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Phase space dynamics
- Fixed point analysis



0 Phase space dyn:

B Valuable description when examining
trajectories in phase spacéu, p,, )

B Existence of integral of motion imposes
geometrical constraints on phase flow

B For the simple harmonic oscillator

H — 2 2 ——
2 (p w T Wo ) |
phase space curves are ellipses around b U |

the equilibrium point parameterized by the
Hamiltonian (energy)
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0 Phase space |i

B Valuable description when examining
trajectories in phase spacéu, p,, )

B Existence of integral of motion imposes
geometrical constraints on phase flow

B For the simple harmonic oscillator

1 2 2
H = 2 (pu T “o )
phase space curves are ellipses around
the equilibrium point parameterized by the
Hamiltonian (energy)

B By simply changing the sign of the
potential in the harmonic oscillator, the
phase trajectories become hyperbolas,
symmetric around the equilibrium point
where two straight lines cross, moving
towards and away from it
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0O Non-linear oscillator

B Conservative non-linear oscillators have Hamiltonian

1
H=E= p,+V(u)

with the potential being a general (polynomial) function of positions
B Equilibrium points are associated with extrema of the potential
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B Conservative non-linear oscillators have Hamiltonian

1
H=E= p,+V(u)

with the potential being a general (polynomial) function of positions

B Equilibrium points are associated with extrema of the potential

B Considering three non-linear oscillators
2 Quartic potential (left): two minima and one maximum
1 Cubic potential (center): one minimum and one maximum
2 Pendulum (right): periodic minima and maxima 7
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0 Fixed point analysis

2

du
. E — fl(uap1L)
B Consider a general second order system .
Pu
At = fo(u,pu)

B Equilibrium or “fixed” points  f1(%0;Puo) = f2(uo,pu0) =0 are
determinant for topology of trajectories at their vicinity
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2

du
. d_ — fl (uapu)

B Consider a general second order system . t
& — fQ(uvpu)

dt
B Equilibrium or “fixed” points  f1(uo, puo) = f2(uo,pu0) =0 are
determinant for topology of trajectories at their vicinity

B The linearized equations of motion at their vicinity are
"0 f1(uo, puo)  Of1(uo, Puo)”

d | ou| M ou | ou Oy, ou
dit 5pu B / 5pu B an (UO 9 puO) an (u07 puO) 5pu
i ou 0P _

\ J
I

Jacobian matrix
B Fixed point nature is revealed by eigenvalues ofM; | i.e.
solutions of the characteristic polynomial det | M ; — AI| =0
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O Fixed point for conservat
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B For conservative systems of 1 degree of freedom, the

2

second order characteristic polynomial for any fixed point has
two possible solutions:

2 Two complex eigenvalues with opposite sign, corresponding to

pu °

elliptic fixed points. Phase space flow is described by ellipses, with

particles evolving clockwise or anti-clockwise

elliptic
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O Fixed point for conse

2

B For conservative systems of 1 degree of freedom, the
second order characteristic polynomial for any fixed point has
two possible solutions:

Two complex eigenvalues with opposite sign, corresponding to
elliptic fixed points. Phase space flow is described by ellipses, with
particles evolving clockwise or anti-clockwise

Two real eigenvalues with opposite sign, corresponding to
hyperbolic (or saddle) fixed points. Flow described by two lines (or
manlfolds) mcomlng (stable) and o_utgomg (unstable)

elliptic \\hyperjbollc 74
Pu - > > ‘: :
| /

u
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0 Pendulum fixed point

2

B The “fixed” points for a pendulum can be found at
(¢n7p¢) T (——nT‘-Q O) ’ N — O, ].7 2 ¢ o e

B The Jacobian matrix is[ g 0 1]
—7cos¢, 0

B The eigenvalues are ), , = ii\/% COS ¢,
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0 Pendulum fixed poi

B The “fixed” points for a pendulum can be found at

2

((bmp¢) — (__TL?T,O) ., n=0,1,2...

B The Jacobian matrix is[ g 0 1]
—7cos¢, 0

B The eigenvalues are ), , = ﬂ\/ﬁ COS ¢,
R ~elliptic
B Two cases can be distinguished: }%/

g \ / _
- _\ - / |

O ¢n = 2nm |, for whichA1,2 = £t T

corresponding to elliptic fixed points
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0O Pendulum fixed |

B The “fixed” points for a pendulum can be found at

2

(¢nap¢) = (__nﬂ',()) ., n=0,1,2...

B The Jacobian matrix is[ g 0 1]
—7cos¢, 0

B The eigenvalues are ), , = ﬂ\/ﬁ COS ¢,
L _elliptic

B Two cases can be distinguished: D, -
. / \ / :
¢n, = 2n7 |, for whichA1,2 = £¢

g
L
corresponding to elliptic fixed points

¢n = (2n+ 1)7 , for which A1 2 = £ %

corresponding to hyperbolic fixed points

The separatrix are the stable and unstable | ’@erb\o{r/
manifolds through the hyperbolic points, = + = & + =+
separating bounded librations and unbounded rotations 14
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f) Phase space for time-depende

Consider now a simple harmonic oscillator
where the frequency is time-dependent

H =5 (53 +h(tp?) Pu|

B Plotting the evolution in phase space, provides
trajectories that intersect each other

B The phase space has time as extra dimension
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f) Phase space for time-d |

Consider now a simple harmonic oscillator
where the frequency is time-dependent

1
H = 5 (pi + wg(t)uQ)

Plotting the evolution in phase space, provides
trajectories that intersect each other

The phase space has time as extra dimension

By rescaling the time to becomea = wqt and
considering every integer interval of the new pu
“time” variable, the phase space looks like the
one of the harmonic oscillator

This is the simplest version of a Poincaré
surface of section, which is useful for studying
geometrically phase space of multi-dimensional
systems

16



f) Phase space for time-c
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B Consider now a simple harmonic oscillator
where the frequency is time-dependent

1
H = 5 (pi + w%(t)uQ)

B Plotting the evolution in phase space, provides
trajectories that intersect each other

