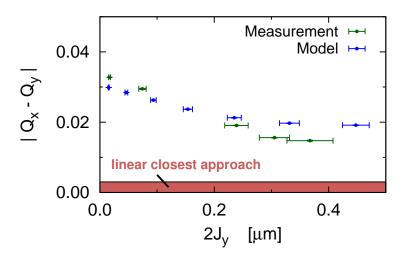
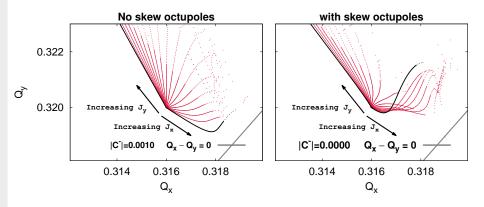
MD3317: Alternative techniques to measure amplitude dependent closest tune approach


Ewen H. Maclean on behalf of the OMC team

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

LSWG


2012: observe saturation of Q-split vs J far above linear ΔQ_{min} \rightarrow Interpret as an Amplitude Dependent Closest Tune Approach

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

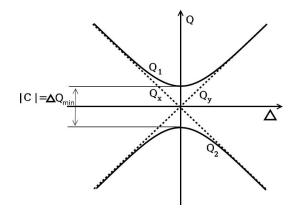
Generated by $(a_2 + b_4)$ and $(a_4 + b_4)$

 \rightarrow Potential for large distortion of tune-footprint

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

So far (MD in 2012/2016/2017) studied via saturation of tune-split during amplitude detuning measurements

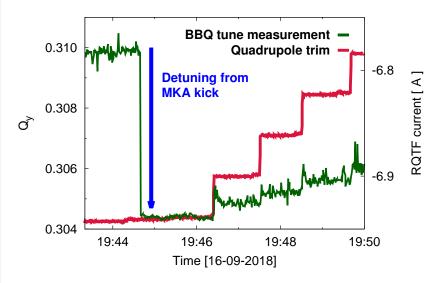
I SWG


 Directly observing effect of ADECTA on side of Q-footprint approaching the coupling resonance

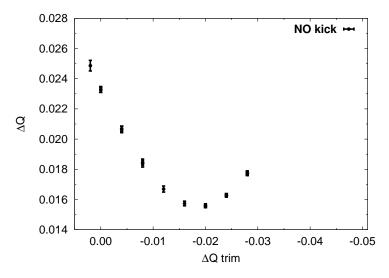
Some limitations from detuning-based measurement:

- Can't test mechanisms in absence of octupoles
- Can only test mechanism with J_{x,y} driving beams towards the coupling resonance
- Needs repeated kicks with MKA so impossible at top energy

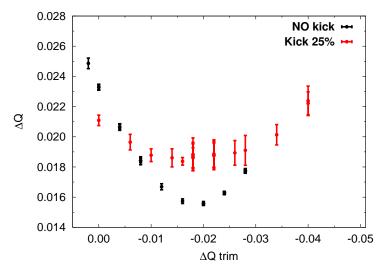
Need additional methods to measure ADECTA


Classical linear coupling measurement measures ΔQ_{min} by using quad trim to try and force tunes to the $Q_x - Q_y$ resonance

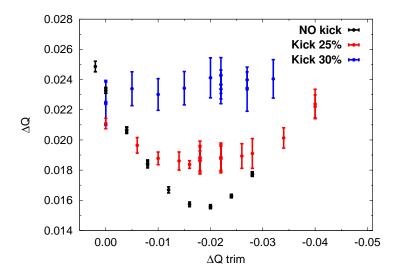
Try classical $\triangle Q_{min}$ measurement, but having first kicked beams with MKA (closest approach of a phase space doughnut)

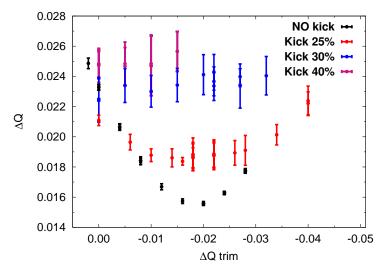

LSWG

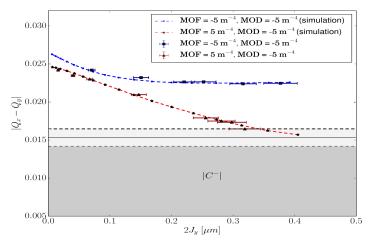
Can observe amplitude detuning and tune scan of kicked beam in BBQ data



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

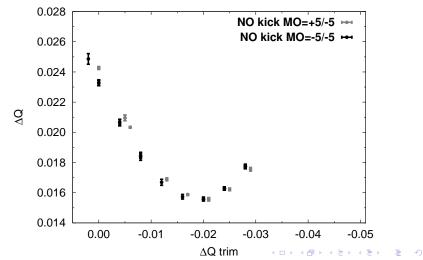

Trim QH_TRIM and QV_TRIM knobs to try and force tunes to same value


With diagonal kick of 25% MKA powering see increased closest approach

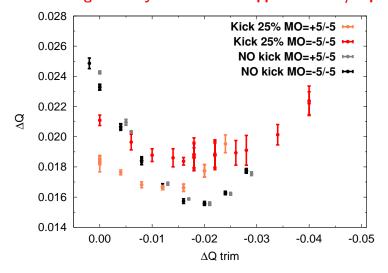

Beams are fully coupled above 30% MKA kick

Amplitude dependence of closest tune approach observed for diagonal kicks

Powering MO with opposite strength should suppress ADECTA \rightarrow Observed in 2016 MD via saturation of amplitude detuning



LSWG


◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

Powering MOF/D with opposite strength should suppress ADECTA

 \rightarrow Checked that linear closest approach unchanged for new MO settings

Powering MO with opposite strength should suppress ADECTA \rightarrow ADECTA significantly reduced with opposite MOF/D polarity

LSWG

Powering MO with opposite strength should suppress ADECTA

 \rightarrow ADECTA significantly reduced with opposite MOF/D polarity

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Very happy with outcome of MD:

- Demonstrated alternative method to measure ADECTA
- Observed explicit amplitude dependence for first time
- Replicated observation of suppression via MO powering with new observable

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @