
SLATE
Lincoln Bryant

University of Chicago

GridPP42
24 Apr 2019 1

Motivation

● Remotely manage edge services at sites with central
expert teams

● Deploy updates more quickly

● Introduce new services more easily

● Save time and effort for local admins

2

Create a federation of edge platforms

● SLATE: Services Layer At The Edge

● Distributed service orchestration platform

● Loosely federated, share projects/users/applications
across institutions

● Start with a single server and scale as needed

● Good for any site but "lightweight" sites might find it
particularly useful

3

Basic SLATE Architecture
● Kubernetes-based platform for easily

deploying, maintaining, and
upgrading services across sites

● Federated via a custom server/client
overlaying Kubernetes

● Software catalog with push button
deployment

● RESTful interface with web portal
and CLI client

4

Web Portal

5

SLATE Lightweight Federation
● Security-conscious

○ SLATE platform is an unprivileged user of your
cluster after first-time setup

○ http://slateci.io/blog/app-sec-edge.html

● Single entrypoint via institutional identity
○ Globus + InCommon

● Simple UNIX-like permissions model
○ Users, Groups

● Ability to whitelist groups and applications
○ e.g. group "atlas-xcache" can run XCache but not

Squid

● Join the existing federation or build your
own

6

http://slateci.io/blog/app-sec-edge.html

Deploying Services with SLATE

● Curated application catalog on GitHub with Jenkins for
continuous integration

● A central service expert deploys & operates the
application for many sites

● Command line or web interface

7

Anatomy of a SLATE Application

● Docker container(s) with the software itself

● Templated YAML file describing the service in
terms of Kubernetes objects (Pods, Ingress,
Services, etc)

● Configuration parameter file exposed to the
operator at deploy time

● Goes through an approval process with the
SLATE catalog owners 8

Example Application: XCache

9

Service:
 Port: 1094
 ExternalIP: 192.170.227.151

SiteConfig:
 Name: MWT2
 AGISprotocolID: 433

XCacheConfig:
 CacheDirectories:
 - /scratch
 HighWaterMark: 0.95
 LowWaterMark: 0.90
 RamSize: 16g
 BlockSize: 1M
 Prefetch: 0
 CertSecret: xcache-cert-secret

Operator view, when deploying applications

Templated K8S YAML, not
directly exposed to operators

Deployment experience in ATLAS

● Goal: build an XCache-based caching network

● SLATE-based deployment will simplify operations and
allow for rapid development and debugging

● SLATE services already operational at MWT2, AGLT2,
LRZ

● XCache application already in SLATE catalog, frequently
being iterated upon, updated at sites, and tested

10

XCache deployment process
● Register a cluster with SLATE and allow the atlas-xcache group
● Apply a few special extra steps for XCache:

○ Node labeled in Kubernetes (xcache-capable=true)
○ One or more storage volumes mounted (e.g. /xcache) & communicated to operators
○ Endpoint protocol registered in AGIS

● Test suite containerized
○ Launch a very realistic stress test from Google Compute Engine in minutes

11

< 5 min 5-10 min

XCache Container Download
Kubernetes objects
instantiated

SLATE creates secrets and XCache
deployment on cluster

Pod starts up, registers
itself in AGIS

5-10 min < 5 min XCache fully
deployed in less
than 20 minutes.

XCache Deployment & Upgrade Cycle:

Upgrades are as simple as re-deploying.

12

deployed
xcaches

XCache updates

● Even simpler
● Completely transparent to site admin.

13

$ slate instance list

$ slate instance delete <instance name>

$ slate app install --group atlas-xcache --cluster uchicago-prod --conf MWT2.yaml xcache

Additional benefits:

● Automatic core dump collection (part of XCache)
● Containerized environment makes it easier to debug

XCache Monitoring

Wealth of information collected even
without any direct XRootD monitoring
(summary or detailed stream).

Node state (load, mem, network).

Per pod/container event and resource
usage.

Logs. Fully searchable.

All info shipped to Elasticsearch at
UChicago.

WIP - Prometheus-based monitoring 14

XCache Logging

15

Really convenient logging
● No need to contact anyone
● No need to log in anywhere
● Powerful search
● All the services logs in the same

place.
● Kept for 10 days.