B The phase space has time as extra dimension

B By rescaling the time to becoma = wqgt and
considering every integer interval of the new
“time” variable, the phase space looks like the
one of the harmonic oscillator

B This is the simplest version of a Poincaré
surface of section, which is useful for studying
geometrically phase space of multi-dimensional
systems

B The fixed point in the surface of section is now
a periodic orbit

|5 0

Pu
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0 Poincaré map

2

B First recurrence or Poincaré map

(or surface of section) is defined by the

Intersection of trajectories of a dynamical

system, with a fixed surface in phase space ‘\<
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0 Poincaré map

B First recurrence or Poincaré map
(or surface of section) is defined by the e

Intersection of trajectories of a dynamical r Al g, )
system, with a fixed surface in phase space * * S/
B For an autonomous Hamiltonian system <« —

H(q, P) (no explicit time dependence), it can be chosen to be
any fixed surface in phase space, e.g.4; — 0

- B For a non-autonomous Hamiltonian systemH(q, P, t)
(explicit time dependence), which is periodic, it can be
chosen as tﬁe—_peT@:l

June 2019
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O Poincare maf

Analysis technigques, CERN Accelerator School, June 2019

B First recurrence or Poincaré map
(or surface of section) is defined by the P B
Intersection of trajectories of a dynamical Al g )

A y ¥

system, with a fixed surface in phase space * *

B For an autonomous Hamiltonian system —
H(q, P) (no explicit time dependence), it can be chosen to be
any fixed surface in phase space, e.g.4; — 0

B For a non-autonomous Hamiltonian systemH(q, P, t)
(explicit time dependence), which is periodic, it can be
chosen as tﬁe—_peT@:J

W In a system with 7 degrees of freedom (orn + 1
including time), the phase space has2n

(or 2n + 2) dimensions
m By fixing the value of the Hamiltonian to 0 , the | \ ¥
motion on a Poincaré map is reduced to 21 — 2 f
(or 2n)




0 Poincare map

W Particularly useful for a system with 2 degrees of freedom, or
1 degree of freedom + time, as the motion on Poincare map is
described by 2-dimensional curves

B For continuous system, numerical technigues exist to
compute the surface exactly (e.g. M.Henon Physica D 5, 1982)

2
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0 Poincare me

W Particularly useful for a system with 2 degrees of freedom, or
1 degree of freedom + time, as the motion on Poincaré map is
described by 2-dimensional curves

B For continuous system, numerical technigues exist to
compute the surface exactly (e.g. M.Henon Physica D 5, 1982)

B Example from Astronomy: the logarithmic galactic_potential

2

X .
(CE,Z/,X, Y) = (¢x>§byaJx7Jy)

1
H,(z,y,X,Y)=(X*+Y?) +In (x2+ % + R?

3
|
-

>
o
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B Record the particle coordinates at Poincaré Section:
one location in a ring

B Unperturbed motion lies on a circle in

normalized coordinates (simple rotation) y
1 l]l A U'

T AR
NERNEL
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B Record the particle coordinates at Poincaré Section:
one location in a ring

B Unperturbed motion lies on a circle in ><\.
normalized coordinates (simple rotation) y )|
A Ul , /(JZE
e

TR
e U

B Resonance condition corresponds to

Analysis techniques, CERN Accelerator School, June 2019

a periodic orbit or fixed points in phase B \ ZPy U
space

B For a non-linear kick, the radius will \

change by and the particles

stop lying o ¢itsies ®

V2J +86(V2J) 2



B Simple map with single
octupole_kick with integrated
strength k3 + rotation with
phase advances(,ux, ,Lby)

(k3,x,px,y,py):
X

pX — k3% (x*k*3-3%x*y**2)
y

py — K3k (=3kx*k*2xy+y**3)
x1,px1,y1,pyl

(mux,muy, X, px,y,py):
cos (mux)*x+sin(mux)*px
—sin(mux)*x+cos (mux)xpx
cos (muy)xy+sin(muy)*xpy
—sin(muy)*xy+cos (muy)*py
x1,px1,y1,pyl

B Restrict motion in (x7gcc)
plane i.e. Yo = Py0 =

M [terate for a number of
“turns” (here 1000)

Analysis technigques, CERN Accelerator School, June 2019
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B Simple map with single
octupole_kick with integrated
strength k3 + rotation with
phase advances(,ux, ,Lby)

(k3,X,px,y,py):
X
pX — k3% (x*k*3-3%x*y**2)
y
py — K3k (=3kx*k*2xy+y**3)
return x1,px1,y1,pyl

def (mux,muy, x, pX,Y,py):
x1 cos (mux)*x+sin(mux)*px

B px1 =-sin(mux)x*x+cos (mux)*px
yl cos (muy)*y+sin(muy)*py
pyl =-sin(muy)s*y+cos(muy)x*py
return x1,px1,yl,pyl

B Restrict motion in (SUag:c)
planei.e. Yo = Py0o =

M [terate for a number of
“turns” (here 1000)
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OO Example: $

B Appearance of invariant
curves (“distorted” circles),
where “action” is an integral of 05
motion

B Resonant islands with Px®]
stable and separatrices with
unstable fixed points

1.0 A

_0.5 -

B Chaotic motion —10q +

B Electromagnetic fields -10 05 05% 05 1.0
coming from multi-pole 0.8

expansions (polynomials) do 07 - ERY

not bound phase space and P ’

chaotic trajectories may .
eventually escape to infinity ] e bl g
(Dynamic Aperture) X

B For some fields like beam- 02
beam and space-charge this is
not true, i.e. chaotic motion
leads to halo formation

0.1
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Motion close to a
resonance

29



O Secular per |~

2

B The vicinity of a resonance ™w1 + nz2wz =0 ,
can be studied through secular perturbation theory
(see appendix) or transforming the 1-turn map (see
Etienne’s lectures)

B A canonical transformation is applied such that the
new variables are in a frame remaining on top of the
resonance

M If one frequency is slow, one can average the motion
and remain only with a 1 degree of freedom
Hamiltonian which looks like the one of the
pendulum

B Thereby, one can find the location and nature of the
fixed points measure the width of the resonance

