
XCache
Teng Li

University of Edinburgh
GridPP42, STFC



Outline

• Introduction
• XCache deployment & testing @ Edinburgh
• Simulations
• What’s next



Introduction

• XCache
• XRootD server running in proxy mode, with the cache library enabled
• Every (chunk of) file read through this proxy is saved in the cache disk
• Speaks xroot protocol (http is also possible between clients and XCache)

• What for?
• Optimization for bandwidth usage, data access latency, data placement
• Could be used as volatile storage

• Other features: clusterable, plugin-based, partial file cache

client XCache Storage
xroot/http xroot

output



Use cases

• XCache as a transparent cache

• Useful for site attached to whatever types of external storages (remote SE, storage 
cloud), which has performance issues of data access. Or if local storage has high 
latency, e. g. caused by erasure coding
• Other mutants:

• Server-less cache, XCache running on WNs directly (with a shared filesystem)
• Memory-based cache, for small sized, rapidly accessed files

external
storageWNs XCache

disklocal network



Use cases (cont.)

• Typically ATLAS use cases (potentially other experiments using rucio)
• XCache works with rucio
• Volatile RSE

Cached contents are reported back to rucio. Job broker could then send jobs accordingly
• Rucio Name2Name plugin

• XCache accepts rucio gLFN and connects to rucio to get the physical location (rucio metalink)
• Same file with different locations share the same cache entry

• In progress, both relies on the workflow management

???WNs XCache

rucio



XCache deployment & testing

• Aim
• Testing XCache. Target deployment/ operation issues
• Study the actual performance and look for optimization methods

• Overview
• Transparent cache mode

• Input traffic of WNs is redirected to XCache
• Output remains unchanged
• Whole file cache mode is used

• Tested with ATLAS analysis jobs
• At small scale (80 cores)

• Performance is monitored SE

srm.glite.ecdf.ed.ac.uk

XCache

buffer 
disk

WN
queue: ANA-ECDF-SL6
80 cores

input

output

100Gb – 5TB



XCache deployment & testing

• Summary of the deployment and operation
• Easy to deploy

• Light weighted. Could be deployed as container
• 2 services (xrootd, cmsd), one filesystem, and several cronjobs are enough

• Easy to maintain
• Crash twice during 4 months. No actions more than restarting services.
• Not worried at all about data loss

• 2 major issues
• Integrate XCache transparently into ATLAS workflow

Not fully defined by ATLAS
Could be done with the help of AGIS and XRootD name plugin

• A valid certificate
XCache robot certificate is available



Performance

• 4 months of data is taken to measure the cache performance
• Average cache hit rate is 33.9% 

(bytes read from cache/all bytes read by WNs)
• Different cache capacities are tested. Peak value reached

~50%.

33.9%
Average

Capacity

1/5/2018 1/6/2018

1/5/2018 1/6/2018



Performance

• XCache simulation as a cross validation
• Based on the rucio trace data for 6 months
• Simulate real behaviors of XCache to see the performance
• Comparison of ECDF analysis queue and BHAM production queue

ECDF Analysis queue BHAM Production queue



Performance
4 kinds of files are cached:
• input: input data files (AOD, DAOD, …)
• output: user output
• library: user library files (dispatched by panda)
• log: job log files

0

10000

20000

30000

40000

50000

60000

0 1 2 3 4 5 6 7 8 9 10 >10 num. of access

num. of files popularity of cached (D)AOD Files

Over 50% files are not accessed
after cached

a few of them is used
by hammercloud

Write
into
cache

Read
from
cache

Cache
hit

Cache
hit rate

AOD 110957 343629 232671 67.7%

library 173 5052 4879 96.6%

log 7.7 7.8 0.07 ~0

output 1275 1371.7 96.6 7%

0

1

2

3

4

5

6

7

8

1m 10m 1h 4h 8h 12h 1d 2d 3d 4d 5d 6d 7d 8d 9d 10d

(D)AOD popularity VS lifetime

hit per
second

Data is obviously hotter within 1 hour1 after
cached, but remains constant after days



Performance

• Summary on performance study

• Cache “hit” rate up to ~50% for ATLAS analysis jobs, 60% for ATLAS production jobs

• Production queues are more “cache-able” and doesn’t need much optimization

• For analysis queues:

• Library files are extremely hot

• Over half AOD input files are cold

• Files are usually hot only for the first 4 hours

• Some optimization methods may help

• A decision library to filter out cold files

• More aggressive purging frequency is preferred

• Memory based cache for library files would work well



What’s interesting to do next?

• See the actual performance for more sites
• ELK stack built at Edinburgh for XCache monitoring and analytics
• Monitor the real-time caching performance



What’s interesting to do next?

• Partial file cache
• Configure AGIS settings of the queue to directly access storage
• Configure pre-fetch blocks number and block size in XCache to tune performance
• Be careful of the access latency

• XCache and rucio
• Fancy part to exploit functionalities and performance
• Discussion, R&D and testing needed

• Optimizations
• Performance study shows large optimization potential

• Contribute to the doma-access group



Thanks
&

Q &A


