chaotic zones are confined by the existing KAM tori
 For a system with 3 or more 

degrees of freedom, KAM 

tori are still represented by 

dots but do not prevent 

chaotic trajectories to diffuse

 This topological possibility 

of particles diffusing is 

called Arnold diffusion

 This diffusion is supposed to 

be extremely small in their 

vicinity, as tori act as 

effective barriers 

(Nechoroshev theory)
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Building the frequency map
 Choose coordinates (xi, yi) with px and py=0

 Numerically integrate the phase trajectories through the lattice for 

sufficient number of turns

 Compute through NAFF Qx and Qy after sufficient number of turns

 Plot them in the tune diagram
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Example: Frequency maps for the LHC

 Frequency maps for the target error table (left) and an 

increased random skew octupole error in the super-

conducting dipoles (right)
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Diffusion Maps

 Calculate frequencies for two equal and successive time 

spans and compute frequency diffusion vector:

 Plot the initial condition space color-coded with the norm of 

the diffusion vector

 Compute a diffusion quality factor by averaging all diffusion 

coefficients normalized with the initial conditions radius
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Example: Diffusion maps for the LHC

Diffusion maps for the target error table (left) and an increased random 

skew octupole error in the super-conducting dipoles (right)
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Example: Frequency Map for the ESRF

All dynamics represented in 

these two plots

 Regular motion represented 

by blue colors (close to zero 

amplitude particles or working 

point)

 Resonances appear as 

distorted lines in frequency 

space (or curves in initial 

condition space

 Chaotic motion is represented 

by red scattered particles and 

defines dynamic aperture of the 

machine
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Numerical Applications
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Correction schemes efficiency

 Comparison of correction schemes for b4 and b5 errors 

in the LHC dipoles

 Frequency maps, resonance analysis, tune diffusion 

estimates, survival plots and short term tracking, 

proved that only half of the correctors are needed

“Chosen” scheme
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 Long range beam-beam interaction 

represented by a 4D kick-map 

with

Beam-Beam interaction
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Head-on vs Long range interaction

 Proved dominant effect of long range beam-beam effect

 Dynamic Aperture (around 6σ) located at the folding of the 
map (indefinite torsion)

 Experimental effort to compensate beam-beam long range 
effect with wires (1/r part of the force) or octupoles

Head-on Long range
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Action variance

 In the chaotic region of phase 
space, the action diffusion 
coefficient per turn can be 
estimated by averaging over 
the quasi-randomly varying 
betatron phase variable as
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Action variance vs. frequency diffusion

 Very good agreement of diffusive aperture boundary (action 
variance) with frequency variation (loss boundary 
corresponding to around 1 integer unit change in 107 turns)
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Magnet fringe fields
• Up to now we considered only 

transverse fields

• Magnet fringe field is the 

longitudinal dependence of the 

field at the magnet edges

• Important when magnet aspect 

ratios  and/or emittances are big
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Quadrupole fringe field
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Magnet fringe fields
 From the hard-edge Hamiltonian

the first order shift of the frequencies 

with amplitude can be computed 

analytically

with the ”anharmonicity” coefficients 

(torsion) 

Realistic

Hard-edge

Tune footprint for the 

SNS based on hard-

edge (red) and realistic 

(blue) quadrupole 

fringe-field
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Off-momentum frequency 

maps
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Tune Diffusion quality factor

Choice of the SNS ring working point

Chosen Working Point



A
n

a
ly

s
is

 t
e

c
h
n

iq
u

e
s
, 
C

E
R

N
 A

c
c
e

le
ra

to
r 

S
c
h

o
o

l,
 J

u
n
e

 2
0
1

9

99

Global Working point choice
 Figure of merit for 

choosing best working 
point is sum of diffusion 
rates with a constant 
added for every lost 
particle

 Each point is produced 
after tracking 100 
particles

 Nominal working point 
had to be moved 
towards “blue” area
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Sextupole scheme optimization

 Comparing different chromaticity sextupole 
correction schemes and working point optimization 
using normal form analysis, frequency maps and 
finally particle tracking

 Finding the adequate sextupole strengths through 
the tune diffusion coefficient
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Frequency Map Analysis

with modulation 
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Frequency maps with space-charge

F.Asvesta, et al., 2017

 Evolution of frequency map over different longitudinal 
position 

 Tunes acquired over each longitudinal period 

 Particles with similar longitudinal offset but different 
amplitudes experience the resonance in different manner 

 Particles with different longitudinal offset may experience 
different resonances 
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LHC: Power supply ripples

- Quadrupoles of the inner triplet right and left of IP1 and IP5, large 

beta-functions increase the sensitivity to non-linear effects

- Resonance conditions:

aQx + bQy + c
fmodulation

frevolution
= k for a, b, c, k integers

S. Kostoglou, et al., 2018

-By increasing the modulation depth, sidebands start to 

appear in the FMAs



A
n

a
ly

s
is

 t
e

c
h
n

iq
u

e
s
, 
C

E
R

N
 A

c
c
e

le
ra

to
r 

S
c
h

o
o

l,
 J

u
n
e

 2
0
1

9

104

LHC: Power supply ripples

- Quadrupoles of the inner triplet right and left of IP1 and IP5, large 

beta-functions increase the sensitivity to non-linear effects

- Resonance conditions:

aQx + bQy + c
fmodulation

frevolution
= k for a, b, c, k integers

S. Kostoglou, et al., 2018

-By increasing the modulation depth, sidebands start to 

appear in the FMAs

ΔQ=1e-4
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LHC: Power supply ripples

 Scan of different ripple frequencies (50-900 Hz)

S. Kostoglou, YP et al., 2018
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6D FMAs with power supply ripples

S. Kostoglou, YP et al., 2018
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Summary
 Appearance of fixed points (periodic orbits) determine 

topology of the phase space

 Perturbation of unstable (hyperbolic points) opens the path to 

chaotic motion 

 Resonance can overlap enabling the rapid diffusion of orbits

 Dynamic aperture by brute force tracking (with symplectic 

numerical integrators) is the usual quality criterion for 

evaluating non-linear dynamics performance of a machine

 Frequency Map Analysis is a numerical tool that enables to 

study in a global way the dynamics, by identifying the excited 

resonances and the extent of chaotic regions

 It can be directly applied to tracking and experimental data

 A combination of these modern methods enable a thorough 

analysis of non-linear dynamics and lead to a robust design



A
n

a
ly

s
is

 t
e

c
h
n

iq
u

e
s
, 
C

E
R

N
 A

c
c
e

le
ra

to
r 

S
c
h

o
o

l,
 J

u
n
e

 2
0
1

9

108

Acknowledgments

Thanks for the material to F. Antoniou, 

F. Asvesta, H.Bartosik, W. Herr, 

J. Laskar, N. Karastathis, S. Liuzzo, 

L. Nadolski, D. Pellegrini, D. Robin, 

C. Skokos, C. Steier, F. Schmidt, 

G. Sterbini, A. Wolski, F. Zimmermann