Analysis technigques, CERN Accelerator School, June 2019
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&

B For any polynomial perturbation of the form =" the
resonant Hamiltonian is written as

Hy = 6Js + alJs) + J5/? Ay, cos (ki)
B With the distance to the resonance defined asv = § +0, d<<1
B The non-linear shift of the tune is described by the term Oé(Jz)

= B The conditions for the fixed points are

sin(ky2) =0, 0+ 32572) + g]f/Q_lAkp cos(kis) =0
2

B There are fixed points for which cos(ky20) = —1 and the
fixed points are stable (elliptic). They are surrounded by

ellipses

B There are also fixed points for whichcos(k29) =1 and
the fixed points are unstable (hyperbolic). The trajectories

Analysis techniques, CERN Accelerator School, June
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OFixed points for
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2

The Hamiltonian for a sextupole close to a third order
resonanceis Hy, = §Jy + J§/2A3p COS(3¢2)

Note the absence of the non-linear tune-shift term (in this 15t
order approximation!)

By setting the Hamilton’s equations equal to zero, three fixed
points can be found at ,, - T ST 5T 5 ( 20 )

0 : 3737 3 3Asp
For - >0 all three points are unstable

3p '
Close to the elliptic one at %20 =0 Separatrix
the motion in phase space Is i

//‘
A
/ unstable
/

I W20 =

described by circles that they get
more and more distorted to end
up in the “triangular” separatrix
uniting the unstable fixed points

The tune separation from the \\
P gz‘[’l’)p J2162 \

resonance iso = —

7

3
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B Simple map with single
sextupole kick with integrated
strength k2 + rotation with
phase advances(,ux, ,Lby)

(k2,x,px,y,py):
X
pX — K2x(x*k%k2-y**x2)

y
Dy — k2% (-2%xxy)
Irn Xl,pxl,yl;pyl

(mux,muy, X, px,y,py):
cos (mux)*x+sin(mux)*px
—sin(mux)*x+cos (mux)xpx
cos (muy)xy+sin(muy)*xpy
—sin(muy)*xy+cos (muy)*py
x1,px1,y1,pyl

m Restrict motion in (T, Px)
plane i.e. Y0 = Py0 = 0

M [terate for a number of
“turns” (here 1000)

Analysis technigques, CERN Accelerator School, June 2019
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OO Example: $

B Simple map with single
sextupole kick with integrated
strength k2 + rotation with

phase advances 4z, [by)
(k2,x,px,Y,py):

X — k2% (x*%k2-y*x*2)

X
P
y
py — Kk2x(—2%xxy)
return x1,px1,yl,pyl

(mux,muy, X, px,y,py):
cos (mux)*x+sin(mux)*px
—sin(mux)*x+cos (mux)xpx
cos (muy)*y+sin(muy)*py
pyl =-sin(muy)s*y+cos(muy)x*py
x1,px1,yl,pyl

m Restrict motion in (T, Px)
plane i.e. Y0 = Py0 = 0

M [terate for a number of
“turns” (here 1000)

Analysis technigques, CERN Accelerator School, June 2019
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0 Example: Single

B Appearance of 3" order
resonance for certain phase
advance

B ... but also 4" order
resonance

pxo.o 1

Analysis technigques, CERN Accelerator School, June 2019
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0 Example: Single

B Appearance of 3" order _
resonance for certain phase lu XL
advance

B ... but also 4" order
resonance

0.0}
Px

Analysis technigques, CERN Accelerator School, June 2019
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0 Example: Singl

B Appearance of 3" order
resonance for certain phase
advance

B ... but also 4" order
resonance

M ... and 5% order resonance

Dz

1.0}

05}

-0.5F

-1.0}

0.0}

-1.0 -0.5 0.0 0.5 1.0
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o Example: Sin:

June 2019

Analysis techniques, CERN Accelerator School

B Appearance of 3" order
resonance for certain phase
advance

B ... but also 4" order
resonance

M ... and 5% order resonance

... and 6" order and 7t
order and several higher Pz
orders...

-1.0+

1.0t

-1.0 -0.5 0.0 0.5

1.0

38
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O Fixed points fo

2

B The resonant Hamiltonian close to the 4" order resonance
IS written as

s 2 2
Hy = 0Jy + cJ5 + J5 Ay cos(4a)s)
B The fixed points are found by taking the derivative over the
two variables and setting them to zero, I.e.

sin(4i2) =0, 0+ 2¢cJy + 2J5 Ak, cos(4y) =0

B The flxed pomts are at

I T '37T\ /N '5—7%\ '3—7}\
¢20—‘4;|§} 4,7‘\7‘-,7 ‘\ ‘2
® For half o them thereis a’ mlnlmum In fﬁe pofentlal as

____________
-~
N

\
\ ,, )

| I ||
IR ‘\27TI'

_-

-
‘—
’f

,,,,,,

~
- - -
—————————————

\\\\\\
——————————
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) Topology of an oct

B Regular motion near the
center, with curves getting more UFP
deformed towards a rectangular LT

SFP .~
shape A W B
B The separatrix passes NG T
through 4 unstable fixed points,

but motion seems well contained

B Four stable fixed points
exist and they are surrounded by
stable motion (islands of Lo s N
stability)
B Question: Can the central e
fixed point become hyperbolic
(answer in the appendix)

Analysis technigques, CERN Accelerator School, June 2019
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f)Octupole with hyperbolic centra

m Now, if ¢ = () the solution for the action is Joq = 0

2

B So there is no minima in the potential, i.e. the central fixed

point is hyperbolic
0.8 1 | 1 | ] | T

0.6

I | i - - ;
04 | R o _

. - 3 .
Ly o - - . Ll L L] B 1
.t = LA B . s ) ) H
e N e AT I e 5 e pmeTR
- Laefimet LTI B L g = ]
U E ;o FERT S ’ ’ SR
— . . L . . - .
s . s o S H .
- '___'_.-.... '._-'" " __.'. -
i
L]
- -

S i )

