
Modeling dust clouds
 in GEANT4

Ara N. Knaian, Ph.D.
Nathaniel MacFadden

NK Labs, LLC
Cambridge, MA, USA

18-January-2019

Motivation
● Simulate a particle beam passing through a dusty environment.
● Need to efficiently model billions of dust particles in the 1 μm - 1 mm range
● Generic Example Applications:

○ Ionization type smoke detector
○ Industrial dusty plasma
○ Space dusty plasma
○ Cosmic rays on a rainy day

● We have developed a special geometry class to make this easy and efficient.

Potential Geometry Approaches
● Approximate as a low density solid

○ Does not effectively model the physics; some particles stop within a single dust grain, others
travel a long way and interact with fields

● Brute-force geometry creation
○ Uses a large amount of RAM.
○ 1% density of 50μm dust particles in 1 m^3 = 80B sphere instances = out of memory

● Parametrized Volume
○ Saves RAM, but uses CPU time to close the geometry

● Replicated Volume
○ Create a small cube of randomly-placed particles and replicate it in X,Y,Z
○ Spheres do not cross the faces of the replica; results in lower density near the boundaries
○ Statistics are less random for particles travelling along the cartesian directions

● Model the whole cloud as a single solid

Our Approach

● Model the whole cloud as a single solid
● Compute the sphere locations dynamically, only as they are needed to

respond to geometry callbacks from the GEANT4 kernel.

Illustration

● As the primary and secondary
particles move through the
geometry, sphere locations are
computed dynamically in the grids
needed to respond to the function
calls of a solid. (e.g. distanceToIn,
distanceToOut)

● The code shoots a Poisson
random to get the number of
spheres to add to a given grid,
then shoots Uniform randoms to
get coordinates for each. In a
sphere collision, a new point is
tried until successful placement.

Illustration

● As the primary and secondary
particles move through the
geometry, sphere locations are
computed dynamically in the grids
needed to respond to the function
calls of a solid. (e.g. distanceToIn,
distanceToOut)

● The code shoots a Poisson
random to get the number of
spheres to add to a given grid,
then shoots Uniform randoms to
get coordinates for each. In a
sphere collision, a new point is
tried until successful placement.

Illustration

● As the primary and secondary
particles move through the
geometry, sphere locations are
computed dynamically in the grids
needed to respond to the function
calls of a solid. (e.g. distanceToIn,
distanceToOut)

● The code shoots a Poisson
random to get the number of
spheres to add to a given grid,
then shoots Uniform randoms to
get coordinates for each. In a
sphere collision, a new point is
tried until successful placement.

CloudOfSpheresSolid
● Single geometry object represents a cloud of randomly-placed solid spheres.
● User specifies average volume fraction and sphere diameter.
● Overall shape of the cloud is a box.
● Supports event-level multithreading.
● Can handle giant clouds of tiny particles; we regularly run simulations

involving hundreds of billions of solid dust particles using GEANT4. These
simulations run in a few seconds per event on a 72-core AWS c5.18xlarge.

Usage Example
CloudOfSpheres* cloud = new CloudOfSpheres(outerRadius, minSpacing, gridPitch,

 -0.5*cloud_size_XY, 0.5*cloud_size_XY,

 -0.5*cloud_size_XY, 0.5*cloud_size_XY,

 -0.5*cloud_size_Z, 0.5*cloud_size_Z,

 numSpheres, maxVectorFollowingDistance,

 firstX, firstY, firstZ);

CloudOfSpheresSolid* solidShell = new CloudOfSpheresSolid("shell", cloud, outerRadius,

 innerRadius);

CloudOfSpheresSolid* solidCore = new CloudOfSpheresSolid("core", cloud, innerRadius,

 0);

● Results from shooting a 3 GeV
proton through a cube of dust
10cm in side length, using
modified exampleB1

● Each time trial was run 3 times on
a basic laptop

● For N spheres, runtime appears
O(1) for cloudOfSpheresSolid and
O(N) using a parameterized
geometry.

Performance Test Data

Questions
● What are the generic applications of dusty environment modelling capability to

the GEANT4 community? (Particle physics, medical, space, industrial, etc.)
● What features should we add?
● What tests should we perform?