Get a feel for it - SLATE "Sandbox"

https://sandbox.slateci.io:5000/

16

● Starts a tutorial
environment inside a
Kubernetes pod with
the SLATE client
○ Runs an instance of

the SLATE API and
exposes the cluster

● Anyone can make a
temporary account,
try out the command
line interface, and
deploy a simple web
server application

https://sandbox.slateci.io:5000/

● SLATELite (for a quick evaluation using Docker):
○ https://github.com/slateci/slatelite

● Zero to k8s+SLATE script on a bare edge server:
○ Installs everything necessary starting from a fresh CentOS system

http://jenkins.slateci.io/artifacts/scripts/install-slate.sh

● "Managed" install
○ We will SSH to your site, set it up, and hand you the configured machine.

● Full install
○ You install Kubernetes, download SLATE client and register your cluster

SLATE provisioning options

17

https://github.com/slateci/slatelite
http://jenkins.slateci.io/artifacts/scripts/install-slate.sh

Registering a cluster

$ slate cluster create atlas-t2-xyz \

 --group atlas-xyz-admins \

 --org "ATLAS Tier 2 XYZ"

$ slate cluster allow-group atlas-xcache

18

● Join a kubernetes cluster to a SLATE federation
○ Specifying the group which will administer it and the organization which

owns the resource
● Grant users access to deploy applications on the cluster

○ In this case, just the atlas-xcache group

SLATE Status & Roadmap

● Current release: v1.0
○ Variety of deployment methods (Shell scripts, SLATE Lite, manual instructions)
○ All Kubernetes objects needed for deploying our driving applications (XCache, Squid,

HTCondor CE...) are available in the SLATE API and client
○ Portal functional for basic operations
○ Basic monitoring & logging infrastructure

● Next release:
○ Addressing persistent storage
○ Refactoring application deployment to use "ingress controllers" where applicable
○ Adding centralized DNS management component
○ Designing a user-friendly workflow from the portal
○ Expanded & polished monitoring and logging infrastructure

19

If you'd like to try out SLATE

● Homepage: http://slateci.io/
● Slack: https://slack.slateci.io/
● Discussion list

Open to collaboration, packaging interesting
applications, discussing use cases, etc!

20

http://slateci.io/
https://slack.slateci.io/
https://groups.google.com/forum/#!forum/slateci-discuss

Extra slides

21

Application Security for the Edge

● We have considered
the question of
meeting sites’
cybersecurity policies

● Discussions with
community started:
http://bit.ly/app-sec-edge

● Feel free to directly
comment

22

http://bit.ly/app-sec-edge

XCache deployment process (more details)

● As XCache requires special resources this has to be communicated between Ilija
and the site but is done only once:

○ Dedicated node labeled in K8s.
○ Storage should be JBODs organized.
○ Endpoint protocol registered in AGIS.

● Ilija takes over and creates secrets, server, reporting, monitoring, activates protocol in AGIS.
○ All of that is two commands and takes 30 seconds.

● Full update of all the caches in SLATE should take less than 20 min.
○ 10-15 minutes for dockerhub to rebuild image
○ 1 minute to stop running instances
○ 1 minute to start them again
○ 3 minutes to check everything worked
○ Even stress testing is containerized and Ilija can run a very realistic stress test against any

xcache in matter of minutes (from Google Computing Engine)
23

Monitoring - ES & Kibana

24

MiniSLATE
A development environment for SLATE

25

● Create a stand alone, miniature SLATE
federation for development

● Follows an Infrastructure as Code pattern

● Enclosed within Docker
○ Little dependency clutter

■ Python, Docker, Docker-Compose
○ Environment consistency

● Completely Destructible
○ Destroy and recreate at will
○ Mount code from host safely

● Batteries Included
○ Full development kit
○ All required software and useful tools are

installed when the Docker image is built

Installing MiniSLATE (https://github.com/slateci/minislate)

$ git clone https://github.com/slateci/minislate.git

Cloning into 'minislate'...

$ cd minislate

$./minislate init

(...)

DONE! MiniSLATE is now initialized.

$./minislate slate app install nginx --group ms-group --cluster ms-c

Installing application...

...

Successfully installed application nginx as instance ms-group-nginx-default with ID

instance_tey72YzGYuw

26

https://github.com/slateci/minislate

From last year 'til now
● Technology stack has firmed up

significantly
○ CentOS as platform
○ Kubernetes for container orchestration
○ Helm for application packaging and

deployment
○ Home-grown SLATE API server, web portal

and client

● SLATE hardware in-place and configured
at Chicago, Utah, Michigan

● External customers coming on board
(e.g. LRZ)

● Application catalog best practices being
developed

27