= o L )
-0.2 + -
-04 + -
-0.6 -

-0.8 | | 1 - l 1 | --.Iql.
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0 Single Octt

B As for the sextupole, the octupole
can excite any resonance

B Multi-pole magnets can excite any
resonance order

B [t depends on the tunes, strength
5 of the magnet and particle

amnlitiidac

019

RS
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0 Single Octupole

B Adding a sextupole and an
octupole increases the chaotic
motion region, when close to the 4t
order resonance

Pz,

Analysis technigques, CERN Accelerator School, June 2019




B Adding a sextupole and an
octupole increases the chaotic
motion region, when close to the 41" -
order resonance Dy

B But also allows the appearance of
3'd order resonance stable fixed
points

po = 0-34

5| 5 ;
..o’
Lt . ° "i\' L) F3
. NP .,
p bt i ot e %E 2.
. .I. e . -
X Y (e o T ool
0.0+ ) (]
" -.
e S S "
-
:’,‘ < \
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Onset of chaos



O Path to chaos

2

B \When perturbation becomes higher, motion around the
separatrix becomes chaotic (producing tongues or
splitting of the separatrix)

B Unstable fixed points are indeed the source of chaos
when a perturbation is added

3

o

N

2

S 5e-06

3

E 4606 |

S

n /r\

= (\ (\ m 3e-06 |

3 \ |

— < \ ‘

% H* SR w k/ 2008

o N Y

< \\ \ \ :.r-.‘.‘_::: 3

= O A0S le06 | N

o N oAt

mm )& X AN Saeieix

o Q\\\\) X 0

n ~~ B

o) gy =~ X /

S —I

= —_ - -1e-06 +

Q -2e-06 -

0

] SN
@ -3e-06 : : : : : e
é -0.008 -0.006 -0.004 -0.002 0 0.002 0.004 0.006




O Chaotic mc

B Poincare-Birkhoff theorem states that under
perturbation of a resonance only an even
number of fixed points survives (half stable
and the other half unstable)

B Themselves get destroyed when perturbation
gets higher, etc. (self-similar fixed points)

B Resonance islands grow and resonances
can overlap allowing diffusion of particles

1.0 : . ‘

‘e
. %

0.65

0.60

0.55

0.50+

045+

0.40

. <
035 JAN =
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0 Resonance overl:

B \When perturbation grows, the resonance island width grows

B Chirikov (1960, 1979) proposed a criterion for the overlap of two
neighboring resonances and the onset of orbit difzusion )
2 nl—zll—ng o ’rL’l—zll—n’2

82 Hy(J)
dJ 2

B The distance between two resonances iSs.J, ., =

B The S|mple overlap crlterlon IS

Ji=Jio

Analysis technigques, CERN Accelerator School, June 2019




0 Resonance ove

)

When perturbation grows, the resonance island width grows

B Chirikov (1960, 1979) proposed a criterion for the overlap of two
neighboring resonances and the onset of orbit diffusion

n

. . ~ 2 1 Y : 7
The distance between two resonances iSs.j; ,, ,» = ("1+”2 1+”2)
B The simple overlap criterion is %(J)
AJn mazx T AJn’ mazx > 5Jn,n’

Ji=Jio

B Considering the width of chaotic layer and secondary islands, the “two

5 . 2 .
thirds” rule apply AJy maz + Adns maz > §5Jn,n’

B Example: Chirikov’s standard map

Pn+1 = pn + Ksin(6,) 9n+}0 — 0, + Pn+1

p/2Jt.
0.8

)
e e somn

ddddd

0.6

.......

0.4
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0 Resonance ove
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2

When perturbation grows, the resonance island width grows

Chirikov (1960, 1979) proposed a criterion for the overlap of two
neighboring resonances and the onset of orbit diffusion )

11
ni-+no n+nl

The distance between two resonances iSs.j; ,, ,» =

The simple overlap criterion is
AJn mazx T AJn’ mazx > 5Jn,n’

92 Hy(J)
dJ 2

Ji=Jio

Considering the width of chaotic layer and secondary islands, the “two

A A 2
thirds” rule app|y AJn maz + Adn' maz > gdjn,n’

The main limitation is the geometrical nature of the criterion (difficulty
to be extended for > 2 degrees of freedom)

p/211.0<'\

Pnt+1 = pn + K sin(6y,) 9n+}0 = 0y, + Dnt1
&~ oo [ o T
\%— 0.8 08 ,

= >N

P
e 0.6

0.4—F

3
= 0.2

0.0—F

0.84/711.0

0.2 0.4 0.6

I
0.8./7+1.0



O Increasing d

L For(?JOapyO) 75 (O, O) , I.e. by adding another
degree of freedom chaotic motion is enhanced

1.0

05 + sl

pwo.of .

o5l ="

Analysis technigques, CERN Accelerator School, June 2019
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O Increasing

L For(?JOapyO) 75 (O, O) , I.e. by adding another

degree of freedom chaotic motion is enhanced

B At the same time, analysis of phase space on
surface of section becomes difficult to interpret, as Dy
these are pI’OjeCtIOZS of 4D objects on<a 2D plane

1.0

0.5}

pxo.of

o5l ="
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O Chaos detection

2

B Computing/measuring dynamic aperture (DA) or

particle survival

A. Chao et al., PRL 61, 24, 2752, 1988;
F. Willeke, PAC95, 24, 109, 1989.

B Computation of Lyapunov exponents

F. Schmidt, F. Willeke and F. Zimmermann, PA, 35, 249, 1991;
M. Giovannozi, W. Scandale and E. Todesco, PA 56, 195, 1997

B Variance of unperturbed action (a la Chirikov)

B. Chirikov, J. Ford and F. Vivaldi, AIP CP-57, 323, 1979
J. Tennyson, SSC-155, 1988;
J. Irwin, SSC-233, 1989

B Fokker-Planck diffusion coefficient in actions
T. Sen and J.A. Elisson, PRL 77, 1051, 1996

B Frequency map analysis
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Dynamic aperture



2

B The most direct way to evaluate the non-linear dynamics
performance of a ring is the computation of Dynamic
Aperture

B Particle motion due to multi-pole errors is generally non-
bounded, so chaotic particles can escape to infinity

B This is not true for all non-linearities (e.g. the beam-beam
force)

B Need a symplectic tracking code to follow particle trajectories
(a lot of initial conditions) for a number of turns (depending
on the given problem) until the particles start getting lost. This
boundary defines the Dynamic aperture

B As multi-pole errors may not be completely known, one has to
track through several machine models built by random
distribution of these errors

B One could start with 4D (only transverse) tracking but certainly
needs to simulate 5D (constant energy deviation) and finally
6D (synchrotron motion included) 55
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) Dynamic Aperture plots

B Dynamic aperture plots show the maximum initial values
of stable trajectories in X-y coordinate space at a
particular point in the lattice, for a range of energy
errors.

