
Geant4 in Atlas
Marilena Bandieramonte
On behalf of the Atlas Simulation Team

18th January 2019

Current production I
• MC production is continuing with no major changes from the simulation side:

• Default production release uses G4 10.1 patch03, CLHEP 2.2, 64-bit, gcc 4.9,
SLC6, C++14

• Some samples produced with later releases built using gcc6.2.

• Compiling G4 as part of our nightly builds
• Significant number of updates to ATLAS user code (geometry and detector

response), including several speed ups.

• Still running tails of (much) older production campaigns:
• MC15

• Geant4 9.6 patch03, CLHEP 2.1, 64-bit, gcc 4.7, SLC6, C++11
• MC12

• Geant4 9.4+ patches for “MC12” production

2

Current production II
• Upcoming changes:

• Hope to update 21.0 to use Geant4 10.1.patch03.atlas07 (G4 Solid updates – 4%
speedup) soon - some difficulties due to other externals changes.

• Aiming to update master to use Geant4 10.4.patch02.atlas01

• Early testing of Geant4.10.5: We built AthSimulation with Geant4.10.5. It will be
used for testing purposes

• The next MC campaign (preparing for LHC Run 3) will most likely use Geant4
10.4.patch02.atlas01
• we are testing Geant4.10.5 but aren’t ready to make a decision on that yet.

3

Requests or features

• Allow Geant4 to deal with zero-lifetime particles (needed for quasi-stable
particle simulation) - Currently testing patches from Makoto – Thanks!

• Improving the robustness of commands executed via G4UIManager – What
is the current status of this? Which G4 versions will be patched?

4

CPU needs projection
• CPU consumption will

increase dramatically for HL-
LHC.

• Most of simulation will rely on
FCS, but full Geant4 sim will
be heavily used regardless
(e.g. 25% of all CPU time).

• Any performance
optimizations of ATLAS
simulation have a big impact
on the overall picture.

Plot from Davide Costanzo presented at: HL-LHC_Weekly-2018-12-04 5

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults

AthenaMT & Geant4MT validation
• We have been able to run full multi-threaded Geant4 within AthenaMT (AthSimulation 22.0.0)

for some time now:
• Inter-event parallelism rather than intra-event parallelism
• Memory savings come from shared geometry & XS tables
• Geant4MT requires thread-local initialization by design
• TBB – on which AthenaMT is based – prefers tasks to be “thread unaware” →

• tricky coupling between AthenaMT and Geant4MT

• Validation of output:
• Fixed: difference in G4 voxelization configuration between MT and ST (simulation diverged)
• Fixed: thread-safety in particle and vertex barcode service (~50%)
• Fixed : some events identical, others have differences in SCT hit IDs (~few%)
• Now: debugging Calorimeter Sensitive Detector code to understand differences in hits (~1-

3%)

• Stability fixes:
• Fixed: crashes due to missing thread-local G4 initialization when TBB spawns extra threads

6

Code optimization and profiling with Intel tools

Read

Write

Alloc

Concurrent
Threads

4th OpenLab-Intel hands-on workshop
• ~ 10 race-conditions
• ~ 2 lock hierarchy violations/deadlocks
• ~ 2-3 unhandled exceptions

7

https://indico.cern.ch/event/762142/

Code optimization and profiling with Intel tools
Intel’s VTune profiling tool can be easily used to thoroughly profile Athena.

8

parameterized_sin function calculates cosine as:
That’s very slow and it can be replaced with a parameterized cos calculation.

1-2% speedup

Geant4 debugging tools I

Tool that plots histograms of various step-related
quantities:

• step length,
• step energy deposit,
• step kinetic energy,
• step position,
• created secondaries,
• ... As a function of:

Material

Process

Volume

9

Geant4 debugging tools II
All debugging plots are relatively automatically assembled into a web-page.

O(2000) plots, e.g.: G4 10.1.3.7 vs. G4 10.4.0.0.

10

https://mmuskinj.web.cern.ch/mmuskinj/G4Debugging/10_1_3_7_vs_10_4_0_0/all/

Performance optimization: range cuts
• Range cuts are a built-in way of optimizing Geant4 performance.

• Range cuts (in length) are define per region. For each pair of (material, region) they
get converted into an energy threshold.

• Secondaries, that are expected to travel less than the range cut are not created and
their energy is immediately deposited.

Example: LiquidArgon, 30 um range cut for electrons

11

Range cut example

Electron Ionization respects the range cut.
Kinks in the secondary kinetic are clearly visible.

Photoelectric effect ignores range cuts by default.
Electrons down to eV are created and simulated.

w/o range cut range cut

12

Impact of new range cut

FCal1Absorber
Range cuts:
30 um
Energy thresholds :
116.102 keV

• Range-cuts are turned off
by default for gamma
processes in G4.

• 60% less electrons created
in total with the range cut in
ATLAS.