2

2 The beam size can be shown on the same plot.

2 Generally, the goal is to allow some significant margin in the
design - the measured dynamic aperture is often smaller than
the predicted dynamic aperture.

16

T T T
App=0.0% ——
14 | 50 . B p'p=0.5%

12 -

10 [

¥ (mm)
¥ (mm)

L] ] B o i ]
T T T

'R A | | j : ! |
-30 -20 -10 0 10 20 a0 -20
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Slie_d =teR e

QDynamic aperture includi

onr2ms| _| 0.6ms |

o PN
=] = - = = T s = & o= A& o

1.2 ms

= = E - £ s

| G =70 1277 Q=26 41 B2

X, mm
Including radiation damping and
excitation shows that 0.7% of the
particles are lost during the damping

Certain particles seem to damp away
from the beam core, on resonance

islands
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0 DA scanning fo
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Min. Dynamic Aperture
(DA) with intensity vs
crossing angle, for nominal
optics (=40 cm) and BCMS
beam (2.5 ym emittance), 15
units of chromaticity

For 1.1x10'p

d At06./2 =185 prad (~12

o separation), DA around 6 ©

(good lifetime observed)

d At6./2=140 yrad (-9 o

separation), DA below 5 o

(reduced lifetime observed)

O Improvement for low
octupoles, low chromaticity
and WP optimisation
(observed in operation)

R R =N
A O 00 O
o O O o

=
N
o

Crossing Angle [prad]

— — N =
(o)} (0] O o
SO © o8

=
1
()

120

Crossing Angle [prad]

100

0.6 0.8

1.0
Bunch intensity [10e]

2

D.Pellegrini

1.2 1.4
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|
{Genetic Algorithms for |

B MOGA —Multi Objective
Genetic Algorithms are
being recently used to
optimise linear but also
non-linear dynamics of
electron low emittance
storage rings

B Use knobs guadrupole
strengths, chromaticity
sextupoles and
correctors with some
constraints N ]

L] Target UItra'IOW 15 ° Hr:rr%gntal erﬁittanceﬂéi{mm—#nrad} 4 >
horizontal emittance,

Increased lifetime and
high dynamic aperture

[

Dynamics aperture area (m
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2

B During LHC design phase,

DA tal’get was 2X h|gher i DA inferred from measured loss data
than collimator position, e SR =

due to statistical 12—
fluctuation, finite mesh,
linear imperfections, short  10- hya,,

measurements)

_tracking time, multi-pole 3§ .

s time dependence ripple E B

£ anda?20% safety margin 3.

2 W Better knowledge of the

¢ model led to good L/ /RN

s agreement between 0y v

£ measurements and by .

¢ simulations for actual LHC N =

¢ B Necessity to build an o 0 12 14
£ accurate magnetic model

‘ (from beam basea E.Mclean, PhD thesis, 2014
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Total intensity

B Bl suffering from lower

lifetime in the LHC
B DA simulations predicted
the required adjustment i
B Fine-tune scan performed
and applied in operation, o314 |-
solving B1 lifetime problem
D. Pellegrini et al., 2016
25 '(
2.0 | \
15| -
o 10l
o5 H b b H O W & -
gigﬂ . | il L. I
o0 o0
ﬁﬂ’ﬁﬁﬁgg ﬂ%’“ﬁgﬁg
W° A\

64.306 64.308

' ; . i
.31 64.312 64.314 64.316 64.318 64.32
Qx

Tune adjusted during this fill

ooy =~

=
Energy [TeV]

O = MW




O HL-LHC operational

Aggressive D Aiwo
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B Reduction of crossing angle at constant luminosity, reduces pileup
density (by elongating the luminous region) and triplet irradiation

YP, N. Karastathis and D. Pellegrini et al., 2018

Relaxed DA

B [cm]

9.0 DA [0_]
g5 = Luminosity [103*s~?
== r.m.s Luminous
8.0 Region Length [cm]
7.5
80
o Y Relaxed (6 o)
Aggressive (S o)
6.5
©
60 L)
6.0
a
5.5
5.0
40
45
4.0
20 35
3.0

125 150 175 200 225 250 275 300 325
Half Crossing Angle [prad]

2

cm™?]

(S o)
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- Lyapunov exponent

Analysis techniques, CERN Acce
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O Lyapunov ex

2

B Chaotic motion implies sensitivity to initial
condition

B Two infinitesimally close chaotic trajectories in
phase space with initial difference 0Zig will end-up
diverging with rate

0Z(t)| ~ eM|6Zo| with
the miximum Lyapunov exponent

B There Is as many exponents as the phase space
dimensions (Lyapunov spectrum)

B The largest one is the Maximal Lyapuno
exponent (MLE) is defined as

A= lim lim 1ln 0Z(1)]
t—00 §Zo—0 07
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Lyapunov exponent:

-1.04 °

—ll.O —(|).5 OI.O 015 1:0 0.00 2|O 4|0 6IO 8|O l{I)O 1.'|20 1£|10
z t
B Maximum Lyapounov exponent converges towards
a positive value for a chaotic orbit

s 0Z(1)]
= 1 l —1
A 00 6Z0s0 T 07| .
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2019

) Lyapunov exponent:

0.10
1.0 1
0.08 {°
0.5 1
s
0.06 1§
AR
Do
0.04
_0.5_
0.02
_1.0_
T T T T T 0.00 T T T T T 1
-1.0 -0.5 0.0 0.5 1.0 0 500 1000 1500 2000 2500 3000
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T {
B Maximum Lyapounov exponent converges towards
zero for a chaotic orbit

A= lim lim 1ln 0Z(1)]
t—00 §Zo—0 T 07
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=l

) Lyapunov exponent:

0.10
1.0 1
0.08 -
0.5 -
o o 0.06 -
P ;007 )\
o o ™
_0.5 _
0.02
_1.0 _
1 1 1 1 1 0-00 1 1 1 1
~1.0 ~0.5 0.0 0.5 1.0 0 500 1000 1500 2000 2500 3000
T {

B Maximum Lyapounov exponent converges more
slowly towards zero for a resonant orbit

1 Z
A= Iim Iim -—In ‘5 (t)‘
t—00 §Zo—0 T |5ZO| o7



) Lyapunov exponen !

0.10
1.0 1

0.08 &
0.5 1 .

»
0.06 7,

o 0.0 - )\0.04 :

—0.5 1

0.02 A

_1.0 .

T T T T T 0.00 T T T T T 1
-1.0 -0.5 0.0 0.5 1.0 0 500 1000 1500 2000 2500 3000

x U
B Maximum Lyapounov exponent converges more
slowly towards zero for a resonant orbit, in

particular close to the separatrix

. . 0Z(t)]
A= 1 ] —1
tiglo 5210%0 H 07 s
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. Frequency Map Analysis

69



B Frequency Map Analysis (FMA) is a numerical method
which springs from the studies of J. Laskar (Paris
Observatory) putting in evidence the chaotic motion in
the Solar Systems

2

B FMA was successively applied to several dynamical
systems

Stability of Earth Obliquity and climate stabilization (Laskar,
Robutel, 1993)

4D maps (Laskar 1993)
Galactic Dynamics (Y.P and Laskar, 1996 and 1998)

Accelerator beam dynamics: lepton and hadron rings (Dumas,
Laskar, 1993, Laskar, Robin, 1996, Y.P, 1999, Nadolski and
Laskar 2001) 70
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f)Motion on toru

B Consider an integrable Hamiltonian system of the usual form
H(J7 P, 9) — HO(J)

2

. . . _ 0H(J) _ _
B Hamilton’s equations give %= —g;~ — «ill) = 95 =wi(D)i+ 50
. OH(3)
Jj = — a;j = 0 = J; = const.

- B The actions define the surface of an invariant torus
S ® In complex coordinates the motion is described by

Gj(t) = J;j(0)e™7* = zjpe*
dw(J) &2 Ho(J)

B For a non-degenerate systemdet‘ 57 572 ‘#0
there is a one-to-one correspondence between the actions
and the frequency, a frequency r
can be defined parameterizing
the tori in the frequency space

F: (I — (w)

':det
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O Quasi-periodi

B If a transformation is made to some new variables
0.t "
(;=1;e""=2;4+eGj(z) =2 +¢€ E CmZ] 129 % 2

B The system is still integrable but the tori are distorted
B The motion is then described by

G (t) = 2joe™" + ) ame’ ) ¢

l.e.
m
a quasi-periodic function of time, with
Um = € CmZ10 290 -+ Zpg" and m - w = miwy + mowa + - - - + My w,

B For a non-integrable Hamiltonian, H(I,6) = Hy(I) + eH'(1,0)
and especially if the perturbation is small, most tori persist
(KAM theory)

B In that case, the motion is still quasi-periodic and a
frequency map can be built

B The reqgularity (or not) of the map reveals stable (or chaotic)
motion 72
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O Building the

2

B \When a quasi-periodic function f(¢) = q(¢) +ip(?) in
the complex domain is given numerically, it is

possible to recover a quasi-periodic approximation
N

HOED I
k=1
in a very precise way over a finite time span =7 ]
several orders of magnitude more precisely than
simple Fourier techniques

B This approximation is provided by the Numerical
Analysis of Fundamental Frequencies — NAFF
algorithm

B The frequencies w;; and complex amplitudes ay,
are computed through an iterative scheme. 73

Analysis technigques, CERN Accelerator School, June 2019



OThe NAFF alg

B The first frequency «} Is found by the location of the
maximum of

o) = (0™ = 55 [ f(e oyt

where X(t) is a weight function
= @ In most of the cases the Hanning window filter is

used x1(t) =1+ cos(wt/T)

2

m Once the first term 1t js found, its complex
amplitude a1 IS obtained and the process Is

restarted on the remaining part of the function
f1(t) = f(t) — aje™!

B The procedure is continued for the number of desired
terms, or until a required precision iIs reached

Analysis technigques, CERN Accelerator School, June 2019
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OFrequency deter

2

B The accuracy of a simple FFT even for a simple1
sinusoidal signal is not better than |v — vp| = —

B Calculating the Fourier integral explicitly I

. 1 T .
w) = lwt —lwt
b(w) =< (1), &4 > T/o (e dt o

the maximum lies in between the main peaks of the

%. FFT 1 T T | |

S A 1+ :
E - — Q11 . (v—w)T

s | y(t) =sin(vt) | | A o) = Jsinc® =T
s 1f '

g 05 06 -

E 0

8 o5 04 |

s 02 |

g 0 2 4 6 8 1IJF r -1 0 1 2 3 4 W 5
: t/m 1 s
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O Frequency determ

1 -

08 -
_ 06
B A more complicated
. . 04 -
signal with two
0.2 -

frequencies

f(t) _ aleiwlt i aZGiwgt o_1

shifts slightly the 1.05 |

maximum with

respect to its real 'r

location 0os |
0.9
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O Window function

2

B A window function like the Hanning filter
x1(t) = 1+ cos(mt/T) kills side-lobs and
allows a very accurate determination of the

frequency

] | ' oo(x)
p1(z)

08 r

06 r

04 r

02 r

0

VAVAV/\\/"\/
02 |
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OPrecision of [