• The potential speedup of
the total simulation time
with range cuts for gammas
is 6-10%.

• Currently running physics
validation

13

What kind of electrons are these?

• Most of electrons affected
by the new range cuts have
two steps. Some have three
steps.

• Two steps means that they
are created and
immediately die in the next
step.

• Range cuts are designed
exactly for such cases.
Impact on physics should be
very low.

14

Simple hit-count analysis
A simple hit count analysis show no significant difference in the number of hits in
calorimeters with the range cuts.

• However, this does not take
into the actual energy
deposit.

• We get less particles by
construction with range cuts
and therefore less hits are
expected.

• Full reconstruction is needed
(i.e. PhysVal), but
encouraging to see that
killing 60% of electrons has
such a low impact.

15

Performance optimization: Neutron Russian Roulette

E = 1 MeV:
50% neutrons
E = 10 MeV
90% neutrons

Most steps per
track around
E = 1 MeV.

Randomly kill the majority of neutrons below some energy and weight the energy
deposits of remaining neutrons accordingly:

Energy threshold (E),
Weight (w): neutrons below E are killed with P((w-1)/w) and weighted with w,
Weighting energy deposits is the tricky part (~25 modified files in Athena).

Avg. number of steps per track vs initial energyInitial kinetic energy distribution of neutrons 16

Expected speedup for NRR

Two setups tested:
test1: E = 1 MeV, w = 10,
test2: E = 10 MeV, w = 10.

Expected speedups of the total
simulation time are 10% and 20%
respectively.

A simple calorimeter hit-level analysis
show no significant discrepancies.

Physics validation requested for both
setups.

log(kinetic energy [MeV])

Initial kinetic energy distribution:
Red: plain G4,
Blue: RR with E = 1 MeV, w = 10,
Purple: RR with weighted
entries.

17

Other WIP items

• Geometry work : optimization effort ongoing (~4% speedup)

• “Big library”: static linking of single ATLAS library with static build of Geant4

• Building Athena on top of G4 10.4 with VecGeom

• ATLAS Test Beam Simulations: ATLAS TileCal TB, geometry files retrieved as
GDML, standalone simulation code using CALICE approach ”under
construction”; details such as mapping of TileCal cells and PMTs still needs
some work.

18

Summary
• Good progress on Optimizing Atlas Geant4 performance:

• Range cuts for secondary electrons originating from photons (6-10%)
• Russian Roulette for neutrons (10-20%)
• General improvements of the existing code (few %).
• Together with other improvements such as the “Big Library” a significant

performance increase can be expected

• Good progress on Validation of AthenaMT with Geant4MT:
• Good news for Geant4: no bugs found (so far) on G4 side!

19

Thanks for your attention.
Marilena Bandieramonte

20

Case study: barcode service for multiple threads
• Barcode service provides unique particle and vertex barcodes:

• internal barcode counters are incremented each time a new barcode is requested
• returned barcode is simply the incremented value

• counters are reset at the beginning of each event
• Service was made thread-safe by:

• storing the counters in a tbb::concurrent_unordered_map with the std::thread::id as the
key and initializing a key-value pair for each thread, and

• replacing the BeginEvent incident used to trigger the counter reset with a
resetBarcodes() call inside the algorithm execute()

• Services in AthenaMT should be stateless
• The use of tools such as Intel Inspector is helping us to detect threading bugs

21

Geant4 simulation in ATLAS
‘Steps’ are the smallest units in a Geant4 simulation.

It is possible to intercept information about each step with User Actions:

22

Validation of the range cut for gamma processes in Geant4

• Running the simulation with this option gives an expected speedup of about 6-7% while the
impact on physics should be negligible by design.

• Range cuts are already turned on for the majority of other processes.
• Some simple physics tests were already performed and the agreement was good enough in

our opinion to proceed with the physics validation

• Range cuts for gamma processes (conv, phot, compt) are turned off by default in Geant4.
It is possible to turn them on with a simple postExec:

--postExec="from G4AtlasApps.SimFlags import simFlags; simFlags.G4Commands
+= ['/process/em/applyCuts true']"

23

Performance with range cut
The raw number of steps in same 1000 ttbar events has changed as follows:

§ electron steps: (7.56e9 - 5.88e9) / 7.56e9 = 22%
§ all steps: (2.64e10 - 2.46e10) / 2.64e10 = 6.8%

Assuming that CPU time is proportional to the number of steps a 6-7% speedup is expected.

Local test
Two jobs with 100 ttbar events were submitted locally on a quiet machine for timing purposes:

§ no range cut: Ave/Min/Max= 3.67(+- 1.52)/ 1.12/ 9.3[min]
§ w/ range cut: Ave/Min/Max= 3.46(+- 1.39)/ 1.2/ 8.57[min]
Local speedup is about 6%.

Grid jobs
10000 ttbar events were submitted on the GRID to perform the Calo Hits Analysis
jobs with the range cut are in general faster by about 10% in this example

24