2

B For a general window function of order p
(t) = 20 (pY)° (1 + cosmt)P
T (),
Laskar (1996) proved a theorem stating that the
solution provided by the NAFF algorithm converges
asymptotically towards the real KAM quasi-periodic
solution with precision

o 1
W In particular, for no filter (i.e. p = 0) the precision
IS L , whereas for the Hanning filter (), thd

T2 1
precision is of the order of _—
T4
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O Aspects of the freque

&

B |n the vicinity of a resonance the system behaves like a
pendulum

B Passing through the elliptic point for a fixed angle, a fixed
frequency (or rotation number) is observed

B Passing through the hyperbolic point, a frequency jump is
observed

o

S [ | | T I T T T T l T T T I I 2 .— 1 $

eV 04 [ B -

qC) i a=097163 ] r

5 T = 4056000 : 1 1

S g 02p : . C
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&

B For a 2 degrees of freedom Hamiltonian system, the
frequency space is a line, the tori are dots on this lines, and
the chaotic zones are confined by the existing KAM tori

B For a system with 3 or more *
degrees of freedom, KAM il
tori are still represented by ***** *° S

¢ dots but do not prevent Y2 I
3 chaotic trajectories to diffuse

* W This topological possibility Y/ o

D ®*

¢ of particles diffusing is o %% 0y % e

¢ called Arnold diffusion o %o LSS

EZ‘;_ B This diffusion is supposedto | ® .. on® <., @ o { . *

¢ beextremely small intheir | % % 8 .- ‘o8 °

¢ vicinity, as tori act as ces * ° -~
¢ effective barriers Y2 I
g

(Nechoroshev theory) 82
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0 Building the frequency

sufficient number of turns
B Compute through NAFF Q, and Q, after sufficient number of turns
® Plot them in the tune diagram

*
w

Z
-
T I T I T l I:' T I T l T I T I T ' T

%5

9IIIIIIIIIIIIIIIIIII’

N TN O [T O DI N0 | | T || I

gpo iyl

Rn

. p|q:‘I0

MAP

B Choose coordinates (x; y;) with p, and p,=0
B Numerically integrate the phase trajectories through the lattice for

2

.

W T T 0 s

sl R» '
8,!;7 o I/ -—
S, 168 — —

*7
N, 166 — =
= @
e > ¥ 2 -
8.162 proe. *6 =l
*5
i 4
8,16 — 1 —
e | |
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Vx
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Vertical Tune

fj*ixample: Frequency me

0.318

0.316

0.314

0.312

0.310

0.308

0.306

304
0.274 0.276

o6-100

e 10-13¢
| @ 13-16G
® 15-750
e |ost orbit

Fd )

]
.a' n’ s ! 4': \“

(7,0)

0.278 0.280 0.282 0.284 0.286 0.288

Horizontal Tune

Vertical Tune

0.33

0.325

0.32

0.315

0.31

0.305

0.3

0.295

0.29

285
0.255

! ! L ‘S !

0.265 0.27 0275 028 0285 029 0.295
Horizontal Tune

m Frequency maps for the target error table (left) and an
Increased random skew octupole error in the super-

conducting dipoles (right)
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2

® Calculate frequencies for two equal and successive time
spans and compute frequency diffusion vector:

D|—, = V‘te(O,T/Q] - V‘tE(T/QvT]

® Plot the initial condition space color-coded with the norm of
the diffusion vector

® Compute a diffusion quality factor by averaging all diffusion
coefficients normalized with the initial conditions radius

B L R—
(12, + 12)17 /7

I

O
Q
&

|

Analysis technigques, CERN Accelerator School, June 2019

85



Analysis technigques, CERN Accelerator School, June 2019

Vertical Position (o)
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Diffusion maps for the target error table (left) and an increased random
skew octupole error in the super-conducting dipoles (right)
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BAIll dynamics represented in
these two plots 14.45 F
B Regular motion represented
by blue colors (close to zero =" 1440 L
amplitude particles or working
point)

14.35

y (mm)

0.008

0.006

0.004

0.002

0.000

-0.020 0.000 0.020
X (mm)

36.25 36.30 3635 3640 36.45 3650 36.55 36.60

Vx

B Resonances appear as
distorted lines in frequency
space (or curves in initial
condition space

B Chaotic motion is represented
by red scattered particles and
defines dynamic aperture of the

machine
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Numerical Applications
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QCorrection schemes e
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Type 0
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Type ll
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P = J
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10
Position (o)

15

=

o eoTypel —— m“Chosen” scheme . 4

m Comparison of correction schemes for b, and b; errors
In the LHC dipoles

m Frequency maps, resonance analysis, tune diffusion
estimates, survival plots and short term tracking,

proved that only half of the correctors are needed
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O Beam-Beam inte

Variable Symbol Value

Beam energy E 7 TeV
Particle species protons
Full crossing angle 0. 300 prad
rms beam divergence ol 31.7 prad
rms beam size Ty 159 um
Normalized transv.

rms cmittance ve 3.75 pm
IP beta function B 0.5 m
Bunch charge N, (1 X 10'"=2 x 10'?)
Betatron tune Qo 0.31

‘ACMAN bunch
~

long-range
collisions

head-on
collision

PACMAN bunch,

A

rd

7 A

long-range
collisions

A

m Long range beam-beam interaction

represented by a 4D kick-map

Ay

2r. N, '+ 6 __9
n piVb Cc 1 —e 29% y
par 02 ’
t
02
1 1—e 2924
0
/ 07
2Tpr Y _202t
npa/r —a ]. - 6 T,y
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J’I l’ \1’ ] | ] ol z I‘, ‘\I 'l Ll 1/ Il
0.285 0.290 0.295 0.300 0.305 0.310 0.285 0.290 0.295 0.300 0.305 0.310
Horizontal Tune Horizontal Tune

m Proved dominant effect of long range beam-beam effect

m Dynamic Aperture (around 60) located at the folding of the
map (indefinite torsion)

m Experimental effort to compensate beam-beam long range
effect with wires (1/r part of the force) or octupoles
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')Action variance
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8 10 I
amplitude x,y (Ua.y)

tune difference

Loss boundari

. ’ - - - - aw -

headon (h. I.)
head on + longrange (l.r.)

lr. + KEK triplet errors (tr.er.)
h.o.+ lr. + KEK trer.

h.o.+ lr. + FNAL trer.

—— KEK trer. : (3)

0.0 20 40 6.0 8.0 10.0
amplitude x.y (0)

m Very good agreement of diffusive aperture boundary (action
variance) with frequency variation (loss boundary
corresponding to around 1 integer unit change in 107 turns)
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0 Magnet fringe fields

- Up to now we considered only
transverse fields

Analysis techniques, CERN Accelerator School, June 2019

Dipole field
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2

« Magnet fringe field is the
longitudinal dependence of the
field at the magnet edges

 Important when magnet aspect
ratios and/or emittances are big
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0 Quadrupole fringe field @)

General field expansion for a quadrupole magnet:

( 1)mm2n 2m—+1
m; og (2n)!(2m + 1)! ( l )b[22"l']+2m+1—2l

( m
By=2. 2, (2n + 1)!(2m)! (l)b%”m“—?l

m,n=0 [=0
— Z Z( 1)mg2ntly2mad (m) p[20H1]
m,n=01=0 (2n+1)!2m + 1) N1 2n+2m+1-21

and to leading order

i . ]

B, = wy|b— E(sz — yz)b[12] + O(5)
_ PR 2, 2]

By = z|b T By~ +x7)by" | +O(5)

B. = aybi +0(9)
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The quadrupole fringe to leading order has an octupole-like effect 9



0 Magnet fringe fie

2

Tune footprint for the
SNS based on hard-
edge (red) and realistic
(blue) quadrupole
fringe-field

ov a a 2J,\ sl | | |
<5V5”> — <ahh ah”> <2Jx> , |? Realistic

J o Hov J Hard-edge

5 .83

m From the hard—edge Hamiltonian

+

the first order shift of the frequencies
with amplitude can be computed
o analytically

with the "anharmonicity” coefficients

(tac;rsion) /////// i

(Bmayz ByiOizi) =% //////

Ahv

Ay

Analysis technigques, CERN Accelerator School, June 20




-momentum Irequency

SNS Working Point (QX,Qy)=(6.4,6.3)
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f)Choice of the SNS ring w

&)

Tune Diffusion quality factor
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BD

0 Global Working point che

Figure of merit for
choosing best working
point is sum of diffusion

rates with a constant oo -
added for every lost nes R
particle 02 (I

Each point is produced .
after tracking 100 )
particles 7

Nominal working point
had to be moved
towards “blue” area 057
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{) Sextupole sche

2

Normalized diffusion sum (Q =11.78, Qy:6.7) Hamiltonian driving terms up to 4" order
?l:l 1 1 1 1 1 1 1 1

0.25 , 014 gol I (1 lattice ringe fields
I 2 ramiiies
0.2
o1z 50 I = ramiiles extended
0.15 ' [ ]4tamilles extended
01 L
? L Joq W0
£ 005
g 30 -
=0 L {0.08
%)
= 005 sl i
V]
=  _01 F 10.06
10+ -
-0.15
0.04
-02 0
3000 h2100 R1020 h1011 R1002 h4000 h3100 h2020 h2011 h2002 WI120 hOO4D hOOS

-0.25

-02 -0.1 0 0.1 0.2

k2.MS.1 (m™)

m Comparing different chromaticity sextupole
correction schemes and working point optimization
using normal form analysis, frequency maps and
finally particle tracking

m Finding the adequate sextupole strengths through
the tune diffusion coefficient
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Frequency Map Analysis
: with modulation
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) Frequency maps with Sg

tune diagram
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F.Asvesta, et al., 2017

O Evolution of frequency map over different longitudinal

position

O Tunes acquired over each longitudinal period

QO Particles with similar longitudinal offset but different
amplitudes experience the resonance in different manne

QO Particles with different longitudinal offset may experienc

different resonances
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) LHC: Power supply ripples

- Quadrupoles of the inner triplet right and left of IP1 and IP5, large
beta-functions increase the sensitivity to non-linear effects

- Resonance conditions:

+ bQ,, + C

)

S. Kostoglou, et al., 2018

fmodulation

= k for a, b, ¢, k integers

-By increasing the modulation depth, sidebands start to

appear in the FMAs
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)

) LHC: Power supply ripples

- Quadrupoles of the inner triplet right and left of IP1 and IP5, large
beta-functions increase the sensitivity to non-linear effects
- Resonance conditions: S. Kostoglou, et al., 2018

fmodulation

-By increasing the modulation depth, sidebands start to
appear in the FMAs

5D, E=6,5TeV. Ly = 510A Beamn—beam ON, ¢, = 2.5um. p" =40cm. q=15
{Q..Q,) ={62.31,60.32), Vy, OFF, &p=27e -5, 49 angles, 0.1 - 6.1 0, sliding NAFF
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) LHC: Power supply ripp
Q Scan of different ripple frequencies (50-900 Hz)

A
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f) 6D FMAs with power supply ripples

6D. E =6.5TeV. I, = 510A. Beam — beam ON.e, = 2.5um. 3* =40cm. q =0
(Qx. Qy) = (62.31.60.32). Vg ON. op =27 107>, 99 angles. 0.1 — 6.1 o.sliding NAFF
f. = 50Hz. A, = 10-7 at MQXA.1. MQXA.3. MQXB.A2. MQXB.B2 of IP1. IP5
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2

Appearance of fixed points (periodic orbits) determine
topology of the phase space

Perturbation of unstable (hyperbolic points) opens the path to
chaotic motion

Resonance can overlap enabling the rapid diffusion of orbits
Dynamic aperture by brute force tracking (with symplectic
numerical integrators) is the usual quality criterion for
evaluating non-linear dynamics performance of a machine

Frequency Map Analysis is a numerical tool that enables to
study in a global way the dynamics, by identifying the excited
resonances and the extent of chaotic regions

It can be directly applied to tracking and experimental data

A combination of these modern methods enable a thorough
analysis of non-linear dynamics and lead to a robust design 27
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